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Lecture 22

Computing Fibonacci numbers

As we discussed previously, a matrix of a linear operator ϕ is diagonal in the system of coordinates given by
the basis e1, e2 if and only if ϕ(e1) = a1e1, ϕ(e2) = a2e2, or, in general in dimension n, if ϕ(e1) = a1e1,
. . . , ϕ(en) = anen.

Suppose that v is a nonzero vector for which ϕ(v) = av for some scalar a. For whichever basis e1, . . . , en
we may have, this means Aϕ,eve = ave, or

(Aϕ,ve − aIn)ve = 0.

This means that the matrix A = Aϕ,ve − aIn is not invertible, and that det(A) = 0. Note that det(A) is a

polynomial expression in A of degree n. For example, for Aϕ,e =

(
a11 a12

a21 a22

)
, we have

det(A) = a2 − a(a11 + a22) + a11a22 − a12a21 = a2 − tr(Aϕ,e) + det(Aϕ,e),

the polynomial equation we obtained before in a different way.
Therefore, the vectors that are reasonable candidates for a basis are obtained from solutions of the systems

of equations
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)e2, the matrix of the linear transformation ϕ relative to the basis

e1, e2 is
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Therefore,
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and hence
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Substituting the above formulas for Ms,e and M−1
s,e, we see that
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In fact, we have vn = Anv0, so
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Recalling that vn =

(
fn

fn+1

)
, we observe that
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This formula is quite informative. For instance, we can remark that
∣∣∣1−√5

2

∣∣∣ < 1, so for large n the Fibonacci

number fn is the closest integer to 1√
5
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.

Next week, we shall discuss some further examples of applications of linear algebra.
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