1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 22

Computing Fibonacci numbers

As we discussed previously, a matrix of a linear operator ¢ is diagonal in the system of coordinates given by
the basis eq, e; if and only if @(e7) = ajer, @(ez) = azey, or, in general in dimension n, if @(e7) = ajeq,
.., ©(en) = anen.
Suppose that v is a nonzero vector for which @(v) = av for some scalar a. For whichever basis eq,...,en
we may have, this means A ¢Ve = ave, OF

(Apv. — aln)ve =0.

This means that the matrix A = Ay, — al, is not invertible, and that det(A) = 0. Note that det(A) is a

a a
n 12), we have

polynomial expression in A of degree n. For example, for Ay e = <a a
21 a2

det(A) = a? — a(asr + az2) + aj1az — ajzaz; = a® — tr(Ag,e) +det(Age),

the polynomial equation we obtained before in a different way.
Therefore, the vectors that are reasonable candidates for a basis are obtained from solutions of the systems

X
of equations (? }) X = %@x. The first of them has the general solution (] +2 \/15)(]), and the second one

X 1
has the general solution <1\/]§ > Setting in each cases x; = 1, we obtain two vectors e; = (H\/E)
2 X 2

1
and e; = (1_ \/g) The transition matrix from the basis of standard unit vectors sq, s» to this basis is,
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Since Ae; = ( Hz\/g)e], and Ae; = ( 1*2\/§)e2, the matrix of the linear transformation ¢ relative to the basis

er, e is
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Therefore,
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and hence
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! we see that

Substituting the above formulas for Ms e and Mg,
N 1 1 (%)n 0 1 1-V5 4
A" = <1+¢§ 1—V§> 1—v/5 n <_- 5) 713¢§ 1
2 2 0 ( > ) 2
In fact, we have v,, = A™vp, so
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fn >7 we observe that

Recalling that v, = (
fnt1
1 ((1 +\/5>“_ (1 —f5>“>
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2\/5‘ < 1, so for large n the Fibonacci

This formula is quite informative. For instance, we can remark that }

1 1+\/§)n.

NG 2

number f,, is the closest integer to 75
Next week, we shall discuss some further examples of applications of linear algebra.



