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Lecture 19

Linear maps and transformations

Example 1. Let V be the vector space of all polynomials in one variable x. Consider the function oc: V — V
that maps every polynomial f(x) to 3f(x)f’(x). This is not a linear map; for example, 1 +— 0, x — 3x, but
x+1—=3(x+1)=3x+3#3x+0.

Example 2. Consider the vector space M of all 2 x 2-matrices. Let us define a function 3: M, — M3 by
the formula B(X) = <1 1

1 O) X. Let us check that this map is a linear transformation. Indeed, by properties
of matrix products

B0 +x2) = (1 o) X = (1 g)xit (5 o) xa=B0x) + Bixa,

B(CX)—G é) (cX)—cG (‘))x—qs(X).

Lemma 1. Suppose that f is a linear map. Then f(0) =0, and f(—v) = —f(v).
Proof. This follows from 0-v =0 and (—1)-v = —v. O

Definition 1. Let @: V — W be a linear map, and let e;,...,e, and fy,...,f, be bases of V and W
respectively. Let us compute coordinates of the vectors ¢(e;) with respect to the basis f1,...,fm:

eler)=anfi+anfa+-+amifm,
e(e2) = aiafr +axpfr+ -+ amafm,
(p(en) =ainf1 +anf2+ -+ amnfm.

The matrix

an a2 e Ain

azi az2 e A2n
Agef =

Am1 Am2 ... Qmn

is called the matrixz of the linear map @ with respect to the given bases. For each k, its k-th column is the
column of coordinates of image @(ey).

Similarly to how we proved it for transition matrices, we have the following result.

Lemma 2. Let ©: V — W be a linear operator, and let ey,...,en and f1,...,fm be bases of V and W
respectively. Suppose that x1,...,Xn are coordinates of some vector v relative to the basis ey,...,en, and



Yi,...,Ym are coordinates of ©(v) relative to the basis f1,...,fm. In the notation above, we have

Y1 X1

Y2 X2
. = A(p,e,f

Ym Xn

Proof. The proof is indeed very analogous to the one for transition matrices: we have
vV=X1€1+ -+ Xnen,

so that
e(v) =x19(e1) + - +xn0(en).

Substituting the expansion of f(e;)’s in terms of f;’s, we get

e(v)=xi(anfi+anf+---+amifm) +--+xnlainfi + aznf2 + -+ amnfm) =
= (anx) +apx2 + -+ apaxa)fr + o (@mixt F amaxz2 + - F AGmnXn ) fn.

Since we know that coordinates are uniquely defined, we conclude that

anxy + appxz + -+ AinXn =Y,

Am1X1 + QGm2X2 + -+ AmnXn = Yn,
which is what we want to prove. O

Example 3. Let us consider the linear map X: P, — P3 discussed in previous class. Let us take the bases
e1 = 1,e2 = x,e3 = x? of P2, and the basis f; = 1,f, = x,f3 = x%,f4 = x> of P3, and compute Ax . Note
that X(e;) =x-1=x =1, X(ez) =x-x =x? = f3, and X(e3) = x - x2 = x> = f4. Therefore

0

AX,e,f =

S O = O
o — O O
—_ O O

Example 4. Let us consider the linear map D: P3; — P3 and D: P3 — P3 discussed in the previous class.
Let us take the bases e; = 1,e2 = x,e3 = x?,e4 = x> of P3, and the basis f; = 1,f, = x, f3 = x? of P», and
let us compute Ap e ¢ and Ap .. Note that D(eq) =1/ =0, D(ez) =x' =1 = fy, D(e3) = (x?)’ = 2x = 2f,,
and D(es) = (x3)" = 3x% = 3f3, and that D(e;) =1/ =0, D(e;) =x' =1 =e;, D(e3) = (x2)' = 2x = 2e,,
and D(es) = (x3)’ = 3x% = 3e3. Therefore

0100
Abes=|0 0 2 0
00 0 3
and
0100
00 20
Adbee=0 0 0 3
0000



Example 5. Let us look at the linear map «: M, — M, discussed in the beginning of this class.

consider the basis of matrix units in My: e; = Eq1, e2 = Eq12, e3 = E21, e4 = E22. We have

wen=( )0 Y- 9-arves
w1 ) - e

SO

1
0
Aoc,e — 11
0

The next statement is also similar to the corresponding one for transition matrices; it also generalises
the statement that in the case of coordinate vector spaces product of matrices corresponds to composition

of linear maps.

Lemma 3. Let U, V, and W be vector spaces, and let P: U — V and @: V — W be linear operators.

Finally, let e1,...,en, f1,...,fm, and g1,..., gk be bases of U, V, and W respectively. Then

Apop,eg = Ag f,gAve,f-

We shall prove it in the next class.



