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Lecture 19

Linear maps and transformations

Example 1. Let V be the vector space of all polynomials in one variable x. Consider the function α : V → V
that maps every polynomial f(x) to 3f(x)f ′(x). This is not a linear map; for example, 1 7→ 0, x 7→ 3x, but
x+ 1 7→ 3(x+ 1) = 3x+ 3 6= 3x+ 0.

Example 2. Consider the vector space M2 of all 2× 2-matrices. Let us define a function β : M2 →M2 by

the formula β(X) =

(
1 1
1 0

)
X. Let us check that this map is a linear transformation. Indeed, by properties

of matrix products

β(X1 + X2) =

(
1 1
1 0

)
(X1 + X2) =

(
1 1
1 0

)
X1 +

(
1 1
1 0

)
X2 = β(X1) + β(X2),

β(cX) =

(
1 1
1 0

)
(cX) = c

(
1 1
1 0

)
X = cβ(X).

Lemma 1. Suppose that f is a linear map. Then f(0) = 0, and f(−v) = −f(v).

Proof. This follows from 0 · v = 0 and (−1) · v = −v.

Definition 1. Let ϕ : V → W be a linear map, and let e1, . . . , en and f1, . . . , fm be bases of V and W
respectively. Let us compute coordinates of the vectors ϕ(ei) with respect to the basis f1, . . . , fm:

ϕ(e1) = a11f1 + a21f2 + · · ·+ am1fm,
ϕ(e2) = a12f1 + a22f2 + · · ·+ am2fm,

. . .

ϕ(en) = a1nf1 + a2nf2 + · · ·+ amnfm.

The matrix

Aϕ,e,f =


a11 a12 . . . a1n
a21 a22 . . . a2n

... . . .
. . .

...
am1 am2 . . . amn


is called the matrix of the linear map ϕ with respect to the given bases. For each k, its k-th column is the
column of coordinates of image ϕ(ek).

Similarly to how we proved it for transition matrices, we have the following result.

Lemma 2. Let ϕ : V → W be a linear operator, and let e1, . . . , en and f1, . . . , fm be bases of V and W
respectively. Suppose that x1, . . . , xn are coordinates of some vector v relative to the basis e1, . . . , en, and
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y1, . . . , ym are coordinates of ϕ(v) relative to the basis f1, . . . , fm. In the notation above, we have
y1
y2
...
ym

 = Aϕ,e,f


x1
x2
...
xn

 .
Proof. The proof is indeed very analogous to the one for transition matrices: we have

v = x1e1 + · · ·+ xnen,

so that
ϕ(v) = x1ϕ(e1) + · · ·+ xnϕ(en).

Substituting the expansion of f(ei)’s in terms of fj’s, we get

ϕ(v) = x1(a11f1 + a21f2 + · · ·+ am1fm) + · · ·+ xn(a1nf1 + a2nf2 + · · ·+ amnfm) =

= (a11x1 + a12x2 + · · ·+ a1nxn)f1 + · · ·+ (am1x1 + am2x2 + · · ·+ amnxn)fn.

Since we know that coordinates are uniquely defined, we conclude that

a11x1 + a12x2 + · · ·+ a1nxn = y1,

. . .

am1x1 + am2x2 + · · ·+ amnxn = yn,

which is what we want to prove.

Example 3. Let us consider the linear map X : P2 → P3 discussed in previous class. Let us take the bases
e1 = 1, e2 = x, e3 = x

2 of P2, and the basis f1 = 1, f2 = x, f3 = x
2, f4 = x

3 of P3, and compute AX,e,f . Note
that X(e1) = x · 1 = x = f2, X(e2) = x · x = x2 = f3, and X(e3) = x · x2 = x3 = f4. Therefore

AX,e,f =


0 0 0
1 0 0
0 1 0
0 0 1

 .
Example 4. Let us consider the linear map D : P3 → P3 and D̂ : P3 → P3 discussed in the previous class.
Let us take the bases e1 = 1, e2 = x, e3 = x

2, e4 = x
3 of P3, and the basis f1 = 1, f2 = x, f3 = x

2 of P2, and
let us compute AD,e,f and AD̂,e. Note that D(e1) = 1

′ = 0, D(e2) = x
′ = 1 = f1, D(e3) = (x2) ′ = 2x = 2f2,

and D(e4) = (x3) ′ = 3x2 = 3f3, and that D̂(e1) = 1
′ = 0, D̂(e2) = x

′ = 1 = e1, D̂(e3) = (x2) ′ = 2x = 2e2,
and D̂(e4) = (x3) ′ = 3x2 = 3e3. Therefore

AD,e,f =

0 1 0 0
0 0 2 0
0 0 0 3


and

AD̂,e,e =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .
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Example 5. Let us look at the linear map α : M2 → M2 discussed in the beginning of this class. We
consider the basis of matrix units in M2: e1 = E11, e2 = E12, e3 = E21, e4 = E22. We have

α(e1) =

(
1 1
1 0

)(
1 0
0 0

)
=

(
1 0
1 0

)
= e1 + e3,

α(e2) =

(
1 1
1 0

)(
0 1
0 0

)
=

(
0 1
0 1

)
e2 + e4,

α(e3) =

(
1 1
1 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
= e1,

α(e4) =

(
1 1
1 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
= e2,

so

Aα,e =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 .
The next statement is also similar to the corresponding one for transition matrices; it also generalises

the statement that in the case of coordinate vector spaces product of matrices corresponds to composition
of linear maps.

Lemma 3. Let U, V, and W be vector spaces, and let ψ : U → V and ϕ : V → W be linear operators.
Finally, let e1, . . . , en, f1, . . . , fm, and g1, . . . , gk be bases of U, V, and W respectively. Then

Aϕ◦ψ,e,g = Aϕ,f ,gAψ,e,f .

We shall prove it in the next class.
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