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Linear maps
A function f : Rn → Rm is called a linear map if two conditions are
satisfied:

for all v1, v2 ∈ Rn, we have f (v1 + v2) = f (v1) + f (v2);
for all v ∈ Rn and all c ∈ R, we have f (c · v) = c · f (v).

Talking about matrix products, I suggested to view the product Ax as a
function from Rn to Rm. It turns out that all linear maps are like that.

Theorem. Let f be a linear map from Rn to Rm. Then there exists a
matrix A such that f (x) = Ax for all x .

Proof. Let e1, . . . en be the standard unit vectors in Rn: the vector ei
has its i-th coordinate equal to 1, and other coordinates equal to 0. Let
vk = f (ek), and let us define a matrix A by putting together the vectors
v1, . . . , vn: A = (v1 | v2 | · · · | vn). I claim that for every x we have
f (x) = Ax . Indeed, we have

f (x) = f (x1e1 + · · ·+ xnen) = x1f (e1) + · · ·+ xnf (en) =

= x1Ae1 + · · ·+ xnAen = A(x1e1 + · · ·+ xnen) = Ax .
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Linear maps: example

So far all maps that we considered were of the form x 7→ Ax , so the result
that we proved is not too surprising. Let me give an example of a linear
map of geometric origin.

Let us consider the map that rotates every point counterclockwise through
the angle 90◦ about the origin:

Since the standard unit vector e1 is mapped to e2, and e2 is mapped to

−e1, the matrix that corresponds to this map is

(
0 −1
1 0

)
. This means

that each vector

(
x1
x2

)
is mapped to

(
0 −1
1 0

)(
x1
x2

)
=

(
−x2
x1

)
. This can

also be computed directly by inspection.
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Linear independence, span, and linear maps
Let v1, . . . , vk be vectors in Rn. Consider the n × k-matrix A whose
columns are these vectors.

Let us relate linear independence and the spanning property to linear
maps. We shall now show that

the vectors v1, . . . , vk are linearly independent if and only if the map
from Rk to Rn that send each vector x to the vector Ax is injective,
that is maps different vectors to different vectors;
the vectors v1, . . . , vk span Rn if and only if the map from Rk to Rn

that send each vector x to the vector Ax is surjective, that is
something is mapped to every vector b in Rn.

Indeed, we can note that injectivity means that Ax = b has at most one
solution for each b, which is equivalent to the absence of free variables,
which is equivalent to the system Ax = 0 having only the trivial solution,
which we know to be equivalent to linear independence.
Also, surjectivity means that Ax = b has solutions for every b, which we
know to be equivalent to the spanning property.
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Subspaces of Rn

A non-empty subset U of Rn is called a subspace if the following
properties are satisfied:

whenever v ,w ∈ U, we have v + w ∈ U;
whenever v ∈ U, we have c · v ∈ U for every scalar c .

Of course, this implies that every linear combination of several vectors in
U is again in U.

Let us give some examples. Of course, there are two very trivial examples:
U = Rn and U = {0}.
The line y = x in R2 is another example.
Any line or 2D plane containing the origin in R3 would also give an
example, and these give a general intuition of what the word “subspace”
should make one think of.
The set of all vectors with integer coordinates in R2 is an example of a
subset which is NOT a subspace: the first property is satisfied, but the
second one certainly fails.
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Subspaces of Rn: two main examples
Let A be an m × n-matrix. Then the solution set to the homogeneous
system of linear equations Ax = 0 is a subspace of Rn. Indeed, it is
non-empty because it contains x = 0. We also see that if Av = 0 and
Aw = 0, then A(v + w) = Av + Aw = 0, and similarly if Av = 0, then
A(c · v) = c · Av = 0.

Let v1, . . . , vk be some given vectors in Rn. Their linear span
span(v1, . . . , vk) is the set of all possible linear combinations
c1v1 + . . .+ ckvk . The linear span of k > 1 vectors is a subspace of Rn.
Indeed, it is manifestly non-empty, and closed under sums and scalar
multiples.

The example of the line y = x from the previous slide fits into both
contexts. First of all, it is the solution set to the system of equations

Ax = 0, where A =
(
1 −1

)
, and x =

(
x
y

)
. Second, it is the linear span

of the vector v =

(
1
1

)
. We shall see that it is a general phenomenon:

these two descriptions are equivalent.
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Subspaces of Rn: two main examples

Consider the matrix A =

(
1 −2 1 0
3 −5 3 −1

)
, and the corresponding system

of equations Ax = 0. The reduced row echelon form of this matrix is(
1 0 1 −2
0 1 0 −1

)
, so the free unknowns are x3 and x4. Setting x3 = s,

x4 = t, we obtain the solution


−s + 2t

t
s
t

, which we can represent as

s


−1
0
1
0

+ t


2
1
0
1

. We conclude that the solution set to the system of

equations is the linear span of the vectors v1 =


−1
0
1
0

 and v2 =


2
1
0
1

.
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Subspaces of Rn: two main examples
Let us implement this approach in general. Suppose A is an m × n-matrix.
As we know, to describe the solution set for Ax = 0 we bring A to its
reduced row echelon form, and use free unknowns as parameters. Let xi1 ,
. . . , xik be free unknowns. For each j = 1, . . . , k , let us define the vector
vj to be the solution obtained by putting the j-th free unknown to be
equal to 1, and all others to be equal to zero. Note that the solution that
corresponds to arbitrary values xi1 = t1, . . . , xik = tk is the linear
combination t1v1 + · · ·+ tkvk . Therefore the solution set of Ax = 0 is the
linear span of v1, . . . , vk .

Note that in fact the vectors v1, . . . , vk constructed above are linearly
independent. Indeed, the linear combination t1v1 + · · ·+ tkvk has ti in the
place of i-th free unknown, so if this combination is equal to zero, then all
coefficients must be equal to zero. Therefore, it is sensible to say that
these vectors form a basis in the solution set: every vector can be obtained
as their linear combination, and they are linearly independent. However,
we only considered bases of Rn so far, and the solution set of a system of
linear equations differs from Rm.
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