MA 1212: Linear Algebra II
Tutorial problems, January 29, 2015

1. First we make this set into a set of orthogonal vectors. We put
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To conclude, we normalise the vectors, obtaining the answer
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2. This formula is bilinear and symmetric by inspection. Also, if we put
X1 = X2 and Yy = ya, we obtain xI +xy1 +y? = (x1 4+ Y1)+ 3y1, and we see
that this can only be equal to zero for x; =y; = 0, so the positivity holds as
well. Let us apply the Gram—Schmidt process to the standard unit vectors.

This means that we would like to replace e, by e; — EZ’Z%& = (_]1/2). It

remains to normalise these vectors, obtaining
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3. We first orthogonalise these vectors, noting that J"1_1 f(t) dt is equal to

0 if f(t) is an odd function (this shows that our computations are actually
quite easy, because even powers of t are automatically orthogonal to odd



powers):
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To conclude, we normalise these vectors, obtaining
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