1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 9

Diagonalisation of real symmetric matrices

Yesterday we proved that every real symmetric matrix A has a real eigenvector v € R™, so that Av = cv for
some ¢ € R.

Theorem 1. For a real symmetric matriz, there exists a basis of eigenvectors that is orthonormal with
respect to the standard scalar product on R™.

Proof. We begin the proof of a very useful observation which we shall use several times. Namely for two
vectors x and y, the scalar product (x,y) can be identified with the 1 x T-matrix y' - x. Therefore, for every
matrix B we have

(Bx,y) =y ' Bx = (B'y) 'x = (x,B"y).

In particular, for B = A, we have (Ax,y) = (x,Ay). This is very useful, because it allows to generalise the
notion of a symmetric matrix to that of a symmetric linear transformation of a Euclidean vector space, that
is the transformation A for which (Ax,y) = (x, Ay) for all vectors x and y. (If we introduce a coordinate
system corresponding to an orthonormal basis, the vector space gets identified with R™ with the usual scalar
product, and a symmetric linear transformation is represented by a symmetric matrix).

Let us proceed with the proof. Consider a real eigenvector v of A, and consider the vector space
U = span(v)*. We have V = span(V) @ U, so dim(U) = dim(V) — 1. Let us show that U is an in-
variant subspace of A. Let u € U, so that (u,v) = 0, and let us show that (Au,v) = 0. We have
(Au,v) = (uy,Av) = (u,cv) = c(u,v) = 0. Therefore, U is an invariant subspace; the scalar product of
V makes it an Euclidean space, and A is a symmetric linear transformation of that space. It follows by
induction on dimension that the theorem holds. O

Example 1. For the transformation whose matrix relative to the standard orthonormal (with respect to
the standard scalar product) basis of R* is

7 1 =1 =3

1 7 =3 -1
-1 =3 7 1/
-3 -1 1 7

let us find an orthonormal basis of eigenvectors.
The eigenvalues of this matrix are 4, 8, and 12. Orthonormal basis of eigenvectors:

0 1 —1 —1

1 1 T 10| 11 11 -1
AR IR
0 1 1 1

It is not unique; one can choose an arbitrary orthonormal basis in the plane spanned by the first two of
them.



Note that eigenvectors corresponding to different eigenvalues are automatically orthogonal:
c1(vi,v2) = (c1v1,v2) = (Avy,v2) = (v1,Avz) = (v1,€2v2) = c2(Vv1,Vv2),

which for ¢; # c, implies that (vi,v2) = 0. Therefore, the only things we need to do is normalise the
eigenvectors for the eigenvalues 8 and 12, since each of these has a one-dimensional space of eigenvectors,
and find an orthonormal basis of the solution set of (A —4I)x = 0, which can be obtained from any basis of
that space by Gram—Schmidt orthogonalisation.

Orthogonal matrices

Definition 1. An n x n-matrix A is said to be orthogonal if ATA = 1. (Or, equivalently, if AT = A~1).

Note that another way to state the same is to remark that the columns of A form an orthonormal basis.
Indeed, the entries of ATA are pairwise scalar products of columns of A.

Theorem 2. A matrix A is orthogonal if and only if it does not change the scalar product, that is for all
X,y € R™ we have
(Ax, Ay) = (x,y).

Proof. As we proved earlier, (Ax,Ay) = (x,ATAy). Clearly, (x,ATAy) = (x,y) for all x,y if and only if
(x, (ATA —I)y) = 0 for all x,y, and the latter happens only for ATA —1=0. O

This latter result, again, has the advantage of being coordinate-independent: it allows to define an orthog-
onal linear transformation of an arbitrary Euclidean space as a transformation for which (Ax,Ay) = (x,y)
for all vectors x,y. This means that such a transformation preserves geometric notions like lengths and
angles between vectors.

Comparing determinants of ATA and I, we conclude that det(A)? = 1, so det(A) = £1. Intuitively,
orthogonal matrices with det(A) = 1 are transformations that can distinguish between left and right, or
clockwise and counterclockwise (like rotations), and orthogonal matrices with det(A) = —1 are transforma-
tions that swap clockwise with counterclockwise (like mirror symmetry).

Example 2. Let A be an orthogonal 2 x 2-matrix with det(A) = 1. We have A = ((Cl z) with a? +c? =1,
b2 +d? =1, ab+ cd = 0. There exist some angle « such that a = cos &, ¢ = sin &, and the vector <3> is

an orthogonal vector of length 1, so <2) =4 (t?zlsnaa). Because of the determinant condition,

_ [cosa —sino
" \sinax cosa J?

which is the matrix of the rotation through « about the origin.



