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Lecture 7

Lengths and angles, Cauchy–Schwartz inequality

Definition 1. Let V be an Euclidean space. We define the length of a vector v as |v| =
√

(v, v), and the
angle between two nonzero vectors v and w as the only angle α such that 0 6 α 6 180◦ and

cosα =
(v,w)

|v||w|
.

Remark 1. In the case of usual 3D vectors we could prove that (v,w) = |v||w| cosα, because we worked with
a particular scalar product that was defined on V = R3. Now, the scalar product is a part of the structure,
and can be somewhat arbitrary, so we use our intuition from 3D to define the angle between two vectors.

Why are angles well defined?

Theorem 1 (Cauchy–Schwartz Inequality). For any two vectors v, w of a Euclidean space V we have

(v,w)2 6 (v, v)(w,w),

with equality attained if and only if v and w are proportional.
In particular, for nonzero vectors v and w this implies that

−1 6
(v,w)

|v||w|
6 1,

so the angle α between v and w is well defined.

Proof. If v = 0, the inequality states 0 6 0, so there is nothing to prove. Otherwise, let us consider the
function f(t) = (tv−w, tv−w) defined for a real argument t. Expanding the brackets using the bilinearity
and symmetry of scalar products, we obtain

f(t) = t2(v, v) − 2t(v,w) + (w,w),

so f(t) is, for fixed v and w, a quadratic polynomial in t whose leading coefficient (v, v) is positive. Also,
f(t) assumes non-negative values for all t. This can only happen if the discriminant of f(t) is non-positive,
for if it is positive, then f(t) has two distinct roots t1 and t2, and we have f(t) < 0 for t1 < t < t2. The
discriminant of f(t) is (2(v,w))2 − 4(v, v)(w,w) = 4((v,w)2 − (v, v)(w,w)), so we conclude that

(v,w)2 6 (v, v)(w,w),

as required. The discriminant is zero if and only if f(t) assumes the value 0, and if t0 is the corresponding
value of t, then t0v = w, so v and w are proportional.
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Orthogonal complements, and orthogonal direct sums

Now that we defined angles, we can in particular make better sense of orthogonality: (v,w) = 0 implies that
the angle between v and w is equal to 90◦, so v and w are orthogonal in the usual sense.

Definition 2. Let U be a subspace of a Euclidean space V. The set of all vectors v such that (v, u) = 0 for
all u ∈ U is called the orthogonal complement of U, and is denoted by U⊥.

Lemma 1. For every subspace U, U⊥ is also a subspace.

Proof. This follows immediately from the bilinearity property of scalar products: for example, if v1, v2 ∈ U⊥,
then for each u ∈ U we have (u, v1 + v2) = (u, v1) + (u, v2) = 0.

Lemma 2. For every subspace U, we have U ∩U⊥ = {0}.

Proof. Indeed, if u ∈ U ∩U⊥, we have (u, u) = 0, so u = 0.

Lemma 3. For every finite-dimensional subspace U ⊂ V, we have V = U ⊕ U⊥. (This justifies the name
“orthogonal complement” for U⊥.)

Proof. Let e1, . . . , ek be an orthonormal basis of U. To prove that the direct sum coincides with V, it is
enough to prove V = U + U⊥, or in other words that every vector v ∈ V can be represented in the form
u + u⊥, where u ∈ U, u⊥ ∈ U⊥. Equivalently, we need to represent v in the form c1e1 + . . . + ckek + u⊥,
where c1, . . . , ck are unknown coefficients. Computing scalar products with ej for j = 1, . . . , k, we get a
system of equations to determine ci:

(c1e1 + . . .+ ckek + u⊥, ej) = (v, ej).

Due to orthonormality of our basis and the definition of the orthogonal complement, the left hand side of
this equation is cj. On the other hand, it is easy to see that for every v, the vector

v− (v, e1)e1 − . . . , (v, ek)ek

is orthogonal to all ej, and so to all vectors from U, and so belongs to U⊥.

Corollary 1 (Bessel’s inequality). For any vector v ∈ V and any orthonormal system e1, . . . , ek (not
necessarily a basis) we have

(v, v) > (v, e1)
2 + . . .+ (v, ek)

2.

Proof. Indeed, we can take U = span(e1, . . . , ek) and represent v = u+ u⊥. Then

(v, v) = (u+ u⊥, u+ u⊥) = (u, u) + (u⊥, u⊥)

because (u, u⊥) = 0, so

|v|2 = |u|2 + |u⊥|2 > |u|2 = (u, e1)
2 + . . .+ (u, ek)

2 = (v, e1)
2 + . . .+ (v, ek)

2.
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