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Lecture 7

Lengths and angles, Cauchy—Schwartz inequality

Definition 1. Let V be an Euclidean space. We define the length of a vector v as |v| = /(v,V), and the
angle between two nonzero vectors v and w as the only angle « such that 0 < o < 180° and

(v, w)
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Remark 1. In the case of usual 3D vectors we could prove that (v, w) = [v|lw| cos &, because we worked with
a particular scalar product that was defined on V = R3. Now, the scalar product is a part of the structure,
and can be somewhat arbitrary, so we use our intuition from 3D to define the angle between two vectors.

Why are angles well defined?

Theorem 1 (Cauchy—Schwartz Inequality). For any two vectors v, w of a Euclidean space V we have
(v, )% < (v, V) (W, w),

with equality attained if and only if v and w are proportional.
In particular, for nonzero vectors v and w this implies that
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so the angle o« between v and w is well defined.

Proof. If v = 0, the inequality states 0 < 0, so there is nothing to prove. Otherwise, let us consider the
function f(t) = (tv — w, tv —w) defined for a real argument t. Expanding the brackets using the bilinearity
and symmetry of scalar products, we obtain

f(t) = tz (V)V) - Zt(v,w) + (W)W))

so f(t) is, for fixed v and w, a quadratic polynomial in t whose leading coefficient (v,v) is positive. Also,
f(t) assumes non-negative values for all t. This can only happen if the discriminant of f(t) is non-positive,
for if it is positive, then f(t) has two distinct roots t; and t,, and we have f(t) < 0 for t; < t < t. The
discriminant of f(t) is (2(v,w))? — 4(v,v)(w,w) = 4((v,w)? — (v,v)(w,w)), so we conclude that

(vyw)? < (v, v) (W, w),

as required. The discriminant is zero if and only if f(t) assumes the value 0, and if tg is the corresponding
value of t, then tov = w, so v and w are proportional. O



Orthogonal complements, and orthogonal direct sums

Now that we defined angles, we can in particular make better sense of orthogonality: (v, w) = 0 implies that
the angle between v and w is equal to 90°, so v and w are orthogonal in the usual sense.

Definition 2. Let U be a subspace of a Euclidean space V. The set of all vectors v such that (v,u) =0 for
all u € U is called the orthogonal complement of U, and is denoted by U-*.

Lemma 1. For every subspace U, UL is also a subspace.

Proof. This follows immediately from the bilinearity property of scalar products: for example, if vi,v, € UL,
then for each u € U we have (u,v; +v2) = (u,v7) + (u,v2) =0. O

Lemma 2. For every subspace U, we have UN U+ = {0}.
Proof. Indeed, if u € UN UL, we have (u,u) =0, sou=0. O

Lemma 3. For every finite-dimensional subspace U C V, we have V = U @ U*. (This justifies the name
“orthogonal complement” for U*.)

Proof. Let ey, ..., ex be an orthonormal basis of U. To prove that the direct sum coincides with V, it is
enough to prove V = U + UL, or in other words that every vector v € V can be represented in the form
u+ut, where u € U, ut € Ut. Equivalently, we need to represent v in the form cie; + ...+ cxex +u’,
where ¢y, ..., ¢k are unknown coefficients. Computing scalar products with e; for j = 1,...,k, we get a
system of equations to determine c;:

(creq +...+ckek+uL,e]~) = (v, ¢5).

Due to orthonormality of our basis and the definition of the orthogonal complement, the left hand side of
this equation is ¢;. On the other hand, it is easy to see that for every v, the vector

v— (‘)361 )61 T ey (\), ek)ek
is orthogonal to all e;, and so to all vectors from U, and so belongs to u-t. O
Corollary 1 (Bessel’s inequality). For any vector v € V and any orthonormal system ey, ..., ex (not

necessarily a basis) we have
(vyv) = (vye1)? + .. 4 (v, ex)?.

Proof. Indeed, we can take U = span(er,...,ex) and represent v =u + u’. Then
(v,v) = (u+ut,u+ut) = (uu) + (ut,ut)

because (u,ut) =0, so

|V‘2 = |1L‘2 + ‘uL|2 = "LL|2 = (LL,€1 )2 +...+ ('LL, ek)z = (V) €1 )2 +...+ (V) ek)z-



