1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 6

Euclidean spaces

Informally, a Euclidean space is a vector space with a scalar product. Let us formulate a precise definition.
In this lecture, we shall assume that our scalars are real numbers.

Definition 1. A vector space V is said to be a Euclidean space if it is equipped with a bilinear function
(scalar product) V x V = R, vqi,v2 — (vq,v2) satisfying the following conditions:

e bilinearity: (ci1vi + c2v2,v) = c¢1(vi,v) + c2(v2,v) and (v,c1vy + cav2) = c1 (v, vi) + c2(v,v2),
e symmetry: (vi,v2) = (v2,v7) for all vi,vs,
e positivity: (v,v) > 0 for all v, and (v,v) =0 only for v =0.

Example 1. Let V = R™ with the standard scalar product

X1 Y1
X2 Y2

( ] ) =x1Yy1 +x2y2+ - + XnYn-
Xn Yn

All the three properties are trivially true.

Example 2. Let V be the vector space of continuous functions on [0, 1], and

The symmetry is obvious, the bilinearity follows from linearity of the integral, and the positivity follows
from the fact that if j(]) h(t) dt = 0 for a nonnegative continuous function h(t), then h(t) = 0.

Lemma 1. For every scalar product and every basis e1, ..., en of V, we have
n
(x1€1 + ...+ Xnén,Yy1€1 + ... +Ynen) = Z aijXiYj,
i,j=1
where aiyjy = (ei, ej).

This follows immediately from the bilinearity property of scalar products.

Orthonormal bases

A system of vectors ey, ..., ex of a Euclidean space V is said to be orthogonal, if it consists of nonzero
vectors, which are pairwise orthogonal: (e;, e;) =0 for i #j. An orthogonal system is said to be orthonormal,
if all its vectors are of length 1: (ej,e;) = 1. Note that a basis eq, ..., ey of V is orthonormal if and only if

(x1€14+...+xneén,y1e1 +...+yYnen) =xX1Yy1 + ...+ XnYn.

In other words, an orthonormal basis provides us with a system of coordinates that identifies V with R™
with the standard scalar product.



Lemma 2. An orthonormal system is linearly independent.

Proof. Indeed, assuming ciej + ...+ crex =0, we have

0=(0,ep) =(cre1 +...+crex,ep) =ciler,ep) +... +cilex,ep) =cplep,ep) =cyp.

O
Lemma 3. FEvery finite-dimensional Fuclidean space has an orthonormal basis.
Proof. We shall start from some basis fq, ..., f, and transform it into an orthogonal basis which we then
make orthonormal. Namely, we shall prove by induction that there exists a basis ey, ..., ex—1, fk, ..., Tn,

where the first (k — 1) vectors form an orthogonal system and are equal to linear combinations of the first
(k — 1) vectors of the original basis. For k = 1 the statement is empty, so there is nothing to prove. Assume
that our statement is proved for some k, and let us show how to deduce it for k + 1. Let us search for ey of

the form fy —aje; —...— ax_1ex_1; this way the condition on linear combinations on the first k vectors of
the original basis is automatically satisfied. Conditions (ey,e;) =0 for j =1,...,k — 1 mean that
0= (fk —arer —... —ax—1ex—1,¢€j) = (fx, e5) —ai(er, &) —... — ax—1(ex—1,€j),

and the induction hypothesis guarantees that the latter is equal to

(fi, €5) — ajlej, ¢5),

S0 we can put a; = % forallj =1,...,k—1. Clearly, the linear span of the vectors eq,...,ex_1,fky-.-,fn
is the same as the linear span of the vectors e, ..., ex_1, ex, fx+1,- .., fn (because we can recover the original
set back: fx = ex + aje; +...+ ax—_1ex—1). Therefore, eq,...,ex_1,ex, fxi1,...,fn are n vectors in an
n-dimensional vector space that form a spanning set; they also must form a basis.

To complete the proof, we normalise all vectors, replacing each eyx by ﬁek. O

vV (ex,ex

The process described in the proof is called Gram—Schmidt orthogonalisation procedure.

1 1
Example 3. Consider V = R? with the usual scalar product, and the vectors f; = | 1| and f, = [ 0|,
0 1
0
f3 = | 1]. Then the Gram—Schmidt orthogonalisation works as follows:
1
1
e at the first step, there are no previous vectors to take care of, so we put ey =17 = | 1],
0
1/2
e at the second step we alter the vector f2, replacing it by e; = f, — %61 =f,— 1261 = —11/2 ,
-2/3
e at the third step we alter the vector f3, replacing it by e3 = f3 — ((2 ’2361 — ((2’2; e2=1 2/3 |,
‘ ‘ 2/3

finally, we normalise all the vectors, obtaining
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