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Lecture 6

Euclidean spaces

Informally, a Euclidean space is a vector space with a scalar product. Let us formulate a precise definition.
In this lecture, we shall assume that our scalars are real numbers.

Definition 1. A vector space V is said to be a Euclidean space if it is equipped with a bilinear function
(scalar product) V × V → R, v1, v2 7→ (v1, v2) satisfying the following conditions:

• bilinearity: (c1v1 + c2v2, v) = c1(v1, v) + c2(v2, v) and (v, c1v1 + c2v2) = c1(v, v1) + c2(v, v2),
• symmetry: (v1, v2) = (v2, v1) for all v1, v2,
• positivity: (v, v) > 0 for all v, and (v, v) = 0 only for v = 0.

Example 1. Let V = Rn with the standard scalar product

(


x1
x2
...
xn

 ,


y1

y2

...
yn

) = x1y1 + x2y2 + · · ·+ xnyn.

All the three properties are trivially true.

Example 2. Let V be the vector space of continuous functions on [0, 1], and

(f(t), g(t)) =

∫1
0

f(t)g(t)dt.

The symmetry is obvious, the bilinearity follows from linearity of the integral, and the positivity follows

from the fact that if
∫1
0
h(t)dt = 0 for a nonnegative continuous function h(t), then h(t) = 0.

Lemma 1. For every scalar product and every basis e1, . . . , en of V, we have

(x1e1 + . . .+ xnen, y1e1 + . . .+ ynen) =

n∑
i,j=1

aijxiyj,

where aij = (ei, ej).

This follows immediately from the bilinearity property of scalar products.

Orthonormal bases

A system of vectors e1, . . . , ek of a Euclidean space V is said to be orthogonal, if it consists of nonzero
vectors, which are pairwise orthogonal: (ei, ej) = 0 for i 6= j. An orthogonal system is said to be orthonormal,
if all its vectors are of length 1: (ei, ei) = 1. Note that a basis e1, . . . , en of V is orthonormal if and only if

(x1e1 + . . .+ xnen, y1e1 + . . .+ ynen) = x1y1 + . . .+ xnyn.

In other words, an orthonormal basis provides us with a system of coordinates that identifies V with Rn

with the standard scalar product.
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Lemma 2. An orthonormal system is linearly independent.

Proof. Indeed, assuming c1e1 + . . .+ ckek = 0, we have

0 = (0, ep) = (c1e1 + . . .+ ckek, ep) = c1(e1, ep) + . . .+ ck(ek, ep) = cp(ep, ep) = cp.

Lemma 3. Every finite-dimensional Euclidean space has an orthonormal basis.

Proof. We shall start from some basis f1, . . . , fn, and transform it into an orthogonal basis which we then
make orthonormal. Namely, we shall prove by induction that there exists a basis e1, . . . , ek−1, fk, . . . , fn,
where the first (k − 1) vectors form an orthogonal system and are equal to linear combinations of the first
(k− 1) vectors of the original basis. For k = 1 the statement is empty, so there is nothing to prove. Assume
that our statement is proved for some k, and let us show how to deduce it for k+ 1. Let us search for ek of
the form fk − a1e1 − . . .− ak−1ek−1; this way the condition on linear combinations on the first k vectors of
the original basis is automatically satisfied. Conditions (ek, ej) = 0 for j = 1, . . . , k− 1 mean that

0 = (fk − a1e1 − . . .− ak−1ek−1, ej) = (fk, ej) − a1(e1, ej) − . . .− ak−1(ek−1, ej),

and the induction hypothesis guarantees that the latter is equal to

(fk, ej) − aj(ej, ej),

so we can put aj =
(fk,ej)
(ej,ej)

for all j = 1, . . . , k−1. Clearly, the linear span of the vectors e1, . . . , ek−1, fk, . . . , fn

is the same as the linear span of the vectors e1, . . . , ek−1, ek, fk+1, . . . , fn (because we can recover the original
set back: fk = ek + a1e1 + . . . + ak−1ek−1). Therefore, e1, . . . , ek−1, ek, fk+1, . . . , fn are n vectors in an
n-dimensional vector space that form a spanning set; they also must form a basis.

To complete the proof, we normalise all vectors, replacing each ek by 1√
(ek,ek)

ek.

The process described in the proof is called Gram–Schmidt orthogonalisation procedure.

Example 3. Consider V = R2 with the usual scalar product, and the vectors f1 =

1
1
0

 and f2 =

1
0
1

,

f3 =

0
1
1

. Then the Gram–Schmidt orthogonalisation works as follows:

• at the first step, there are no previous vectors to take care of, so we put e1 = f1 =

1
1
0

,

• at the second step we alter the vector f2, replacing it by e2 = f2 −
(e1,f2)
(e1,e1)

e1 = f2 −
1
2
e1 =

 1/2
−1/2
1

,

• at the third step we alter the vector f3, replacing it by e3 = f3 −
(e1,f3)
(e1,e1)

e1 −
(e2,f3)
(e2,e2)

e2 =

−2/3
2/3
2/3

,

• finally, we normalise all the vectors, obtaining

1√
2

1
1
0

 ,

√
2√
3

 1/2
−1/2
1

 ,

√
3

2

−2/3
2/3
2/3

 .
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