
1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 23

Proof of Cayley–Hamilton theorem

The Cayley–Hamilton theorem stated yesterday claims that “every matrix is a root of its own characteristic
polynomial”, that is that if we consider the characteristic polynomial χA(t) = det(A−tI) = a0+a1t+· · ·+antn
for the given n× n-matrix A, then we have

χA(A) = a0I+ a1A+ · · ·+ anAn = 0.

Today we shall discuss two proofs of this result.
Proof 1. Let λ1, . . . , λk be all different complex eigenvalues of A. Then of course there exist positive

integers m1, . . . , mk such that

χA(t) = det(A− tI) = an(t− λ1)
m1 · · · (t− λk)mk ,

and hence
χA(A) = an(A− λ1I)

m1 · · · (A− λkI)
mk .

At the same time, we know that for some positive integers n1, . . . , nk we have

V = Ker(A− λ1I)
n1 ⊕ · · · ⊕ Ker(A− λkI)

nk .

In this decomposition, all eigenvalues of A on Ker(A − λiI)
ni are equal to λi, so the total multiplicity of

that eigenvalue, that is mi, is equal to the sum of lengths of the threads we obtain from that subspace.
The number ni, that is the exponent which annihilates the linear transformation A − λiI, is equal to the
maximum of all lengths of threads, since for a thread of length s, the power (A−λiI)

s annihilates all vectors
of that thread, and the power (A − λiI)

s−1 does not. This shows that mi > ni (the first of them is sum of
lengths of threads, the second is the maximum of lengths of threads). Therefore, the linear transformation

χA(A) = an(A− λ1I)
m1 · · · (A− λkI)

mk

annihilates each of the subspaces Ker(A− λiI)
ni , therefore annihilates their direct sum, that is V, therefore

vanishes, as required.

The second proof uses a bit of analysis that you would learn in due course in other modules.

Proof 2. Let us first assume that A is diagonalisable, that is has a basis of eigenvectors v1, . . . , vn, with
eigenvalues λ1, . . . , λn. Then

χA(t) = det(A− tI) = an(t− λ1) · · · (t− λn),

and hence
χA(A) = an(A− λ1I) · · · (A− λnI).

In this product (of commuting factors), there is a factor to annihilate each eigenvector vi, since (A−λiI)vi = 0.
Therefore, each element of the basis is annihilated by χA(A), therefore every vector is annihilated by that
transformation, therefore χA(A) = 0.

To handle an arbitrary linear transformation, note that every matrix is a limit of diagonalisable matrices
(e.g. one can take the Jordan normal form and change the diagonal entries a little bit so that they are
all distinct), and the expression χA(A) is a continuous function of A, so if it vanishes on all diagonalisable
matrices, it must vanish everywhere.
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Examples of computations with Jordan normal forms

Let us consider an example of how Jordan decompositions can be used in particular computations. One
instance where it is useful to compute powers of matrices is when dealing with recurrent sequences. An
example of that sort was considered before in the first semester when we dealt with Fibonacci numbers. We
shall now consider a similar question where however Jordan decomposition will be important.

Let us consider the sequence defined as follows: x0 = 7, x1 = 3, xn+2 = −10xn+1 − 25xn for n > 0. In
order to find a closed formula for xn (that is, a formula that expresses it in terms of n, without the need to

compute all the previous terms of the sequence), we consider the vectors vn =

(
xn
xn+1

)
, for which we have

vn+1 =

(
xn+1

xn+2

)
=

(
xn+1

−10xn+1 − 25xn

)
=

(
0 1

−25 −10

)(
xn
xn+1

)
= Avn,

where A =

(
0 1

−25 −10

)
. Thus, vn = Anv0, so in order to compute xn, it is enough to find a formula for

An.
We have χA(t) = det(A − tI) = t2 + 10t + 25 = (t + 5)2, so −5 is the only eigenvalue. The kernel of

A+ 5I is spanned by the vector

(
1
−5

)
. We take the vector v =

(
0
1

)
outside the kernel of A+ 5I that would

compensate for the missing pivot; we have (A + 5I)v =

(
1
−5

)
, so the columns of C =

(
0 1
1 −5

)
form a

Jordan basis. Thus, C−1AC =

(
−5 0
1 −5

)
, and

An = C

(
−5 0
1 −5

)n

C−1 =

(
(−5)n − n(−5)n n(−5)n−1

−n(−5)n+1 (−5)n + n(−5)n

)
.

Finally, vn = An

(
7
3

)
=

(
(−5)n−1(38n− 35)
(−5)n(38n+ 3)

)
, so xn = (−5)n−1(38n− 35).

Another example where computing powers of matrices is important is suggested by probabilistic models
known as Markov chains. Let us mention a simple example. Suppose that a particle can be in two states,
that we call 1 and 2. Suppose that if it is in the state 1, then with probability p11 it remains in that state
in one second, and with probability p12 changes to the state 2, and similarly, if it is in the state 2, then
with probability p21 it changes to the state 1, and with probability p22 remains in the same state (of course,
p11 + p12 = 1 and p21 + p22 = 1). Then, if in the beginning we only know that the particle is in the state 1
with probability p and in the state 2 with probability q = 1−p, then in one second the probabilities change
to p ′ = pp11 + qp21 and q ′ = pp12+ qp22, in other words,(

p ′

q ′

)
=

(
p11 p21
p12 p22

)(
p
q

)
,

and the probabilities after n seconds are computed using the n-th power of the “transfer matrix”(
p11 p21
p12 p22

)
.
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