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One further example
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Example 1. V = R*, @ is multiplication by the matrix A = o -1 1 ol In this case, @< = 0,
-1 0 0 -1
—s
k(@) = 2, tk(@*) = 0 for k > 2, null(p) = 2, null(@*) = 4 for k > 2. Moreover, Ker(p) = { t 1

S

We have a sequence of subspaces V = Ker(@?) D Ker(¢) D {0}. The first one relative to the second one is
-1 0

two-dimensional (dim Ker(@?) — dim Ker(¢) = 2). Clearly, the vectors 8 and } (corresponding to
1 0

s=1,t =0 and s = 0,t = 1 respectively) form a basis of the kernel of ¢, and after computing the reduced

column echelon form and looking for missing pivots, we obtain a relative basis consisting of the vectors

0 0 0 1
0 0 o 1 0
f1 = 1 and f; = ol These vectors give rise to threads fq, @(f1) = 1 and fa, @(f) = 0
0 1 0 —1

These two threads together contain four vectors, and we have a basis.

Uniqueness of the normal form

Let us denote by mg the number of threads of length d, where 1 < d < k. In that case, we have

myx = dim Nk — dim Nk_1,
mi—1 + Mg =dim Ng_7 —dim Ny_»,

my +...+mg =dim Ny —dim Ny,

m1—|—mz—|—...+mk:dimN1,

so the numbers of threads of various lengths are uniquely determined by the characteristics of the linear
transformation ¢ that do not depend on any choices (dimensions of kernels of powers).



Finding a direct sum decomposition

Now, suppose that ¢ is an arbitrary linear transformation of V. Consider the sequence of subspaces
N7 =ker(@), N2 =ker(¢?), ..., Ny =ker(e™), ....
Note that this sequence is increasing:

Ny CNyC...N C...
Indeed, if v € Ng, that is @°(v) = 0, then we have
e (v) = @(@°(v)) =0.

Since we only work with finite-dimensional vector spaces, this sequence of subspaces cannot be strictly
increasing; if Ny # Niyq, then, obviously, dimN;;; > 14 dim Nj. It follows that for some k we have
Ny = Ny41.

Lemma 1. In this case we have Ny 1 = Ny for all 1 > 0.

Proof. We shall prove that Nyi1 = Nyi1—1 by induction on L. The induction basis (case 1 = 1) follows
immediately from our notation. Suppose that Ny, = Nyi1_1; let us prove that Ny 147 = Nys1. Let us
take a vector v € Ny 4141, 50 @1 (v) = 0. We have 11 (v) = *F(p(v)), so @(v) € Ny41. But by the
induction hypothesis Ny 1 = Ny 1.1, s0 @1 (@(v)) =0, or @**(v) =0, so v € Ny, as required. [J

Lemma 2. Under our assumptions, we have ker(@*) N Im(e*) ={0}.

Proof. Indeed, suppose that v € ker(¢@*)NIm(@*). This means that @*(v) = 0 and that v = @*(w) for some
vector w. It follows that @2*(w) =0, so w € Nyi. But from the previous lemma we know that N = Ny,
so w € Ny. Thus, v = @*(w) = 0, which completes the proof. O

Lemma 3. Under our assumptions, we have V = ker(@*) @ Im(p*).

Proof. Indeed, consider the sum of these two subspaces (which is, as we just proved in the previous lemma,
direct). It is a subspace of V of dimension dimker(@¥) + dimIm(¢@¥*) = dim(V), so it has to coincide
with V. O



