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One further example

Example 1. V = R4, ϕ is multiplication by the matrix A =


1 0 0 1
0 −1 1 0
0 −1 1 0
−1 0 0 −1

. In this case, ϕ2 = 0,

rk(ϕ) = 2, rk(ϕk) = 0 for k > 2, null(ϕ) = 2, null(ϕk) = 4 for k > 2. Moreover, Ker(ϕ) = {


−s
t
t
s

}.

We have a sequence of subspaces V = Ker(ϕ2) ⊃ Ker(ϕ) ⊃ {0}. The first one relative to the second one is

two-dimensional (dim Ker(ϕ2) − dim Ker(ϕ) = 2). Clearly, the vectors


−1
0
0
1

 and


0
1
1
0

 (corresponding to

s = 1, t = 0 and s = 0, t = 1 respectively) form a basis of the kernel of ϕ, and after computing the reduced
column echelon form and looking for missing pivots, we obtain a relative basis consisting of the vectors

f1 =


0
0
1
0

 and f2 =


0
0
0
1

. These vectors give rise to threads f1, ϕ(f1) =


0
1
1
0

 and f2, ϕ(f2) =


1
0
0
−1

.

These two threads together contain four vectors, and we have a basis.

Uniqueness of the normal form

Let us denote by md the number of threads of length d, where 1 6 d 6 k. In that case, we have

mk = dimNk − dimNk−1,

mk−1 +mk = dimNk−1 − dimNk−2,

. . .

m2 + . . .+mk = dimN2 − dimN1,

m1 +m2 + . . .+mk = dimN1,

so the numbers of threads of various lengths are uniquely determined by the characteristics of the linear
transformation ϕ that do not depend on any choices (dimensions of kernels of powers).

1



Finding a direct sum decomposition

Now, suppose that ϕ is an arbitrary linear transformation of V. Consider the sequence of subspaces
N1 = ker(ϕ), N2 = ker(ϕ2), . . . , Nm = ker(ϕm), . . . .

Note that this sequence is increasing:

N1 ⊂ N2 ⊂ . . . Nm ⊂ . . .

Indeed, if v ∈ Ns, that is ϕs(v) = 0, then we have

ϕs+1(v) = ϕ(ϕs(v)) = 0.

Since we only work with finite-dimensional vector spaces, this sequence of subspaces cannot be strictly
increasing; if Ni 6= Ni+1, then, obviously, dimNi+1 > 1 + dimNi. It follows that for some k we have
Nk = Nk+1.

Lemma 1. In this case we have Nk+l = Nk for all l > 0.

Proof. We shall prove that Nk+l = Nk+l−1 by induction on l. The induction basis (case l = 1) follows
immediately from our notation. Suppose that Nk+l = Nk+l−1; let us prove that Nk+l+1 = Nk+l. Let us
take a vector v ∈ Nk+l+1, so ϕk+l+1(v) = 0. We have ϕk+l+1(v) = ϕk+l(ϕ(v)), so ϕ(v) ∈ Nk+l. But by the
induction hypothesis Nk+l = Nk+l−1, so ϕk+l−1(ϕ(v)) = 0, or ϕk+l(v) = 0, so v ∈ Nk+l, as required.

Lemma 2. Under our assumptions, we have ker(ϕk) ∩ Im(ϕk) = {0}.

Proof. Indeed, suppose that v ∈ ker(ϕk)∩Im(ϕk). This means that ϕk(v) = 0 and that v = ϕk(w) for some
vector w. It follows that ϕ2k(w) = 0, so w ∈ N2k. But from the previous lemma we know that N2k = Nk,
so w ∈ Nk. Thus, v = ϕk(w) = 0, which completes the proof.

Lemma 3. Under our assumptions, we have V = ker(ϕk)⊕ Im(ϕk).

Proof. Indeed, consider the sum of these two subspaces (which is, as we just proved in the previous lemma,
direct). It is a subspace of V of dimension dim ker(ϕk) + dim Im(ϕk) = dim(V), so it has to coincide
with V.
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