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Lecture 13

Let B = (byj) be the matrix (relative to some basis e1,...,en) of a given symmetric bilinear form b on
V. We shall now discuss some methods of computing the signature of b via the matrix elements of B.

Theorem 1. The signature of B is completely determined by eigenvalues of B: the number ny is the
number of positive eigenvalues, the number n_ is the number of negative eigenvalues, and the number ng is
the number of zero eigenvalues.

Proof. We know that b(x,y) = x"By, which of course is equal to y'Bx, since we work with symmetric
bilinear forms. Let us pick an orthonormal basis of eigenvectors of the matrix B (with respect to the usual

scalar product (x,y) =y'x) vi,...,vn. Then b(vi,v;) = v]Bvi = v{civi = ci(vi,vj), therefore, relative to

that basis, the matrix of B is diagonal with eigenvalues on the diagonal, and the theorem follows after we

normalise each basis vector: v{ = |+)Vi. O
qivi

Let us denote by By the k x k-matrix whose entries are by; with 1 < 1i,j <k, that is the top left corner
submatrix of B. We put Ay := det(By) for 1 <k < n.

Theorem 2 (Jacobi theorem). Suppose that for alli=1,...,n we have Ay # 0. Then there exists a basis
fi1,..., T where
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Proof. We shall look for a basis of the form
f1 =ajer,

f2 = ajzer + azzey,

.oy

fn=aine1 +anez2 + -+ anneén.

If we write the conditions b(fi, f;) = 0 for i # j directly, we shall obtain a system of quadratic equations in
the unknowns ai;, which is difficult to solve directly. For that reason, we shall use a clever shortcut.
Suppose that we found a basis of the form given above, for which

b(fi,ej) =0forj=1,...,i—1.
We shall now verify that these conditions imply b(fi, f;) = 0 for i # j. Indeed, for i > j we have
b(fi, f;) = b(fi, arjer + azjez + ...+ ajjej) = ar;b(fi,er) +--- + a;;b(fi, e5) =0,
and for i < j we have b(fy, f;) = b(fj, fi) = 0.

For a given 1i, the conditions
b(fi,ej) =0forj=1,...,i—1



form a system of linear equations with i unknowns and i — 1 equations, so there will inevitably be free
unknowns. To normalise the solution, let us also include the equation

b(fi,e) =1.
Then the corresponding system of equation becomes

b(er,er)ai; +blez,er)azi +...+bley,er)ay =0,
b(er,ez)ar; +blez,e2)azi +...+blei,ez2)ay =0,

b(er,ei—1)ari +blez,ei_1)azi +... +blei, ei—1)ais =0,
b(er,ei)ari +blez,ei)ari +...+bleg,ei)ay = 1.

The matrix of the this system of equation is BiT = Bj, so by our assumption this system has just one solution

foreachi=1,...,n.
Let us compute the diagonal entries b(fi, f;). We have

b(fi, f;) = b(fi, arjer + azjez + ...+ aiiei) = arjb(fi,er) +-- - + aib(fi, e1) = ayy.

To compute a;;, we use the Cramer’s rule for solving systems of linear equations. The last unknown is equal

to the ratio %‘Ztt((%“‘)), where By is obtained by B; by replacing the last column by the right hand side of the

given system of equations. Expanding that determinant along the right column, we get ai; = AAT’ fori>1,

and aj; = A%, as required. O



