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Lecture 19

Linear maps

Definition 1. Suppose that V and W are two vector spaces. A function ϕ : V → W is said to be a linear
map, or a linear operator, if

• for v1, v2 ∈ V, we have ϕ(v1 + v2) = ϕ(v1) +ϕ(v2),
• for c ∈ R, v ∈ V, we have ϕ(c · v) = c ·ϕ(v).

Lemma 1. Suppose that ϕ is a linear map. Then ϕ(0) = 0, and ϕ(−v) = −ϕ(v).

Proof. This follows from 0 · v = 0 and (−1) · v = −v.

Definition 2. Let ϕ : V →W be a linear operator, and let e1, . . . , en and f1, . . . , fm be bases of V and W
respectively. Let us compute coordinates of the vectors ϕ(ei) with respect to the basis f1, . . . , fm:

ϕ(e1) = a11f1 + a21f2 + · · ·+ am1fm,
ϕ(e2) = a12f1 + a22f2 + · · ·+ am2fm,

. . .

ϕ(en) = a1nf1 + a2nf2 + · · ·+ amnfm.

The matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

... . . .
. . .

...
am1 am2 . . . amn


is called the matrix of the linear operator ϕ with respect to the given bases, and denoted Aϕ,e,f . For each k,
its k-th column is the column of coordinates of image f(ek).

Similarly to how we proved it for transition matrices, we have the following result.

Lemma 2. Let ϕ : V → W be a linear operator, and let e1, . . . , en and f1, . . . , fm be bases of V and W
respectively. Suppose that x1, . . . , xn are coordinates of some vector v relative to the basis e1, . . . , en, and
y1, . . . , ym are coordinates of ϕ(v) relative to the basis f1, . . . , fm. Then

y1
y2
...
ym

 = Aϕ,e,f


x1
x2
...
xn

 ,
or, in other words,

(ϕ(v))f = Aϕ,e,fve.
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Proof. The proof is indeed very analogous to the one for transition matrices: we have

v = x1e1 + · · ·+ xnen,

so that
ϕ(v) = x1ϕ(e1) + · · ·+ xnϕ(en).

Substituting the expansion of f(ei)’s in terms of fj’s, we get

ϕ(v) = x1(a11f1 + a21f2 + · · ·+ am1fm) + · · ·+ xn(a1nf1 + a2nf2 + · · ·+ amnfm) =

= (a11x1 + a12x2 + · · ·+ a1nxn)f1 + · · ·+ (am1x1 + am2x2 + · · ·+ amnxn)fn.

Since we know that coordinates are uniquely defined, we conclude that

a11x1 + a12x2 + · · ·+ a1nxn = y1,

. . .

am1x1 + am2x2 + · · ·+ amnxn = yn,

which is what we want to prove.

The next statement is also similar to the corresponding one for transition matrices; it also generalises
the statement that in the case of coordinate vector spaces product of matrices corresponds to composition
of linear maps. In some sense, this is a central result about linear maps (which also justifies the definition
of matrix products).

Theorem 1. Let U, V, and W be vector spaces, and let ψ : U → V and ϕ : V → W be linear operators.
Suppose that e1, . . . , en, f1, . . . , fm, and g1, . . . , gk are bases of U, V, and W respectively. Let us consider
the composite map ϕ ◦ψ : U→W, ϕ ◦ψ(u) = ϕ(ψ(u)). Then

1. ϕ ◦ψ is a linear map;
2. we have

Aϕ◦ψ,e,g = Aϕ,f ,gAψ,e,f .

Proof. First, let us note that

(ϕ ◦ψ)(u1 + u2) = ϕ(ψ(u1 + u2)) = ϕ(ψ(u1) +ψ(u2)) = ϕ(ψ(u1)) +ϕ(ψ(u2)) = (ϕ ◦ψ)(u1) + (ϕ ◦ψ)(u2),
(ϕ ◦ψ)(c · u) = ϕ(ψ(c · u)) = ϕ(cψ(u)) = cϕ(ψ(u)) = c(ϕ ◦ψ)(u),

so ϕ ◦ψ is a linear map.
Let us prove the second statement. We take a vector u ∈ U, and apply the formula of Lemma 2. On the

one hand, we have
(ϕ ◦ψ(u))g = Aϕ◦ψ,e,gue.

On the other hand, we obtain,

(ϕ ◦ψ(u))g = (ϕ(ψ(u)))g = Aϕ,f ,g(ψ(u)f ) = Aϕ,f ,g(Aψ,e,fue) = (Aϕ,f ,gAψ,e,f )ue.

Therefore
Aϕ◦ψ,e,gue = (Aϕ,f ,gAψ,e,f )ue

for every ue. From our previous classes we know that knowing Av for all vectors v completely determines
the matrix A, so

Aϕ◦ψ,e,g = Aϕ,f ,gAψ,e,f ,

as required.
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