Dimension: examples

Example 1. The dimension of \(\mathbb{R}^n \) is equal to \(n \), as expected. (Standard unit vectors form a basis).

Example 2. The dimension of the space of polynomials in one variable \(x \) of degree at most \(n \) is equal to \(n + 1 \), since it has a basis \(1, x, \ldots, x^n \).

Example 3. The dimension of the space of \(m \times n \)-matrices is equal to \(mn \). (Matrix units \(e_{ij} \), that is matrices that have the only nonzero element equal to 1, which is at the intersection of the \(i \)-th row and the \(j \)-th column, form a basis).

Example 4. For a matrix \(A \), the dimension of the solution space to the system of equations \(Ax = 0 \) is equal to the number of free unknowns, that is the number of columns of the reduced row echelon form of \(A \) that do not have pivots. (The spanning set we constructed previously forms a basis).

We also discussed in detail one of the tutorial questions — see the handout for the tutorial for that solution.

Change of coordinates

Let \(V \) be a vector space of dimension \(n \), and let \(e_1, \ldots, e_n \) and \(f_1, \ldots, f_n \) be two different bases of \(V \). Then we can compute coordinates of each vector \(v \) with respect to either of those bases, so that

\[
v = x_1 e_1 + \cdots + x_n e_n
\]

and

\[
v = y_1 f_1 + \cdots + y_n f_n.
\]

Our goal now is to figure out how these are related. For that, we shall need the notion of a transition matrix.

Definition 1. Let us express the vectors \(f_1, \ldots, f_n \) as linear combinations of \(e_1, \ldots, e_n \):

\[
f_1 = a_{11} e_1 + a_{21} e_2 + \cdots + a_{m1} e_m,
\]

\[
f_2 = a_{12} e_1 + a_{22} e_2 + \cdots + a_{m2} e_m,
\]

\[\vdots\]

\[
f_n = a_{1n} e_1 + a_{2n} e_2 + \cdots + a_{mn} e_m.
\]

The matrix \((a_{ij})\) is called the transition matrix from the basis \(e_1, \ldots, e_n \) to the basis \(f_1, \ldots, f_n \). Its \(k \)-th column is the column of coordinates of the vector \(f_k \) relative to the basis \(e_1, \ldots, e_n \).
Lemma 1. In the notation above, we have

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn} \\
\end{pmatrix}
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n \\
\end{pmatrix}.
\]

In plain words, if we call \(e_1, \ldots, e_n\) the “old basis” and \(f_1, \ldots, f_n\) the “new basis”, then this system tells us that the product of the transition matrix with the columns of new coordinates of a vector is equal to the column of old coordinates.

Proof. The proof is fairly straightforward: we take the formula

\[v = y_1 f_1 + \cdots + y_n f_n, \]

and substitute instead of \(f_i\)’s their expressions in terms of \(e_i\)’s:

\[
\begin{align*}
f_1 &= a_{11} e_1 + a_{21} e_2 + \cdots + a_{m1} e_m, \\
f_2 &= a_{12} e_1 + a_{22} e_2 + \cdots + a_{m2} e_m, \\
& \ \vdots \\
f_n &= a_{1n} e_1 + a_{2n} e_2 + \cdots + a_{mn} e_m.
\end{align*}
\]

What we get is

\[
y_1 (a_{11} e_1 + a_{21} e_2 + \cdots + a_{n1} e_n) + y_2 (a_{12} e_1 + a_{22} e_2 + \cdots + a_{n2} e_n) + \cdots + y_n (a_{1n} e_1 + a_{2n} e_2 + \cdots + a_{nn} e_n) = \\
(y_1 + y_2 + \cdots + y_n) (a_{11} e_1 + a_{21} e_2 + \cdots + a_{n1} e_n) = \\
\sum y_i (a_{ij} e_j) = \sum a_{ij} y_i e_j = \sum (a_{ij} y_i) e_j = x_1,
\]

which is what we want to prove.

If we denote, for a vector \(v\), the column of coordinates of \(v\) with respect to the basis \(e_1, \ldots, e_n\) by \(v_e\), and also denote the transition matrix from the basis \(e_1, \ldots, e_n\) to the basis \(f_1, \ldots, f_n\) by \(M_{e,f}\), then the previous result can be written as

\[v_e = M_{e,f} v_f. \]

Lemma 2. We have

\[M_{e,f} M_{f,g} = M_{e,g} \]

and

\[M_{e,f} M_{f,e} = I_n \]

if \(\dim(V) = n\).

Proof. Applying the formula above twice, we have

\[v_e = M_{e,f} v_f = M_{e,f} M_{f,g} v_g. \]

But we also have

\[v_e = M_{e,g} v_g. \]

Therefore

\[M_{e,f} M_{f,g} v_g = M_{e,g} v_g \]

for every \(v_g\). From our previous classes we know that knowing \(A v\) for all vectors \(v\) completely determines the matrix \(A\), so \(M_{e,f} M_{f,g} = M_{e,g}\) as required. Since manifestly we have \(M_{e,e} = I_n\), we conclude by letting \(g_k = e_k, k = 1, \ldots, n\), that \(M_{e,f} M_{f,e} = I_n\).