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Linear independence, span, basis

By definition of a vector space, we can form arbitary linear combinations: if v1, . . . , vk are vectors and
c1, . . . , ck are scalars, then c1v1 + · · ·+ ckvk is a vector which is called the linear combination of v1, . . . , vk
with coefficients c1, . . . , ck.

All the definitions that we gave in the case of Rn proceed in the same way. Below we assume that V is
a vector space over real numbers (but one can use any other field if necessary).

Definition 1. A system of vectors v1, . . . , vk ∈ V is said to be linearly independent if the only linear
combination of these vectors that is equal to zero is the combination where all the coefficients are equal to
zero.

Note that the property stating that if c · v = 0 then c = 0 or v = 0 can be rephrased as follows: one
non-zero vector is always linearly independent.

Definition 2. A system of vectors v1, . . . , vk ∈ V is said to be complete, or to span V, if every vector in V
is equal to a linear combination of those vectors.

Definition 3. A system of vectors v1, . . . , vk ∈ V is said to form a basis of V, if it is linearly independent
and spans V.

Remark 1. In case a system of vectors is infinite, the same definitions apply, but we always use finite linear
combinations: a system is linearly independent if no non-trivial finite linear combination is zero, a system is
complete if every vector can be represented as their finite linear combination.

Example 1. The spanning set that we constructed for the solution set of an arbitrary system of linear
equations was, as we remarked, linearly independent, so in fact it provided a basis of that vector space.

Example 2. The monomials xk, k > 0, form a basis in the space of polynomials in one variable. Note that
this basis is infinite, but we nevertheless only consider finite linear combinations at all stages.

Dimension

Note that in Rn we proved that a linearly independent system of vectors consists of at most n vectors, and
a complete system of vectors consists of at least n vectors. In a general vector space V, there is no a priori
n that can play this role. Moreover, the previous example shows that sometimes, no n bounding the size
of a linearly independent system of vectors may exist. It however is possible to prove a version of those
statements which is valid in every vector space.

Theorem 1. Let V be a vector space, and suppose that e1, . . . , ek is a linearly independent system of vectors
and that f1, . . . , fm is a complete system of vectors. Then k 6 m.
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Proof. Assume the contrary; without loss of generality, k > m. Since f1, . . . , fm is a complete system, we
can find coefficients aij for which

e1 = a11f1 + a21f2 + · · ·+ am1fm,

e2 = a12f1 + a22f2 + · · ·+ am2fm,

. . .

ek = a1kf1 + a2kf2 + · · ·+ amkfm.

Let us look for linear combinations c1e1 + · · ·+ ckvk that are equal to zero (since these vectors are assumed
linearly independent, we should not find any nontrivial ones). Such a combination, once we substitute the
expressions above, becomes

c1(a11f1+a21f2+· · ·+am1fm)+c2(a12f1+a22f2+· · ·+am2fm)+. . .+ck(a1kf1+a2kf2+· · ·+amkfm) =

= (a11c1 + a12c2 + · · ·+ a1kck)f1 + · · ·+ (am1c1 + am2c2 + · · ·+ amkck)fm.

This means that if we ensure

a11c1 + a12c2 + · · ·+ a1kck = 0,

. . .

am1c1 + am2c2 + · · ·+ amkck = 0,

then this linear combination is automatically zero. But since we assume k > m, this system of linear equations
has a nontrivial solution c1, . . . , ck, so the vectors e1, . . . , ek are linearly dependent, a contradiction.

This result leads, indirectly, to an important new notion.

Definition 4. We say that a vector space V is finite-dimensional if it has a basis consisting of finitely many
vectors. Otherwise we say that V is infinite-dimensional.

Example 3. Clearly, Rn is finite-dimensional. The space of all polynomials is infinite-dimensional: finitely
many polynomials can only produce polynomials of bounded degree as linear combinations.

Exercise. Let V be a finite-dimensional vector space. Then every basis of V consists of the same finite
number of vectors.
Solution. Indeed, having a basis consisting of n elements implies, in particularly, having a complete
system of n vectors, so by our theorem, it is impossible to have a linearly independent system of more than
n vectors. Thus, every basis has finitely many elements, and for two bases e1, . . . , ek and f1, . . . , fm we have
k 6 m and m 6 k, so m = k.

Definition 5. For a finite-dimensjonal vector V, the number of vectors in a basis of V is called the dimension
of V, and is denoted by dim(V).

Coordinates

Let V be a finite-dimensional vector space, and let e1, . . . , en be a basis of V.

Definition 6. For a vector v ∈ V, the scalars c1, . . . , cn for which

v = c1e1 + c2e2 + · · ·+ cnen

are called the coordinates of v with respect to the basis e1, . . . , en.

Lemma 1. The above definition makes sense: each vector has (unique) coordinates.

Proof. Existence follows from the spanning property of a basis, uniqueness — from linear independence.
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