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The coordinate vector space Rn

We already used vectors in n dimensions when talking about systems of
linear equations. However, we shall now introduce some further notions
and see how those notions may be applied.

Recall that the coordinate vector space Rn consists of all columns of
height n with real entries, which we refer to as vectors.

Let v1, . . . , vk be vectors, and let c1, . . . , ck be real numbers. The linear
combination of vectors v1, . . . , vk with coefficients c1, . . . , ck is, quite
unsurprisingly, the vector c1v1 + · · ·+ ckvk .

The vectors v1, . . . , vk are said to be linearly independent if the only linear
combination of this vector which is equal to the zero vector is the
combination where all coefficients are equal to 0. Otherwise those vectors
are said to be linearly dependent.

The vectors v1, . . . , vk are said to span Rn, or to form a complete set of
vectors, if every vector can be written as some linear combination of those
vectors.
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Linear independence and span: examples

If a system of vectors contains the zero vector, these vectors may not be
linearly independent, since it is enough to take the zero vector with a
nonzero coefficient.

If a system of vectors contains two equal vectors, or two proportional
vectors, these vectors may not be linearly independent. More generally,
several vectors are linearly dependent if and only if one of those vectors
can be represented as a linear combination of others. (Exercise: prove that
last statement).

The standard unit vectors e1, . . . , en are linearly independent; they also
span Rn.

If the given vectors are linearly independent, then removing some of them
keeps them linearly independent. If the given vectors span Rn, then
throwing in some extra vectors does not destroy this property.
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Linear combinations and systems of linear
equations

Let us make one very important observation:

For an n × k-matrix A and a vector x of height k, the product
Ax is the linear combination of columns of A whose coefficients

are the coordinates of the vector x. If x =


x1
x2
...
xk

, and

A = (v1 | v2 | · · · | vk), then Ax = x1v1 + · · ·+ xkvk .

We already utilised that when working with systems of linear equations.
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Linear independence and span

Let v1, . . . , vk be vectors in Rn. Consider the n × k-matrix A whose
columns are these vectors.

Clearly, the vectors v1, . . . , vk are linearly independent if and only if the
system of equations Ax = 0 has only the trivial solution. This happens if
and only if there are no free variables, so the reduced row echelon form of
A has a pivot in every column.

Clearly, the vectors v1, . . . , vk span Rn if and only if the system of
equations Ax = b has solutions for every b. This happens if and only if the
reduced row echelon form of A has a pivot in every row. (Indeed,
otherwise for some b we shall have the equation 0 = 1).

In particular, if v1, . . . , vk are linearly independent in Rn, then k 6 n
(there is a pivot in every column of A, and at most one pivot in every
row), and if v1, . . . , vk span Rn, then k > n (there is a pivot in every row,
and at most one pivot in every column).
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Bases of Rn

We say that vectors v1, . . . , vk in Rn form a basis if they are linearly
independent and they span Rn.

Theorem. Every basis of Rn consists of exactly n elements.

Proof. We know that if v1, . . . , vk are linearly independent, then k 6 n,
and if v1, . . . , vk span Rn, then k > n. Since both properties are satisfied,
we must have k = n.

Let v1, . . . , vn be vectors in Rn. Consider the n × n-matrix A whose
columns are these vectors. Our previous results immediately show that
v1, . . . , vn form a basis if and only if the matrix A is invertible (for which
we had many equivalent conditions last week).
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Linear maps
A function f : Rn → Rm is called a linear map if two conditions are
satisfied:

for all v1, v2 ∈ Rn, we have f (v1 + v2) = f (v1) + f (v2);
for all v ∈ Rn and all c ∈ R, we have f (c · v) = c · f (v).

Talking about matrix products, I suggested to view the product Ax as a
function from Rn to Rm. It turns out that all linear maps are like that.

Theorem. Let f be a linear map from Rn to Rm. Then there exists a
matrix A such that f (x) = Ax for all x .

Proof. Let e1, . . . en be the standard unit vectors in Rn: the vector ei
has its i-th coordinate equal to 1, and other coordinates equal to 0. Let
vk = f (ek), and let us define a matrix A by putting together the vectors
v1, . . . , vn: A = (v1 | v2 | · · · | vn). I claim that for every x we have
f (x) = Ax . Indeed, we have

f (x) = f (x1e1 + · · ·+ xnen) = x1f (e1) + · · ·+ xnf (en) =

= x1Ae1 + · · ·+ xnAen = A(x1e1 + · · ·+ xnen) = Ax .
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Linear maps: example

So far all maps that we considered were of the form x 7→ Ax , so the result
that we proved is not too surprising. Let me give an example of a linear
map of geometric origin.

Let us consider the map that rotates every point counterclockwise through
the angle 90◦ about the origin:

Since the standard unit vector e1 is mapped to e2, and e2 is mapped to

−e1, the matrix that corresponds to this map is

(
0 −1
1 0

)
. This means

that each vector

(
x1
x2

)
is mapped to

(
0 −1
1 0

)(
x1
x2

)
=

(
−x2
x1

)
. This can

also be computed directly by inspection.
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