
Normal form of a general linear operator

Our goal now is, given a linear operator A : V → V , to find a coordinate
system on V relative to which the operator A has a matrix which is “simple
enough” to understand the action of A on V in detail. Before we deal with
this problem in full generality, let us consider two examples which show
various subtleties of our problem.

Case A2 = A

In this section we are dealing with a special case of linear operators, those
satisfying A2 = A.

Lemma 1. If A2 = A, then Im(A) ∩Ker(A) = {0}.
Proof. Indeed, if v ∈ Im(A) ∩ Ker(A), then v = Aw for some w, and

0 = Av = A(Aw) = A2w = Aw = v.
Remark 1. From this proof, it is clear that if v ∈ Im(A), then Av = v.
Lemma 2. If A2 = A, then V = Im(A)⊕Ker(A).
Proof. Indeed,

dim(Im(A)+Ker(A)) = dim Im(A)+dim Ker(A)−dim(Im(A)∩Ker(A)) =

= rk(A) + dim Ker(A) = dim(V),

so the sum is a subspace of V of dimension equal to the dimension of V , that
is V itself. Also, we already checked that the intersection is equal to 0, so
the sum is direct.

Consequently, if we take a basis of Ker(A), and a basis of Im(A), and
join them together, we get a basis of V relative to which the matrix of A is(
0 0

0 I

)
, so the matrix of A is diagonal.

Case A2 = 0

However nice the approach from the previous section seems, sometimes it
does not work that well. Though we always have

dim Im(A) + dim Ker(A) = dim(V),

the sum of these subspaces is not always direct, as the following example
shows. If we know that A2 = 0, that is A(Av) = 0 for every v ∈ V , that
implies Im(A) ⊂ Ker(A), so Im(A) + Ker(A) = Ker(A). We shall get back
to this example later.
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Finding a direct sum decomposition

Consider the sequence of subspaces Ker(A), Ker(A2), . . . , Ker(Am), . . . .
Lemma 3. This sequence is increasing:

Ker(A) ⊂ Ker(A2) ⊂ . . . ⊂ Ker(Am) ⊂ . . .

Proof. Indeed, if v ∈ Ker(As), that is Asv = 0, we have

As+1v = A(Asv) = 0.

Since we only work with finite-dimensional vector spaces, this sequence
of subspaces cannot be strictly increasing; if Ker(Ai) 6= Ker(Ai+1), then,
obviously, dim Ker(Ai+1) > 1 + dim Ker(Ai). It follows that for some k we
have Ker(Ak) = Ker(Ak+1).

Lemma 4. We have Ker(Ak) = Ker(Ak+1) = Ker(Ak+2) = . . .
Proof. Let us prove that Ker(Ak+l) = Ker(Ak+l−1) by induction

on l. Note that the induction basis (case l = 1) follows immediately
from our notation.Suppose that Ker(Ak+l) = Ker(Ak+l−1); let us prove
that Ker(Ak+l+1) = Ker(Ak+l). Let us take a vector v ∈ Ker(Ak+l+1), so
Ak+l+1v = 0. We have Ak+l+1v = Ak+l(Av), so Av ∈ Ker(Ak+l). But by
the induction hypothesis Ker(Ak+l) = Ker(Ak+l−1), so Ak+l−1(Av) = 0, or
Ak+lv = 0, and we proved the induction step.

Lemma 5. Ker(Ak) ∩ Im(Ak) = {0}.
Proof. Indeed, assume there is a vector v ∈ Ker(Ak) ∩ Im(Ak). This

means that Ak(v) = 0 and that there exists a vector w such that v = Ak(w).
It follows that A2k(w) = 0, so w ∈ Ker(A2k). But from the previous lemma
we know that Ker(A2k) = Ker(Ak), so w ∈ Ker(Ak). Thus, v = Ak(w) = 0,
which is what we need.

Lemma 6. V = Ker(Ak)⊕ Im(Ak).
Proof. Indeed, consider the sum of these two subspaces (which is, as we

just proved in the previous lemma, direct). It is a subspace of V of dimension
dim Ker(Ak) + dim Im(Ak) = dim(V), so it has to coincide with V .

Direct sums and block matrices

To proceed further, we need one new definition.
Definition 1. A subspace U of a vector space V is called an invariant

subspace of a linear operator A : V → V if for any u ∈ U we have A(u) ∈ U.
Two examples to keep in mind: 1) all multiples of some eigenvector form

an invariant subspace, and 2) if V = R3, A is the rotation about the line l
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through the angle α, then both l and its orthogonal 2d plane are invariant
subspaces.

Let U1 and U2 be two subspaces of V such that V = U1⊕U2. If we fix a
basis for U1 and a basis for U2 and join them together, we get a basis for V .
When we write down the matrix of any linear operator with respect to this

basis, we get a block-diagonal matrix

(
A11 A12
A21 A22

)
; its splitting into blocks

correspond to the way our basis is split into two parts.
Let use formulate important facts which are immediate from the definition

of a matrix of a linear operator.

1. A12 = 0 if and only if U2 is invariant;
2. A21 = 0 if and only if U1 is invariant.

Thus, this matrix is block-triangular if and only if one of the subspaces is
invariant, and is block-diagonal if and only if both subspaces are invariant.
This admits an obvious generalisation for the case of larger number of sum-
mands in the direct sum.

Reduction to the nilpotent case

Our next step in exploring general linear operators is decomposing V into a
direct sum of invariant subspaces where our operator has only one eigenvalue.
Let λ be an eigenvalue of A, and let us consider the operator B = A − λI.
Considering kernels of its powers, as in the previous sections, we find where
they stabilise, and assume that Ker(Bk) = Ker(Bk+1) = . . ..

Lemma 7. Ker(Bk) and Im(Bk) are invariant subspaces of A.
Proof. Indeed, note that A(A− λI) = (A− λI)A, so

– if (A− λI)k(v) = 0, then (A− λI)k(A(v)) = A(A− λI)k(v) = 0;
– if v = (A− λI)k(w), then A(v) = A(A− λI)k(w) = (A− λI)k(A(w)).

To complete this step, we use induction on dimV . Note that on the invari-
ant subspace Ker(Bk) the operator A has only one eigenvalue, that is λ. (In-
deed, if Av = µv for some 0 6= v ∈ Ker(Bk), then Bv = (A−λI)v = (µ−λ)v,
and 0 = Bkv = (µ− λ)kv, so µ = λ.) Also, on the invariant subspace Im(Bk)
the operator A has no eigenvalues equal to λ. (Indeed, if Av = λv for some
0 6= v ∈ Im(Bk), then Bv = (A − λI)v = 0, Bkv = 0, and we know that
Im(Bk) ∩Ker(Bk) = {0}.)

The dimension of Im(A − λ Id)k is less than dimV (if λ is an eigen-
value of A), so considering the linear operator A acting on the vector space
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V ′ = Im(A − λ Id)k, we get the following result by induction on dimesnsion
of V :

Theorem. For every linear operator A : V → V whose (different)
eigenvalues are λ1, . . . , λk, there exist integers n1, . . . , nk such that

V = Ker(A− λ1 Id)n1 ⊕ . . .⊕Ker(A− λk Id)nk .

Normal form for a nilpotent operator

The second step in the proof is to establish the Jordan normal form theorem
for the case of an operator B : V → V for which Bk = 0 (such operators
are called nilpotent). This would basically complete the proof, after we put
B = A− λ Id and use the result that we already obtained; we will discuss it
more precisely later.

Let us modify slightly the notation we used in the previous section; put
N1 = KerB, N2 = KerB2, . . . , Nm = KerBm, . . . We denote by k the level
at which stabilisation happens; we have Nk = Nk+1 = Nk+2 = . . . = V .

Now we are going to prove our statement, constructing a required basis
in k steps. First, find a basis of V = Nk relative to Nk−1. Let e1, . . . , es be
vectors of this basis.

Lemma 8. The vectors e1, . . . , es, B(e1), . . . , B(es) are linearly indepen-
dent relative to Nk−2.

Indeed, assume that

c1e1 + . . .+ cses + d1B(e1) + . . .+ dsB(es) ∈ Nk−2.

Since ei ∈ Nk, we have B(ei) ∈ Nk−1 ⊃ Nk−2, so

c1e1 + . . .+ cses ∈ −d1B(e1) − . . .− dsB(es) +Nk−2 ⊂ Nk−1,

which means that c1 = . . . = cs = 0 (e1, . . . , es form a basis relative to
Nk−1). Thus,

B(d1e1 + . . .+ dses) = d1B(e1) + . . .+ dsB(es) ∈ Nk−2,

so
d1e1 + . . .+ dses ∈ Nk−1,

and we deduce that d1 = . . . = ds = 0 (e1, . . . , es form a basis relative to
Nk−1), so the lemma follows.

Now we extend this collection of vectors by vectors f1, . . . , ft which to-
gether with B(e1), . . . , B(es) form a basis ofNk−1 relative toNk−2. Absolutely
analogously one can prove

4



Lemma 9. The vectors e1, . . . , es, B(e1), . . . , B(es), B
2(e1), . . . , B2(es),

f1, . . . , ft, B(f1), . . . , B(ft) are linearly independent relative to Nk−3.
We continue that extension process until we end up with a usual basis of

V of the following form:

e1, . . . , es, B(e1), . . . , B(es), B
2(e1), . . . , B

k−1(e1), . . . , B
k−1(es),

f1, . . . , ft, B(f1), . . . , B
k−2(f1), . . . , B

k−2(ft),

. . . ,

g1, . . . , gu,

where the first line contains several “k-threads” formed by a vector from
Nk, a vector from Nk−1, . . . , a vector from N1, the second line — several
(k − 1)-threads (a vector from Nk−1, a vector from Nk−2, . . . , a vector from
N1), . . . , the last line — several 1-threads, each being just a vector from N1.

Remark 2. Note that if we denote by md the number of d-threads, we
have

m1 +m2 + . . .+mk = dimN1,

m2 + . . .+mk = dimN2 − dimN1,

. . .

mk = dimNk − dimNk−1,

so the numbers of threads of various lengths are uniquely determined by the
properties of our operator.

Example 1. If we assume, as in the beginning of this handout, that
A2 = 0, then all threads are of length 1 and 2, and we have a basis
e1, f1, e2, f2, . . . , em, fm, g1, g2, . . . , gk for which Ae1 = f1, Af1 = 0, Ae2 = f2,
Af2 = 0, . . . , Aem = fm, Afm = 0, Ag1 = 0, . . . , Agk = 0.

Normal form for a general linear operator

We know that V can be decomposed into a direct sum of invariant subspaces
Ker(A−λiI)

ni ; for each such subspace, the operator Bi = A−λiI is nilpotent
on it. Using the previous section, we deduce that each of these subspaces
can be decomposed into a direct sum of subspaces where B acts by moving
vectors along threads; numbers of threads of various lengths can be computed
from the dimension data as above.

Summing up, we obtain the following theorem (which is usually called
Jordan normal form theorem, or Jordan decomposition theorem):
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Jordan normal form theorem. Let V be a finite-dimesional vector
space. For a linear operator A : V → V , there exist

• a decomposition of V

V = V1 ⊕ V2 ⊕ . . .⊕ Vp

into a direct sum of invariant subspaces of A;
• a basis e

(i)
1 , . . . , e

(i)
ni of Vi for each i = 1, . . . , p such that

(A− λi Id)e
(i)
1 = 0; (A− λi Id)e

(i)
2 = e

(i)
1 ; . . . (A− λi Id)e

(i)
ni

= e
(i)
ni−1

for some λi (which may coincide or be different for different i). Dimen-
sions of these subspaces and numbers λi are determined uniquely up to
re-ordering.

Note that the order of vectors in each thread reversed, in order to make
the matrix of A consist of “Jordan blocks”

Jk(λ) =



λ 1 0 0 . . . 0 0

0 λ 1 0 . . . 0 0

0 0 λ 1 . . . 0 0
...

...
...

. . . . . .
...

...
...

...
...

...
. . . 1 0

0 0 0 0 . . . λ 1

0 0 0 0 . . . 0 λ


placed along the diagonal. Each block corresponds to a thread constructed
above.
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