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For each task, the number of points you can get for a complete solution of that task is
printed next to it.

You may use all statements proved in class and in home assignments; when using some
statement, you should formulate it clearly, e.g. “in class, we proved that if A is invertible,

then the reduced row echelon form of A is the identity matrix”.

All vector spaces unless otherwise specified are over complex numbers.

Non-programmable calculators are permitted for this examination.
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1. In the vector space V = R5, consider the subspace U spanned by the vectors
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(a) (13 points) Compute dimU .

(b) (12 points) Which of the vectors
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2. Consider the matrices

A =


2 3 4

−2 −2 −2

1 1 1

 and B =


0 0 0

0 0 0

0 0 1

 .

(a) (15 points) Describe the Jordan normal form and find some Jordan basis for A.

(b) (15 points) Is A similar to B? Is A2 similar to B? Explain your answers.

3. (a) (5 points) Write down the definition of a bilinear form on a real vector space.

Which symmetric bilinear forms are said to be positive definite?

(b) (15 points) Consider the vector space V of all polynomials in t of degree at most 2.

The bilinear form ψa on V (depending on a [real] parameter a) is defined by the

formula

ψa(f(t), g(t)) =

∫ 1

−1

f(t)g(t)(t− a) dt.

Determine all values of a for which ψa is positive definite.

4. Consider the vector space V of all n × n-matrices, and define a bilinear form on this

space by the formula (A,B) = tr(ABT ).
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(a) (10 points) Show that this bilinear form actually defines a scalar product on the

space of all matrices.

(b) (15 points) Show that with respect to that scalar product the subspace of all

symmetric matrices (matrices A with A = AT ) is the orthogonal complement of

the space of all skew-symmetric matrices (matrices A with A = −AT ).
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