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Let V be a vector space. Recall that the linear span of a set of vectors v1, . . . , vk ∈ V is the set of all linear
combinations c1v1+ . . .+ckvk. It is denoted by span(v1, . . . , vk). Vectors v1, . . . , vk are linearly independent
if and only if they form a basis of their linear span. Our next definition provides a generalization of what is
just said, dealing with subspaces, and not vectors.

Definition. Let V1, . . . , Vk be subspaces of V. Their sum V1 + . . . + Vk is defined as the set of vectors of
the form v1+ . . .+ vk, where v1 ∈ V1, . . . , vk ∈ Vk. The sum of the subspaces V1, . . . , Vk is said to be direct
if 0+ . . .+ 0 is the only way to represent 0 ∈ V1 + . . .+Vk as a sum v1 + . . .+ vk. In this case, it is denoted
by V1 ⊕ . . .⊕ Vk.

Lemma. V1 + . . .+ Vk is a subspace of V.

Proof. It is sufficient to check that V1 + . . . + Vk is closed under addition and multiplication by numbers.
Clearly,

(v1 + . . .+ vk) + (v ′
1 + . . .+ v ′

k) = ((v1 + v ′
1) + . . .+ (vk + v ′

k))

and
c(v1 + . . .+ vk) = ((cv1) + . . .+ (cvk)),

and the lemma follows, since each Vi is a subspace and hence closed under the vector space operations.

Examples. 1. Consider the subspaces Un and Um of Rn+m, the first one being the linear span of the
first n standard unit vectors, and the second one being the linear span of the last m standard unit
vectors. We have Rn+m = Un +Um = Un ⊕Um.

2. For a collection of nonzero vectors v1, . . . , vk ∈ V, consider the subspaces V1,. . . ,Vk, where Vi consists
of all multiples of vi. Then, clearly, V1 + . . .+Vk = span(v1, . . . , vk), and this sum is direct if and only
if the vectors vj are linearly independent.

3. For two subspaces V1 and V2, their sum is direct if and only if V1 ∩ V2 = {0}. Indeed, if v1 + v2 = 0 is
a nontrivial representation of 0, v1 = −v2 is in the intersection, and vice versa.

Theorem. If V1 and V2 are subspaces of V, we have

dim(V1 + V2) = dim(V1) + dim(V2) − dim(V1 ∩ V2).

In particular, the sum of V1 and V2 is direct if and only if dim(V1 + V2) = dim(V1) + dim(V2).

Proof. Let us pick a basis e1, . . . , ek of the intersection V1 ∩ V2, and extend this basis to a bigger set of
vectors in two different ways, one way obtaining a basis of V1, and the other way — a basis of V2. Let
e1, . . . , ek, f1, . . . , fl and e1, . . . , ek, g1, . . . , gm be the resulting bases of V1 and V2 respectively. Let us prove
that

e1, . . . , ek, f1, . . . , fl, g1, . . . , gm

is a basis of V1+V2. It is a complete system of vectors, since every vector in V1+V2 is a sum of a vector from
V1 and a vector from V2, and vectors there can be represented as linear combinations of e1, . . . , ek, f1, . . . , fl
and e1, . . . , ek, g1, . . . , gm respectively. To prove linear independence, let us assume that

a1e1 + . . .+ akek + b1f1 + . . .+ blfl + c1g1 + . . .+ cmgm = 0.

Rewriting this formula as a1e1 + . . . + akek + b1f1 + . . . + blfl = −(c1g1 + . . . + cmgm), we notice that on
the left we have a vector from V1 and on the right a vector from V2, so both the left hand side and the right
hand side is a vector from V1 ∩ V2, and so can be represented as a linear combination of e1, . . . , ek alone.
However, the vectors on the right hand side together with ei form a basis of V2, so there is no nontrivial
linear combination of these vectors that is equal to a linear combination of ei. Consequently, all coefficients
ci are equal to zero, so the left hand side is zero. This forces all coefficients ai and bi to be equal to zero,
since e1, . . . , ek, f1, . . . , fl is a basis of V1. This completes the proof of the linear independence of the vectors
e1, . . . , ek, f1, . . . , fl, g1, . . . , gm.

Summing up, dim(V1) = k+ l, dim(V2) = k+m, dim(V1 + V2) = k+ l+m, dim(V1 ∩ V2) = k, and our
theorem follows.



In practice, it is important sometimes to determine the intersection of two subspaces, each presented as
a linear span of several vectors. This question naturally splits into two different questions.

First, it makes sense to find a basis of each of these subspaces. To determine a basis for a linear span
of given vectors, there are two ways to go. If we form a matrix whose columns are the given vectors, and
find its reduced row echelon form, then the original vectors corresponding to columns with leading 1’s form
a basis of our subspace. Alternatively, we may find the reduced column echelon form (like the reduced row
echelon form, but with elementary operations on columns). Nonzero columns of the result form a basis of
our subspace. In practice, this second method is a little bit better, because it produces basis vectors with
“many zero entries”.

Once we know a basis v1,. . . , vk for the first subspace, and a basis w1, . . . , wl for the second one, the
question reduces to solving the linear system c1v1 + . . . + ckvk = d1w1 + . . . + dlwl. For each solution to
this system, the vector c1v1 + . . .+ ckvk is in the intersection, and vice versa.

Let us introduce another bit of linear algebra vocabulary. It will prove extremely useful for various
results we are going to prove in the coming weeks.

Definition. Let V be a vector space, and let U be a subspace of V.
A set of vectors v1, . . . , vk is said to be complete relative to U, if every vector in V can be represented in

the form c1v1 + . . .+ ckvk + u, where u ∈ U.
A set of vectors v1, . . . , vk is said to be linearly independent relative to U, if c1v1 + . . . + ckvk = u with

u ∈ U implies c1 = . . . = ck = 0 (and, consequently, u = 0).
A set of vectors v1, . . . , vk is said to form a basis of V relative to U, if it is complete and linearly

independent relative to U.

Examples. 1. A system of vectors is complete (linearly independent, forms a basis) in the usual sense if
and only if it is complete (linearly independent, forms a basis) relative to the zero subspace {0}.

2. A system of vectors v1, . . . , vk is complete relative to U if and only if U+ span(v1 . . . , vk) = V.
3. A system of vectors v1, . . . , vk is linearly independent relative to U if and only if it is linearly independent

in the usual sense, and the sum U+ span(v1 . . . , vk) is direct.
4. A system of vectors forms a basis relative to U if and only if it is linearly independent and

U ⊕ span(v1 . . . , vk) = V (in particular, that sum should be direct). Thus, computing a relative
basis amounts to finding a “complement” of U in V.

5. If f1, . . . , fk is a basis of U, then picking a basis of V relative to U is the same as extending f1, . . . , fk
to a basis of V.

To compute a basis of Rn relative to the linear span of several vectors, one may compute the reduced
column echelon form for the corresponding matrix (like when looking for a basis, as before), and pick the
standard unit vectors corresponding to “missing leading 1’s”, that is to the rows of the reduced column
echelon form which do not have leading 1’s in them.

More generally, if we are required to determine a basis of a vector space V relative to its subspace U, we
can proceed as follows. Let A be a matrix whose columns form a basis of U, C — a matrix whose columns
form a basis of V. We can find the reduced column echelon form B for A. Write C next to B, and “reduce”
it using the leading 1’s of B; making sure that all rows that contain leading 1’s of B do not contain any other
nonzero elements. Then it remains to find the reduced column echelon form of the resulting matrix C ′. Its
nonzerocolumns form a relative basis.

Examples. 1. Assume that we want to find a basis of R4 relative to the linear span of the vectors

u1 =


−2

1

1

0

 and u2 =


−2

1

0

1

. The reduced column echelon form of the matrix whose columns are

these vectors is


1 0

− 1
2 0

0 1

− 1
2 −1

, so the missing leading 1’s correspond to the second and the fourth row,



and the vectors


0

1

0

0

 and


0

0

0

1

 form a relative basis.

2. Furthermore, assume that we want to find a basis of the linear span of the vectors v1 =


1

−1

0

0

,

v2 =


1

0

−1

0

, v3 =


1

0

0

−1

 relative to the linear span of the vectors u1 =


−2

1

1

0

 and u2 =


−2

1

0

1

 (note

that span(u1, u2) is a subspace of span(v1, v2, v3) because u1 = −v1 − v2, u2 = −v1 − v3). The reduced

column echelon form of the matrix whose columns are u1 and u2 is


1 0

− 1
2 0

0 1

− 1
2 −1

. Now we adjoin

the columns equal to v1, v2, and v3, obtaining the matrix


1 0 1 1 1

− 1
2 0 −1 0 0

0 1 0 −1 0

− 1
2 −1 0 0 −1

. Reducing its

three last columns using the first two columns gives the matrix


1 0 0 0 0

− 1
2 0 − 1

2
1
2

1
2

0 1 0 0 0

− 1
2 −1 1

2 − 1
2 − 1

2

. Removing

the part corresponding to the span(u1, u2) leaves us with the matrix


0 0 0

− 1
2

1
2

1
2

0 0 0
1
2 − 1

2 − 1
2

 whose reduced

column echelon form is


0 0 0

1 0 0

0 0 0

−1 0 0

, so the vector


0

1

0

−1

 forms a relative basis.


