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then the reduced row echelon form of A is the identity matrix”.
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1. (a) (6 points) Under which condition a system of vectors of a vector space V is called

complete? Prove that if a system of vectors is complete, then it remains complete

after being extended by any vector v from V .

(b) (8 points) Assume that the system of vectors u, v, and w (all belonging to the same

vector space V ) is complete. Prove that then the system of vectors u′ = u + v,

v′ = u−w, w′ = 2v + w is also complete. What are possible values of dim V in

this situation? Explain your answer.

2. (a) (5 points) Define the rank of a linear operator.

(b) (9 points) Show that for every vector v ∈ R
3 the mapping A

v
: R

3 → R
3 defined

by the formula

A
v
(w) = v × w

is a linear operator, and show that for v 6= 0 this operator has rank 2.

(c) (12 points) Let U , V and W be three vector spaces. Show that for every two

linear operators A : V → W and B : U → V we have

rk(AB) ≤ rk(A) and rk(AB) ≤ rk(B).

3. Consider the matrices

A =











9 5 2

−16 −9 −4

2 1 1











and B =











1 0 1

0 1 0

0 0 1











.

(a) (7 points) Describe all eigenvalues and eigenvectors of A and B.

(b) (16 points) Describe the Jordan normal form of A and find a Jordan basis for A.

(c) (8 points) Is A similar to B? Explain your answer.

(d) (9 points) Find a closed formula for An.

4. (20 points) Assume that for a n × n-matrix A with real matrix elements we have

A2 = −E. Prove that trA = 0.
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