Orthonormal bases, orthogonal complements, and orthogonal direct sums

A sequence of vectors \(e_1, \ldots, e_n \) of an \(n \)-dimensional Euclidean space \(V \) is called an orthogonal basis, if it consists of nonzero vectors, which are pairwise orthogonal: \((e_i, e_j) = 0\) for \(i \neq j \). An orthogonal basis is called orthonormal, if all its vectors are of length 1.

Lemma 1. An orthogonal basis is a basis.

Indeed, assuming \(c_1e_1 + \ldots + c_ne_n = 0 \), we have

\[0 = (0, e_k) = (c_1e_1 + \ldots + c_ne_n, e_k) = c_1(e_1, e_k) + \ldots + c_n(e_n, e_k) = c_k(e_k, e_k), \]

which implies \(c_k = 0 \), since \(e_k \neq 0 \). (For any vector \(v \) we have \((0, v) = 0\) since \((0, v) = (2 \cdot 0, v) = 2(0, v)\).) Thus our system is linearly independent, and contains \(\dim V \) vectors, so is a basis.

Lemma 2. Any \(n \)-dimensional Euclidean space contains orthogonal bases.

We shall start from any basis \(f_1, \ldots, f_n \), and transform it into an orthogonal basis. Namely, we shall prove by induction that there exists a basis \(e_1, \ldots, e_k, f_{k+1}, \ldots, f_n \), where the first \(k \) vectors are pairwise orthogonal. Induction base is trivial, as for \(k = 1 \) there are no pairwise distinct vectors to be orthogonal, and we can put \(e_1 = f_1 \). Assume that our statement is proved for some \(k \), and let us show how to deduce it for \(k + 1 \). Let us search for \(e_{k+1} \) of the form \(f_{k+1} - a_1e_1 - \ldots - a_ke_k \). Conditions \((e_{k+1}, e_j) = 0\) for \(j = 1, \ldots, k \) mean that

\[0 = (f_{k+1} - a_1e_1 - \ldots - a_ke_k, e_j) = (f_{k+1}, e_j) - a_1(e_1, e_j) - \ldots - a_k(e_k, e_j), \]

and the induction hypothesis guarantees that the latter is equal to

\[(f_{k+1}, e_j) - a_j(e_j, e_j), \]

so we can put \(a_j = \frac{(f_{k+1}, e_j)}{(e_j, e_j)} \). Let us show that the vector thus obtained is nonzero. From the very nature of our procedure, \(e_2 \) is a linear combination of \(f_1 \) and \(f_2, \ldots, e_k \) is a linear combination of \(f_1, \ldots, f_k \), so \(a_1e_1 + \ldots + a_ke_k \) is a linear combination of \(f_1, \ldots, f_k \), and

\[f_{k+1} - a_1e_1 - \ldots - a_ke_k \neq 0 \]

since \(f_1, \ldots, f_n \) form a basis. This completes the proof of the induction step.

The procedure described above is called *Gram-Schmidt orthogonalisation procedure*. If after orthogonalisation we divide all vectors by their lengths, we obtain an orthonormal basis.
Lemma 3. For any inner product and any basis e_1, \ldots, e_n of V, we have

$$(x_1e_1 + \ldots + x_ne_n, y_1e_1 + \ldots + y_ne_n) = \sum_{i,j=1}^{n} a_{ij}x_iy_j,$$

where $a_{ij} = (e_i, e_j)$.

This follows immediately from linearity property of inner products.

Corollary. A basis e_1, \ldots, e_n is orthonormal if and only if

$$(x_1e_1 + \ldots + x_ne_n, y_1e_1 + \ldots + y_ne_n) = x_1y_1 + \ldots + x ny_n.$$
Due to orthonormality of our basis and the definition of the orthogonal complement, the left hand side of this equation is c_j. On the other hand, it is easy to see that for any v, the vector

$$v - (v, e_1)e_1 - \ldots - (v, e_k)e_k$$

is orthogonal to all e_j, and so to all vectors from U, and so belongs to U^\perp. The lemma is proved.

Definition 2. In the notation of the previous proof, u is called the projection of v onto U and u^\perp is called the perpendicular dropped from v on U.

Lemma 8. $|u^\perp|$ is the shortest distance from the endpoint of v to points of U:

$$|u^\perp| \geq |v - u_1|$$

for any $u_1 \in U$.

Indeed, $|v - u_1|^2 = |v - u + u - u_1|^2 = |v - u|^2 + |u - u_1|^2$ due to the Pythagoras theorem, so $|v - u_1|^2 \geq |v - u|^2$.

Corollary (Bessel’s inequality). For any vector $v \in V$ and any orthonormal system e_1, \ldots, e_k (not necessarily a basis) we have

$$(v, v) \geq (v, e_1)^2 + \ldots + (v, e_k)^2.$$

Indeed, we can take $U = \text{span}(e_1, \ldots, e_k)$ and represent $v = u + u^\perp$.

Then $|v|^2 = |u|^2 + |u^\perp|^2 \geq |u|^2 = (u, e_1)^2 + \ldots + (u, e_k)^2 = (v, e_1)^2 + \ldots + (v, e_k)^2$.

Example 1. Consider the Euclidean space of all continuous functions on $[-\pi, \pi]$ with an inner product

$$(f(t), g(t)) = \int_{-\pi}^{\pi} f(t)g(t) \, dt.$$

It is easy to see that the functions

$$e_0 = \frac{1}{\sqrt{2\pi}}, e_1 = \frac{\cos t}{\sqrt{\pi}}, f_1 = \frac{\sin t}{\sqrt{\pi}}, \ldots, e_n = \frac{\cos nt}{\sqrt{\pi}}, f_n = \frac{\sin nt}{\sqrt{\pi}}$$

form an orthonormal system there. Consider the function $h(t) = t$. We have

$$(h(t), h(t)) = \frac{2\pi^3}{3},$$

$$(h(t), e_0) = 0,$$

$$(h(t), e_k) = 0,$$

$$(h(t), f_k) = \frac{2(-1)^{k+1}\sqrt{\pi}}{k},$$
(the latter integral requires integration by parts to compute it), so Bessel’s inequality implies that

\[\frac{2\pi^3}{3} \geq 4\pi + \frac{4\pi}{4} + \frac{4\pi}{9} + \ldots + \frac{4\pi}{n^2}, \]

which can be rewritten as

\[\frac{\pi^2}{6} \geq 1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2}. \]

Actually \(\sum_k \frac{1}{k^2} = \frac{\pi^2}{6} \), which was first proved by Euler. We are not able to establish it here, but it is worth mentioning that Bessel’s inequality gives a sharp bound for this sum.