
1S11: Calculus for students in Science

Dr. Vladimir Dotsenko

TCD

Lecture 32

Dr. Vladimir Dotsenko (TCD) 1S11: Calculus for students in Science Lecture 32 1 / 14



Work and integration

In the previous classes, we already discussed in passing some instances
when work is performed by a force on some object. Now we shall discuss
that in more detail.

Basic principle. If a constant force of magnitude F is applied in the
direction of the motion of an object, and the object moves a distance d

under the action of that force, then the work performed by that force on
the object is defined to be

W = F · d .

Using that principle, one can also define and compute the work when the
force is changing depending on the position of an object. Of course, the
method in this case is our usual method: divide the path of the object into
many very small parts, assume the force to be constant on each part, and
add the results together.
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Work and integration

As a consequence, the work will be equal to the appropriate Riemann sum

W =

N
∑

i=1

F (x∗i )∆xi .

As the mesh size of the partition tends to zero, this quantity has the limit

∫

b

a

F (x) dx ,

where a and b are the initial position and the final position of the object,
respectively.
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Example (Hooke’s Law)

Hooke’s Law states that a spring stretched x units beyond its natural
length pulls back with a force

F (x) = kx

where k is a constant called the stiffness of the spring; it depends on the
material as well as the thickness of the spring.
Example. Suppose that a spring exerts a force of 5N when stretched one
metre beyond its natural length. Find the work required to stretch the
spring 1.8 metres beyond its natural length.
Solution. Let us first compute the stiffness of this spring. Applying
Hooke’s Law with F = 5, x = 1, we get k = 5 (N/m). Now, the work
required is

W =

∫

b

a

F (x) dx =

∫ 1.8

0
5x dx =

5x2

2

]1.8

0

= 8.1 (N ·m).
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Relationship between work and energy

Let us assume that an an object of mass m moves along the x axis as a
result of the force F (x) that is applied in the direction of motion. As time
passes, the acceleration, as a function of time, is the rate of change of the
instantaneous velocity of an object. Suppose that the object is at the
position x(t) at the time t, so that x ′(t) = v(t) is the instantaneous
velocity, and v ′(t) = a(t) is the instantaneous acceleration.

Newton’s Second Law of Motion. If an object of mass m is moving as
a result of a force F applied to it, then that object undergoes an
acceleration a that satisfies the equation

F = ma.
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Relationship between work and energy
Suppose that at the initial moment t0 the object is at the position
x(t0) = a moving with the initial velocity vi , and at the final moment t1
the object is at the position x(t1) = b moving with the final velocity vf .

The work of the force moving the object is
b
∫

a

F (x) dx , which we can

rewrite as
∫

x(t1)

x(t0)
F (x) dx

x=x(t), dx=x ′(t) dt
=

∫

t1

t0

F (x(t))x ′(t) dt =

=

∫

t1

t0

ma(t)v(t) dt =

∫

t1

t0

mv ′(t)v(t) dt
v=v(t), dv=v

′(t) dt
=

=

∫

v(t1)

v(t0)
mv dv =

mv2

2

]vf

vi

=
mv2

f

2
−

mv2
i

2
.

The quantity mv
2

2 is usually referred to as the kinetic energy of an object.
We just established that the work performed by the force on the object is
equal to the change in the kinetic energy of the object.
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Centre of gravity of a lamina

By a lamina, I shall mean a flat object thin enough to be viewed as a 2d
plane region.
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Centre of gravity of a lamina

A lamina will be assumed homogeneous, that is being composed uniformly
throughout. The density δ of a lamina is its mass per unit area.

It can be shown that for each lamina, it is possible to find a point (x̄ , ȳ )
such that the effect of gravity on the lamina is equivalent to that of a
single force activng at the point (x̄ , ȳ). This point is called the centre of

gravity of the lamina. For a symmetric lamina, like a circle, or a square,
the centre of gravity coincides with the symmetry centre, but for a more
complex shape it is not as obvious.

From basic mechanics, one can demonstrate that for a lamina whose mass
is localised at finitely many points A1, . . . , An (with masses m1, . . . , mn

respectively), its centre of gravity M can be determined from the so called
equilibrium conditions

m1(
−−→
OA1 −

−−→
OM) +m2(

−−→
OA2 −

−−→
OM) + · · ·+mn(

−−→
OAn −

−−→
OM) = 0.
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Centre of gravity of a lamina

We shall compute the centre of gravity of a lamina occupying the region
bounded by a graph y = f (x) and the x-axis (on a finite interval [a, b]).

x

y
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Centre of gravity of a lamina
Let us divide the interval [a, b] in many small parts, approximating the
lamina by a union of rectangles. The centre of gravity of each individual
rectangle is at the point (x∗

k
, 12 f (x

∗

k
)), where x∗

k
is the midpoint of its base.

If we denote by ∆mk the mass of the k-th rectangle, the gravity centre
equilibrium conditions are

n
∑

k=1

(x∗k − x̄)∆mk = 0,

n
∑

k=1

(y∗k − ȳ)∆mk = 0,

where ∆mk = δf (x∗
k
)∆xk and y∗

k
= 1

2 f (x
∗

k
), so

n
∑

k=1

(x∗k − x̄)δf (x∗k )∆xk = 0,

n
∑

k=1

(

1

2
f (x∗k )− ȳ

)

δf (x∗k )∆xk = 0.
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Centre of gravity of a lamina
As the mesh size of the partition of [a, b] gets smaller, the equations

n
∑

k=1

(x∗k − x̄)δf (x∗k )∆xk = 0,

n
∑

k=1

(

1

2
f (x∗k )− ȳ

)

δf (x∗k )∆xk = 0

become
∫

b

a

(x − x̄)δf (x) dx = 0,

∫

b

a

(

1

2
f (x)− ȳ

)

δf (x) dx = 0.

Recalling that x̄ and ȳ are constants, these can be written as

∫

b

a

δxf (x) dx = x̄

∫

b

a

δf (x) dx ,

∫

b

a

1

2
δ(f (x))2 dx = ȳ

∫

b

a

δf (x) dx .
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Centre of gravity of a lamina

Examining the formulas

∫

b

a

δxf (x) dx = x̄

∫

b

a

δf (x) dx ,

∫

b

a

1

2
δ(f (x))2 dx = ȳ

∫

b

a

δf (x) dx

more carefully, we note that the factor δ can be dropped since the lamina

is homogeneous, and it is just a constant, and that
b
∫

a

f (x) dx is the area of

the lamina, so we get the formulas

x̄ =

∫

b

a
xf (x) dx

area of the lamina
,

ȳ =

∫

b

a

1
2(f (x))

2 dx

area of the lamina
.
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Centre of gravity of a lamina

Example. Assume that the lamina is a half-circle 0 ≤ y ≤
√
1− x2. We

have

x̄ =

∫ 1
−1 x

√
1− x2 dx

area of the lamina
,

ȳ =

∫ 1
−1

1
2(1− x2) dx

area of the lamina
.

Clearly, x̄ is proportional to the integral of an odd function, and is
therefore equal to zero. As for ȳ , we have

ȳ =

∫ 1
−1

1
2 (1− x2) dx

1
2π

=
x − x

3

3

]1

−1

π
=

1− 1
3 + 1− 1

3

π
=

4

3π
.
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That’s it with calculus for this semester. Thank you for your attention,
and do not forget to check the module webpage

http://www.maths.tcd.ie/~vdots/teaching/1S11-1314.html

for sample exam problems to practise!

Merry Christmas!
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