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Substitutions in definite integrals

Recall the u-substitution method for computing antiderivatives: given an
integral of the form

∫

f (g(x))g ′(x) dx ,

we denote u = g(x) so that du = g ′(x) dx , so that the integral becomes

∫

f (u) du.
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Recall the u-substitution method for computing antiderivatives: given an
integral of the form

∫

f (g(x))g ′(x) dx ,

we denote u = g(x) so that du = g ′(x) dx , so that the integral becomes

∫

f (u) du.

In order to use this method to evaluate definite integrals of the same form

∫ b

a

f (g(x))g ′(x) dx ,

we need to take appropriate care of the effect of that on the limits of
integration.
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Recall the u-substitution method for computing antiderivatives: given an
integral of the form

∫

f (g(x))g ′(x) dx ,

we denote u = g(x) so that du = g ′(x) dx , so that the integral becomes

∫

f (u) du.

In order to use this method to evaluate definite integrals of the same form

∫ b

a

f (g(x))g ′(x) dx ,

we need to take appropriate care of the effect of that on the limits of
integration. There are two ways to deal with it, which we shall now outline.
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Substitutions in definite integrals

Method 1. Use u-substitutions only on the level of indefinite integrals:
evaluate

∫

f (g(x))g ′(x) dx ,

and then use the formula

∫ b

a

f (g(x))g ′(x) dx =

[
∫

f (g(x))g ′(x) dx

]b

a

.
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Substitutions in definite integrals

Method 1. Use u-substitutions only on the level of indefinite integrals:
evaluate

∫

f (g(x))g ′(x) dx ,

and then use the formula

∫ b

a

f (g(x))g ′(x) dx =

[
∫

f (g(x))g ′(x) dx

]b

a

.

Method 2. Use the relationship u = g(x) to modify the limits:

∫ b

a

f (g(x))g ′(x) dx =

∫ g(b)

g(a)
f (u) du.
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Substitutions in definite integrals

Example 1. Let us use the first method to evaluate

∫ 2

0
x(x2 + 1)3 dx .
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Substitutions in definite integrals

Example 1. Let us use the first method to evaluate

∫ 2

0
x(x2 + 1)3 dx .

We denote u = x2 + 1, so that du = 2x dx , and

∫

x(x2 + 1)3 dx =
1

2

∫

u3 du =
u4

8
+ C =

(x2 + 1)4

8
+ C .
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Substitutions in definite integrals

Example 1. Let us use the first method to evaluate

∫ 2

0
x(x2 + 1)3 dx .

We denote u = x2 + 1, so that du = 2x dx , and

∫

x(x2 + 1)3 dx =
1

2

∫

u3 du =
u4

8
+ C =

(x2 + 1)4

8
+ C .

Therefore,

∫ 2

0
x(x2+1)3 dx =

[
∫

x(x2 + 1)3 dx

]2

0

=

[

(x2 + 1)4

8

]2

0

=
625

8
−

1

8
= 78.
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Substitutions in definite integrals

Example 2. Let us use the second method to evaluate the same integral

∫ 2

0
x(x2 + 1)3 dx .
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Substitutions in definite integrals

Example 2. Let us use the second method to evaluate the same integral

∫ 2

0
x(x2 + 1)3 dx .

We denote u = x2 + 1, so that du = 2x dx , and

for x = 0, u = 1,

for x = 2, u = 5.
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Substitutions in definite integrals

Example 2. Let us use the second method to evaluate the same integral

∫ 2

0
x(x2 + 1)3 dx .

We denote u = x2 + 1, so that du = 2x dx , and

for x = 0, u = 1,

for x = 2, u = 5.

Therefore,

∫ 2

0
x(x2 + 1)3 dx =

1

2

∫ 5

1
u3 du =

1

2

(

54

4
−

14

4

)

= 78.
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Substitutions in definite integrals
Example 3. Let us evaluate the integral

∫ 3

1

cos(π/x)

x2
dx .
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Substitutions in definite integrals
Example 3. Let us evaluate the integral

∫ 3

1

cos(π/x)

x2
dx .

We put u = π
x
, so that du = − π

x2
dx , in other words, 1

x2
dx = − 1

π du.
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Substitutions in definite integrals
Example 3. Let us evaluate the integral

∫ 3

1

cos(π/x)

x2
dx .

We put u = π
x
, so that du = − π

x2
dx , in other words, 1

x2
dx = − 1

π du.
We note that

for x = 1, u = π,

for x = 3, u = π/3.
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Substitutions in definite integrals
Example 3. Let us evaluate the integral

∫ 3

1

cos(π/x)

x2
dx .

We put u = π
x
, so that du = − π

x2
dx , in other words, 1

x2
dx = − 1

π du.
We note that

for x = 1, u = π,

for x = 3, u = π/3.

Therefore,

∫ 3

1

cos(π/x)

x2
dx = −

1

π

∫ π/3

π
cos u du =

= −
1

π
sin u

]π/3

π

= −
1

π
(sin(π/3) − sinπ) = −

√
3

2π
≈ −0.276.
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Substitutions in definite integrals

Example 4. Let us evaluate the integral

∫ π/4

0

√
tan x

1

cos2 x
dx .
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Substitutions in definite integrals

Example 4. Let us evaluate the integral

∫ π/4

0

√
tan x

1

cos2 x
dx .

We put u = tan x , so that du = 1
cos2 x

dx .
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Substitutions in definite integrals

Example 4. Let us evaluate the integral

∫ π/4

0

√
tan x

1

cos2 x
dx .

We put u = tan x , so that du = 1
cos2 x

dx . We note that

for x = 0, u = 0,

for x = π/4, u = 1.
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Substitutions in definite integrals

Example 4. Let us evaluate the integral

∫ π/4

0

√
tan x

1

cos2 x
dx .

We put u = tan x , so that du = 1
cos2 x

dx . We note that

for x = 0, u = 0,

for x = π/4, u = 1.

Therefore,

∫ π/4

0

√
tan x

1

cos2 x
dx =

∫ 1

0

√
u du =

u3/2

3/2

]1

0

=
2

3
.
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Substitutions in definite integrals

Example 5. Let us prove, without evaluating integrals, that

∫ π/2

0
sinn x dx =

∫ π/2

0
cosn x dx .
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Substitutions in definite integrals

Example 5. Let us prove, without evaluating integrals, that

∫ π/2

0
sinn x dx =

∫ π/2

0
cosn x dx .

In the second integral, we put u = π
2 − x , so that du = −dx .
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Substitutions in definite integrals

Example 5. Let us prove, without evaluating integrals, that

∫ π/2

0
sinn x dx =

∫ π/2

0
cosn x dx .

In the second integral, we put u = π
2 − x , so that du = −dx . We note

that

for x = 0, u = π/2,

for x = π/2, u = 0,

and that cos x = cos(π/2 − u) = sin u.
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Substitutions in definite integrals

Example 5. Let us prove, without evaluating integrals, that

∫ π/2

0
sinn x dx =

∫ π/2

0
cosn x dx .

In the second integral, we put u = π
2 − x , so that du = −dx . We note

that

for x = 0, u = π/2,

for x = π/2, u = 0,

and that cos x = cos(π/2 − u) = sin u. Therefore,

∫ π/2

0
cosn x dx = −

∫ 0

π/2
sinn u du =

∫ π/2

0
sinn x dx ,

as required.
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Substitutions in definite integrals
Example 6. Let us examine the integral

∫ 1

−1

1

1 + x2
dx .
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Substitutions in definite integrals
Example 6. Let us examine the integral

∫ 1

−1

1

1 + x2
dx .

Let us perform the substitution u = 1
x
, so that du = − 1

x2
dx , in other

words, du = −u2 dx and dx = − 1
u2

du.
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Substitutions in definite integrals
Example 6. Let us examine the integral

∫ 1

−1

1

1 + x2
dx .

Let us perform the substitution u = 1
x
, so that du = − 1

x2
dx , in other

words, du = −u2 dx and dx = − 1
u2

du. We note that

for x = −1, u = −1, and for x = 1, u = 1,

and that 1
1+x2

= 1
1+(1/u)2

= u2

1+u2
.
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Substitutions in definite integrals
Example 6. Let us examine the integral

∫ 1

−1

1

1 + x2
dx .

Let us perform the substitution u = 1
x
, so that du = − 1

x2
dx , in other

words, du = −u2 dx and dx = − 1
u2

du. We note that

for x = −1, u = −1, and for x = 1, u = 1,

and that 1
1+x2

= 1
1+(1/u)2

= u2

1+u2
. Therefore,

∫ 1

−1

1

1 + x2
dx = −

∫ 1

−1

u2

1 + u2
1

u2
du = −

∫ 1

−1

1

1 + u2
du,

so the integral is equal to its negative and hence equal to zero.
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Substitutions in definite integrals
Example 6. Let us examine the integral

∫ 1

−1

1

1 + x2
dx .

Let us perform the substitution u = 1
x
, so that du = − 1

x2
dx , in other

words, du = −u2 dx and dx = − 1
u2

du. We note that

for x = −1, u = −1, and for x = 1, u = 1,

and that 1
1+x2

= 1
1+(1/u)2

= u2

1+u2
. Therefore,

∫ 1

−1

1

1 + x2
dx = −

∫ 1

−1

u2

1 + u2
1

u2
du = −

∫ 1

−1

1

1 + u2
du,

so the integral is equal to its negative and hence equal to zero. How is it
possible?
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Substitutions in definite integrals
Example 6. Let us examine the integral

∫ 1

−1

1

1 + x2
dx .

Let us perform the substitution u = 1
x
, so that du = − 1

x2
dx , in other

words, du = −u2 dx and dx = − 1
u2

du. We note that

for x = −1, u = −1, and for x = 1, u = 1,

and that 1
1+x2

= 1
1+(1/u)2

= u2

1+u2
. Therefore,

∫ 1

−1

1

1 + x2
dx = −

∫ 1

−1

u2

1 + u2
1

u2
du = −

∫ 1

−1

1

1 + u2
du,

so the integral is equal to its negative and hence equal to zero. How is it
possible? Of course, it happened because u = g(x) was not defined on all
the interval [−1, 1], having a singularity at x = 0.
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Substitutions in definite integrals
Example 7. (High school maths intervarsity competitions in Russia)
Let us evaluate the integral

∫ π/2

0
(sin2(sin x) + cos2(cos x)) dx .
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Substitutions in definite integrals
Example 7. (High school maths intervarsity competitions in Russia)
Let us evaluate the integral

∫ π/2

0
(sin2(sin x) + cos2(cos x)) dx .

We shall split this integral as a sum
∫ π/2

0
sin2(sin x) dx +

∫ π/2

0
cos2(cos x) dx ,
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Substitutions in definite integrals
Example 7. (High school maths intervarsity competitions in Russia)
Let us evaluate the integral

∫ π/2

0
(sin2(sin x) + cos2(cos x)) dx .

We shall split this integral as a sum
∫ π/2

0
sin2(sin x) dx +

∫ π/2

0
cos2(cos x) dx ,

and transform the second integral using the substitution u = π
2 − x , so

that du = −dx ,

for x = 0, u = π/2, for x = π/2, u = 0,

cos(x) = cos(π/2 − u) = sin u
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Substitutions in definite integrals
Example 7. (High school maths intervarsity competitions in Russia)
Let us evaluate the integral

∫ π/2

0
(sin2(sin x) + cos2(cos x)) dx .

We shall split this integral as a sum
∫ π/2

0
sin2(sin x) dx +

∫ π/2

0
cos2(cos x) dx ,

and transform the second integral using the substitution u = π
2 − x , so

that du = −dx ,

for x = 0, u = π/2, for x = π/2, u = 0,

cos(x) = cos(π/2 − u) = sin u, leading to
∫ π/2

0
cos2(cos x) dx = −

∫ 0

π/2
cos2(sin u) du =

∫ π/2

0
cos2(sin x) dx .
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Substitutions in definite integrals

Therefore,

∫ π/2

0
(sin2(sin x) + cos2(cos x)) dx =

=

∫ π/2

0
sin2(sin x) dx +

∫ π/2

0
cos2(cos x) dx =

=

∫ π/2

0
sin2(sin x) dx +

∫ π/2

0
cos2(sin x) dx =

=

∫ π/2

0
(sin2(sin x) + cos2(sin x)) dx =

=

∫ π/2

0
1 dx =

π

2
.
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An application of definite integrals
Sums of the form 1 + 1

2 +
1
3 + · · · + 1

n
often appear in mathematical

formulas.
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An application of definite integrals
Sums of the form 1 + 1

2 +
1
3 + · · · + 1

n
often appear in mathematical

formulas. It is beneficial to have a good estimate of such a sum, avoiding
adding up the terms directly.
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An application of definite integrals
Sums of the form 1 + 1

2 +
1
3 + · · · + 1

n
often appear in mathematical

formulas. It is beneficial to have a good estimate of such a sum, avoiding
adding up the terms directly.

x

y

1 2 3 4 5 6
x

y

1 2 3 4 5 6
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An application of definite integrals
Sums of the form 1 + 1

2 +
1
3 + · · · + 1

n
often appear in mathematical

formulas. It is beneficial to have a good estimate of such a sum, avoiding
adding up the terms directly.

x

y

1 2 3 4 5 6
x

y

1 2 3 4 5 6
These two figures prove that

1 +
1

2
+

1

3
+ · · ·+

1

n
≥

∫ n+1

1

1

x
dx = ln(n + 1)− ln(1) = ln(n + 1),

1

2
+

1

3
+ · · ·+

1

n
+

1

n + 1
≤

∫ n+1

1

1

x
dx = ln(n + 1)− ln(1) = ln(n + 1),
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An application of definite integrals
Sums of the form 1 + 1

2 +
1
3 + · · · + 1

n
often appear in mathematical

formulas. It is beneficial to have a good estimate of such a sum, avoiding
adding up the terms directly.

x

y

1 2 3 4 5 6
x

y

1 2 3 4 5 6
These two figures prove that

1 +
1

2
+

1

3
+ · · ·+

1

n
≥

∫ n+1

1

1

x
dx = ln(n + 1)− ln(1) = ln(n + 1),

1

2
+

1

3
+ · · ·+

1

n
+

1

n + 1
≤

∫ n+1

1

1

x
dx = ln(n + 1)− ln(1) = ln(n + 1),

so we have

ln(n + 1) ≤ 1 +
1

2
+

1

3
+ · · ·+

1

n
≤ ln(n + 1) + 1−

1

n + 1
.
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Summary of integral calculus

Indefinite integral / antiderivative. Methods: look up in the table of
derivatives, simplify by u-substitution, simplify using integration by
parts, combine the above methods.
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Summary of integral calculus

Indefinite integral / antiderivative. Methods: look up in the table of
derivatives, simplify by u-substitution, simplify using integration by
parts, combine the above methods.

Definite integral: originally motivated by computing areas. Every
continuous function, and even every piecewise continuous (bounded)
function can be integrated.
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Summary of integral calculus

Indefinite integral / antiderivative. Methods: look up in the table of
derivatives, simplify by u-substitution, simplify using integration by
parts, combine the above methods.

Definite integral: originally motivated by computing areas. Every
continuous function, and even every piecewise continuous (bounded)
function can be integrated.

Main method for integration: use fundamental theorem of calculus
(compute an antiderivative and subtract its values). Sometimes
antiderivatives are not available, but a u-substitution applied to a part
of the integral would help.
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Summary of integral calculus

Indefinite integral / antiderivative. Methods: look up in the table of
derivatives, simplify by u-substitution, simplify using integration by
parts, combine the above methods.

Definite integral: originally motivated by computing areas. Every
continuous function, and even every piecewise continuous (bounded)
function can be integrated.

Main method for integration: use fundamental theorem of calculus
(compute an antiderivative and subtract its values). Sometimes
antiderivatives are not available, but a u-substitution applied to a part
of the integral would help.

Definite integral is defined via Riemann sums. Sometimes, handling a
sum is easier if you interpret it as a Riemann sum, and examine the
respective integral instead.
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Summary of integral calculus

Indefinite integral / antiderivative. Methods: look up in the table of
derivatives, simplify by u-substitution, simplify using integration by
parts, combine the above methods.

Definite integral: originally motivated by computing areas. Every
continuous function, and even every piecewise continuous (bounded)
function can be integrated.

Main method for integration: use fundamental theorem of calculus
(compute an antiderivative and subtract its values). Sometimes
antiderivatives are not available, but a u-substitution applied to a part
of the integral would help.

Definite integral is defined via Riemann sums. Sometimes, handling a
sum is easier if you interpret it as a Riemann sum, and examine the
respective integral instead.

Next time: applications of the definite integral in geometry, science, and
engineering.
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