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DERIVATIVES AND ANALYSIS OF FUNCTIONS:
REMINDER

The following facts will be useful for us. We shall use them without proof.
The maximal generality in which we shall use these statements would be
for a function f that is continuous on a closed interval [a, b] and
differentiable on the corresponding open interval (a, b).

If £ is a constant function on [a, b], then f'(x) = 0 for all x in (a, b).
If f/(x) =0 for all x in (a, b), then f is constant on [a, b].

If f is increasing on [a, b], then f'(x) > 0 for all x in (a, b).

If /(x) > 0 for all x in (a, b), then f is increasing on (a, b).

If £ is decreasing on [a, b], then f/(x) < 0 for all x in (a, b).

If f/(x) <0 for all x in (a, b), then f is decreasing on (a, b).
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EXAMPLES

Example 1. Let us consider the function f(x) = x> — 6x + 5. Its
derivative f/(x) = 2x — 6 = 2(x — 3), so f’(x) < 0 for x < 3, and

f'(x) > 0 for x > 3. We conclude that f is decreasing on (—o0, 3] and is
increasing on [3, +00).

Example 2. Let us consider the function f(x) = x3. Its derivative

f'(x) = 3x2, so f’(x) > 0 for x # 0. We conclude that f is increasing on
(—00,0] and on [0, +00), so it is in fact increasing everywhere (which
confirms what we already know about this function).
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EXAMPLES

Example 3. Let us consider the function f(x) = 3x* + 4x3 — 12x? + 2.

Its derivative is

f'(x) = 12x3 + 12x% — 24x = 12x(x* + x — 2) = 12x(x — 1)(x + 2).

We see that f'(¢) =0 for ¢ = 0,1, —2. Let us determine the sign of f’ at
all the remaining points.

interval (—o0,—2) (1, +00)
signs of factors (=))=) | (H)E)H) (+)(+H)(+)
x, (x=1), (x+2)
sign of f/ — +

We conclude that f is decreasing on (—oo, —2] and [0, 1], and is increasing
on [—2,0] and [1,4+00).
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RELATIVE MINIMA AND MAXIMA

Suppose f is defined on an open interval containing c. It is said to have a
relative minimum (“local minimum") at ¢, if for x sufficiently close to ¢ we
have f(x) > f(c). Similarly, it is said to have a relative maximum (“local
maximum”) at c, if for x sufficiently close to ¢ we have f(x) < f(c). For
short, the expression relative extremum is also used when referring to
points where either a relative minimum or a relative maximum is attained.

Example. The function f(x) = x? has a relative minimum at x = 0 but

no relative maxima. In fact, this function attains its minimal value at

x =0, so it is not just a relative minimum. The function f(x) = cos x has
relative minima at all odd multiples of m (where it attains the value —1),

and relative maxima at all even multiples of 7 (where it attains the

value 1).
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CRITICAL POINTS

Theorem. Suppose that f is defined on an open interval containing c,
and has a local extremum at c. Then either f'(c) =0 or f is not
differentiable at c.

Example. The function f(x) = |x| has a relative minimum at x = 0, but
is not differentiable at that point.

Points ¢ where f is either not differentiable or has the zero derivative are
called critical points of f. Among the critical points, the points where
f'(c) = 0 are called stationary points.

Example. Let us determine the critical points of the function

1 . .
f(x) = x — ¥/x. We have f'(x) =1— 375 SO " is not defined at x =0,

and is zero at x = iﬁ. The latter two are the stationary points of f.
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LOCAL EXTREMA: EXAMPLE

Example. Let us consider the function f(x) = x* — x3 +1 on [-1,1].
Suppose we would like to find all its relative extrema. This function is
differentiable everywhere, so “suspicious” points are just the stationary
points. To determine them, we compute the derivative:

f(x) = 4x> — 3x°.

Points ¢ for which f’(¢) =0 are ¢ = 0 and ¢ = 3/4. How to proceed from
here? Let us note that f/(x) < 0 for —1 < x <0 and 0 < x < 3/4, and
f’(x) > 0 for x > 3/4. This means that f(x) is decreasing on [—1,0] and
[0,3/4], and is increasing on [3/4,1]. This in turn means that at x = 3/4
a relative minimum is attained, that at points x = —1 and x = 1 relative
maxima are attained, and at the point x = 0 we do not have a local
extremum at all.
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FIRST DERIVATIVE TEST

First derivative test for relative extrema. Suppose that f is
continuous at its critical point c.
o If f/(x) > 0 on some open interval extending left from ¢, and
f'(x) < 0 on some open interval extending right from ¢, then f has a
relative maximum at c.
o If f/(x) < 0 on some open interval extending left from ¢, and
f’(x) > 0 on some open interval extending right from ¢, then f has a
relative minimum at c.
@ If f’(x) has the same sign on some open interval extending left from
c as it does on some open interval extending right from c, then f
does not have a local extremum at c.
Proof of validity. In the first case, f/(x) > 0 on some interval (a, c),
and f’(x) < 0 on some interval (c, b). This means that f is increasing on
[a, c] and decreasing on [c, b], from which we easily infer that f has a
relative maximum at c. The other cases are similar.
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FIRST DERIVATIVE TEST: EXAMPLE

Example. Let us analyse the stationary points of the function
f(x) = x — ¥/x we considered earlier. We recall that f'(x) =1 — \ﬁ' so

for the stationary point x = —\@ we have f’(x) > 0 on an open interval

extending left from that point, and f’(x) < 0 on an open interval
extending right from that point, and for the stationary point x = \/% we
have f’(x) < 0 on an open interval extending left from that point, and
f’(x) > 0 on an open interval extending right from that point.

We conclude that f has a relative maximum at x = —\/%—7, and a relative
P 1
minimum at x = —.
um at e
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SECOND DERIVATIVE TEST

The first derivative test is useful, but involves finding the corresponding
open intervals where we can analyse the behaviour of the sign of f’.
Sometimes a simpler test is available, which just amounts to computing
the sign of an individual number.
Second derivative test for relative extrema. Suppose that f is twice
differentiable at the point c.
o If f'(c¢) =0 and f”(c) <0, then f has a relative maximum at c.
o If f'(c) =0 and ”(c) > 0, then f has a relative minimum at c.
o If f'(c) =0 and ”(c) = 0, then the test is inconclusive: the function
f may have a relative maximum, relative minimum, or no relative
extrema at all at the point c.

I \_ £/ i

Proof of validity. In the first case, f”(c) = lim =10 — |im
X—C xX—c X—C

negative, so f'(x) > 0 on some open interval extending left from ¢, and

f’(x) < 0 on some open interval extending right from ¢, and the first
derivative test applies. The second case is similar. In the third case, the
examples f(x) = x*, f(x) = —x*, and f(x) = x3 (at the point ¢ = 0 show
that “anything can happen”.
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SECOND DERIVATIVE TEST: EXAMPLE

Example Let us analyse the stationary points of the function
f(x) =% —sinx on [0,27]. We have

1
f'(x) = = — cos x,
and
f"(x) = sin x.

The points c in [0, 27] where the first derivative vanishes are § and 5%
Substituting into the second derivative, we get

5y =sn) =2 ) =sin( = -2

We conclude that f has a relative maximum at 5{ and a relative

minimum at %
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