MA1S11 (Dotsenko) Solutions to Tutorial/Exercise Sheet 6

Week 8, Michaelmas 2013

1. Differentiate
f() = 25 + 45, (1)

and |
f@) =a+ -4 2t (2)

Solution. We apply the rule for differentiating power functions, and the fact that
derivatives agree with sums and scalar factors:
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2. Show that for the curves y = 1/x and y = 1/(2 — z), their tangent lines at the point
where those two curves meet are perpendicular to one another.

Solution. Let us find the intersection point for these curves. If 1/x =y =1/(2—x),
then z = 2 — x, so 2x = 2, z = 1. In this case, y = 1/x = 1 also. The slope of the
tangent line to the first curve is
- (5)
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and the tangent line is y — 1 = —(z — 1), that is y = —z+2. The slope of the tangent

line to the second curve is
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and the tangent line is y — 1 = (z — 1), that is y = z. These two lines are manifestly
perpendicular to one another.
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3. Using the chain rule and rules for derivatives of trigonometric functions, compute the
derivative function of f(z) = sin®x + cos? r. Explain why your answer is consistent
with the trigonometric identity sin®z + cos?z = 1.

Solution. We have
(sin® z + cos® x)/ = 2sinx(sinx) 42 cos x(cos ) = 2sinx cos x+2 cos z(—sinx) = 0.
This agrees with the fact that sin?z + cos? z = 1, since the derivative of a constant

1S zero.

4. Differentiate
f(z) =zcosz+V1—22 (3)

and .
sin x

T+ 3z

Solution. Because of the product rule and the chain rule, we have
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Because of the rule of differentiating quotients, we have
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5. Let f(z) = sinz, with the domain (—n /2, 7/2), where this function is increasing and
therefore is invertible. Apply the chain rule to the equation

f(f @) == (5)

to show that the derivative of f~'(z) is ———. (Hint: you may need the identity

1—x2

cos?x +sinx = 1),
Solution. Applying the chain rule to f (f~!(z)) = z, we get
FUH @) (@) =1,
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since on (—m/2,7/2) we have cost > 0 and hence cost = /1 —sin?¢, and since
sin(f~H(x)) = f(f (@) = =

(@) =




