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Operads: who cares?

if we have several linear operators acting on a vector space, it
is natural to formulate and answer questions about this action
in terms associative algebras and their (possibly derived)
categories of modules.

what about operations with several arguments?

a very convenient language for that is given by operads.

Informally, for all algebras of some type, there exists one
“higher algebra” (an operad) for which all these algebras are
modules.
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The Cheshire Cat analogy

“An operad is the grin of a given algebra [all operations that
can act on that algebra].” (S. Merkulov)



Compositions via surjections

From a typical composition of operations

G1 G2 Gk

F

i1 i2 ik1 ik1+1 ik1+k2
. . . . . .

. . .

. . . . . . . . .

we can extract a surjection f : I � [k], so that
f (i1) = . . . = f (ik1) = 1, f (ik1+1) = . . . = f (ik1+k2) = 2, . . .



Compositions via surjections
In other words,

G1 G2 Gk

F

i1 i2 ik1 ik1+1 ik1+k2 . . . . . .

f−1(1)
︷                         ︸︸                         ︷

f−1(2)
︷          ︸︸          ︷

f−1(k)
︷          ︸︸          ︷

. . .

. . . . . . . . .

which somewhat justifies the following definition.

The category Fin
has nonempty finite sets as objects, and bijections as morphisms.
The category of symmetric collections is the category of functors
from Fin to Vect. It has a monoidal structure:

F◦symG (I ) =
⊕
k

F ([k])⊗Sk

⊕
f ∈Surj(I ,[k])

G (f −1(1))⊗. . .⊗G (f −1(k)).
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Symmetric operads

Definition: a (symmetric) operad is an “associative algebra” with
respect to the symmetric composition, that is a symmetric
collection O with an associative product O ◦sym O → O.



Example: the operad Lie

A naive definition. The operad Lie of Lie algebras consists of all
Lie operations:

a1 7→ a1,

a1, a2 7→ [a1, a2],

a1, a2, a3 7→ [[a1, a2], a3], [[a2, a3], a1], [[a3, a1], a2],

. . .

Note that:
– all other operations you can think of can be expressed in terms
of these, e.g. [a2, [a1, a3]] = [[a3, a1], a2];
– the three operations in the third line are linearly dependent
(Jacobi identity), thus the space of Lie operations with three
arguments is two-dimensional.
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Example: the operad Lie

A formal definition. The operad Lie of Lie algebras is the
quotient of the free operad with one skew-symmetric binary
generator modulo the ideal generated by the element

1 2

3
+

3 1

2
+

2 3

1



Example: the operad Lie

A naive idea: would like to perceive one of the elements in the
Lie relation as “the leading monomial”, and apply the Lie relation
as a ”rewriting rule”.

For associative algebras, the most general situation like that is
handled by Gröbner bases. A Gröbner basis for defining relations
replaces an algebra by another algebra “of the same size” with
monomial relations.

For operations, this idea would never work: if the operation
[[a1, a2], a3] is identically zero, then all operations obtained by
permutations are zero too.

In a sense, symmetries get in the way, contrary to the usual
philosophy telling us that symmetries are helpful!
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handled by Gröbner bases. A Gröbner basis for defining relations
replaces an algebra by another algebra “of the same size” with
monomial relations.

For operations, this idea would never work: if the operation
[[a1, a2], a3] is identically zero, then all operations obtained by
permutations are zero too.

In a sense, symmetries get in the way, contrary to the usual
philosophy telling us that symmetries are helpful!



Example: the operad Lie

A naive idea: would like to perceive one of the elements in the
Lie relation as “the leading monomial”, and apply the Lie relation
as a ”rewriting rule”.

For associative algebras, the most general situation like that is
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Shuffle compositions

The category Ord has nonempty finite ordered sets as objects, and
order-preserving bijections as morphisms. The category of
nonsymmetric collections is the category of functors from Ord to
Vect.

Definition. The shuffle composition of two nonsymmetric
collections is

F ◦shG (I ) =
⊕
k

F ([k])⊗
⊕

f ∈Surjsh(I ,[k])

G (f −1(1))⊗ . . .⊗G (f −1(k)),

where the allowed shuffle surjections satisfy the condition

min f −1(1) < min f −1(2) < . . . < min f −1(k).
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Shuffle operads

Definition: a shuffle operad is an “associative algebra” with
respect to the shuffle composition, that is a nonsymmetric
collection O with an associative product O ◦sh O → O.



Why shuffle?

The word “shuffle” reflects the combinatorics of allowed
compositions: in the composition

G1 G2 Gk

F

i1 i2 ik1 ik1+1 ik1+k2
. . . . . .

. . .

. . . . . . . . .

we are only allowed to use sequences I for which

i1 < i2 . . . < ik1 , ik1+1 < . . . < ik1+k2 , . . . ,

i1 < ik1+1 < ik1+k2+1 < . . .



Back to the operad Lie
Note that while the Jacobi identity

1 2

3
+

3 1

2
+

2 3

1

did not belong in the shuffle world,

its not-so-symmetric version

1 2

3 −

1 3

2 −

32

1

consists of tree monomials obtained from the original binary
generator via shuffle compositions.



Back to the operad Lie
Note that while the Jacobi identity

1 2

3
+

3 1

2
+

2 3

1

did not belong in the shuffle world,its not-so-symmetric version

1 2

3 −

1 3

2 −

32

1

consists of tree monomials obtained from the original binary
generator via shuffle compositions.



Back to the operad Lie

Also, in the shuffle world the identity [[a1, a2], a3] = 0 does not
imply [[a1, a3], a2] = 0 anymore!

Indeed, there is no more symmetric group actions anymore: in the
symmetric case, symmetries came from the symmetries of finite
sets and functoriality, whereas ordered sets have no symmetries.

In fact, for shuffle operads it is possible to define Gröbner bases,
and therefore every shuffle operad has a monomial replacement.
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Forgetful functor is monoidal

There is a forgetful functor f : Ord → Fin, and hence a functor on
collections:

F f (I ) = F (I f ).

Proposition. We have

(F ◦sym G )f ' F f ◦sh G f .
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Forgetful functor is monoidal

Proof. Compare

F ◦shG (I ) =
⊕
k

F ([k])⊗
⊕

f ∈Surjsh(I ,[k])

G (f −1(1))⊗ . . .⊗G (f −1(k)),

and

F◦symG (I ) =
⊕
k

F ([k])⊗Sk

⊕
f ∈Surj(I ,[k])

G (f −1(1))⊗. . .⊗G (f −1(k)).



Consequences

Because the forgetful functor is monoidal (and 1-to-1 on objects),

as shuffle operads, Fsym〈X 〉f ' Fsh〈X f 〉;
if R ⊂ Fsym〈X 〉 is a symmetric subcollection, then under the
above isomorphism we have the isomorphism (R)f ' (R f ) of
shuffle ideals;

for a symmetric operad P = Fsym〈X 〉/(R),

we have P f ' Fsh〈X f 〉/(R f ) as shuffle operads;
we have B(P)f ' B(P f ) as shuffle dg-cooperads.

Therefore, if we can formulate a question about operads without
mentioning symmetries, we can (choose to) solve this question “in
the shuffle world” instead!
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Koszul duality

Ginzburg–Kapranov ’94: Koszul duality theory for operads parallel
to the Koszul duality theory for associative algebras. Simplest pair
of Koszul operads Lie and Com explain Quillen’s duality between
dg Lie algebras and dg commutative algebras.

Theorem. An operad with a quadratic Gröbner basis is Koszul.

Observation / Meta-theorem. All “important” Koszul operads
actually are not just Koszul but in fact have quadratic Gröbner
bases.

Question. Find natural examples of Koszul operads without
quadratic Gröbner bases (“Sklyanin operads”?).
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quadratic Gröbner bases (“Sklyanin operads”?).



Koszul duality

Ginzburg–Kapranov ’94: Koszul duality theory for operads parallel
to the Koszul duality theory for associative algebras. Simplest pair
of Koszul operads Lie and Com explain Quillen’s duality between
dg Lie algebras and dg commutative algebras.

Theorem. An operad with a quadratic Gröbner basis is Koszul.

Observation / Meta-theorem. All “important” Koszul operads
actually are not just Koszul but in fact have quadratic Gröbner
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Koszul duality
Theorem. The operad Lie is Koszul.

Proof. Indeed, this operad has a quadratic Gröbner basis:
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Operads from commutative algebras

Let A be a commutative associative graded algebra, A =
⊕
n≥0

An.

We define an operad OA by OA(I ) = A|I |−1 with the composition
maps

OA([n])⊗OA(I1)⊗ . . .⊗OA(In) = An−1⊗A|I1|−1⊗ . . .⊗A|In|−1 →
→ A|I1|+...+|In|−1 = OA(I1 t . . . t In)

coming from the product in A.

Theorem. If the algebra A is Koszul, then the operad OA is
Koszul as well.
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The symmetrised pre-Lie product.

A pre-Lie algebra is a vector space V with a binary operation
a, b 7→ a ◦ b such that

(a ◦ b) ◦ c − a ◦ (b ◦ c) = (a ◦ c) ◦ b − a ◦ (c ◦ b)

(example: vector fields on a manifold with the “half-commutator”
a∂i ◦ b∂j = a∂i (b)∂j).

Theorem. (Bergeron–Loday, D.) The symmetrised pre-Lie
product a · b := a ◦ b + b ◦ a does not satisfy any identities.
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algebras with respect to the symmetrised pre-Lie product.
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A pre-Lie algebra is a vector space V with a binary operation
a, b 7→ a ◦ b such that
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a∂i ◦ b∂j = a∂i (b)∂j).

Theorem. (Bergeron–Loday, D.) The symmetrised pre-Lie
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Theorem. (D.) Free pre-Lie algebras are free algebras with
respect to the symmetrised pre-Lie product.



Two open questions

Question 1 (growth): What is the “right” definition of the GK
dimension for operads? More generally, what are possible growth
rates of dimensions of components for shuffle operads? What
replaces rationality for monomial shuffle operads?

Question 2 (Noether property): Which of the “natural” operads
are Noetherian? Kemer’s proof (1985) of the Specht conjecture
(circa 1950) states that the associative operad is Noetherian in
char 0. What about positive characteristic?
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That’s all

Thank you for your patience!


