ANICK-TYPE RESOLUTIONS, SHUFFLE ALGEBRAS, AND CONSECUTIVE PATTERN AVOIDANCE

Vladimir Dotsenko

Dublin Institute for Advanced Studies and Trinity College Dublin

joint work with Anton Khoroshkin (ETH Zurich)

arXiv:1002.2761

British Mathematics Colloquium, Edinburgh

April 6, 2010
WORD AVOIDANCE IN REAL LIFE
Word avoidance in real life
Problem:
Enumerate words of length N which do not contain a subword SEX.
Avoidance of SEX

Problem:
Enumerate words of length N which do not contain a subword SEX.

Solution:

SEX-less words = (all words) −
− (words with at least one subword SEX) +
+ (words with at least two subwords SEX) − ...
Avoidance of *SEX*

Problem:
Enumerate words of length \(N \) which do not contain a subword *SEX*.

Solution:

\[
\text{SEX-less words} = \text{(all words)} - \left(\text{words with at least one subword } \text{SEX} \right) + \left(\text{words with at least two subwords } \text{SEX} \right) - \ldots
\]

which easily yields a formula for generating functions

\[
f_{\text{no-SEX}}(t) = \frac{1}{1 - (26t + y)} \bigg|_{y = -t^3} = \frac{1}{1 - 26t + t^3}.
\]
Avoidance of Sex and Expert

Problem:
Enumerate words of length \(N \) which do not contain either a subword Sex or a subword Expert.
Avoidance of SEX and EXPERT

Problem:
Enumerate words of length N which do not contain either a subword SEX or a subword EXPERT.

Solution: Same inclusion–exclusion argument gives the formula

$$f_{\text{no-SEX, no-EXPERT}}(t) = \frac{1}{1 - 26t + t^3 + t^6 - t^7},$$
Avoidance of **SEX** and **EXPERT**

Problem:
Enumerate words of length N which do not contain either a subword **SEX** or a subword **EXPERT**.

Solution: Same inclusion–exclusion argument gives the formula

$$f_{\text{no-SEX, no-EXPERT}}(t) = \frac{1}{1 - 26t + t^3 + t^6 - t^7},$$

where

$$t^3 = \text{weight}(\text{SEX}), t^6 = \text{weight}(\text{EXPERT}), t^7 = \text{weight}(\text{SEXPERT}).$$
Avoidance of SEX and EXPERT

Problem:
Enumerate words of length \(N \) which do not contain either a subword SEX or a subword EXPERT.

Solution: Same inclusion–exclusion argument gives the formula

\[
f_{\text{no–SEX, no–EXPERT}}(t) = \frac{1}{1 - 26t + t^3 + t^6 - t^7},
\]

where

\[t^3 = \text{weight(SEX)}, \ t^6 = \text{weight(EXPERT)}, \ t^7 = \text{weight(SEXPERT)}. \]

Here

\[\text{SEXPERT} = \left\{ \begin{array}{c} \text{SEX} \\ \text{EXPERT} \end{array} \right\} \]

is a cluster.
Theorem (I. P. Goulden & D. M. Jackson ’79):
Let P be a set of illegal words in the alphabet X. Then

$$f_{\text{no-}P}(t) = \frac{1}{1 - |X|t + Cl_P(t, -1)},$$

where $Cl_P(t, s) = \sum \text{cl}^P_{n, m} t^n s^m$ counts clusters ($\text{cl}^P_{n, m}$ is the number of clusters on n letters formed by m words from P).
Avoidance of SEX and EXPERTISE

Problem:
Enumerate words of length N which do not contain either a subword SEX or a subword EXPERTISE.
Avoidance of SEX and EXPERTISE

Problem:
Enumerate words of length N which do not contain either a subword SEX or a subword EXPERTISE.

Here we have infinitely many clusters, e.g. EXPERTISE, EXPERTISEEXPERTISE, EXPERTISEEXPERTISEEXPERTISE etc.
Avoidance of SEX and EXPERTISE

Problem:
Enumerate words of length N which do not contain either a subword SEX or a subword EXPERTISE.

Here we have infinitely many clusters, e.g. EXPERTISE, EXPERTISEEXPERTISE, EXPERTISEEXPERTISEEXPERTISE etc.

Moreover, some words admit many different coverings, e.g. we have the following two clusters

\[
\left\{ \text{EXPERTISE} \right\}, \quad \left\{ \text{EXPERTISE} \right\}.
\]
Avoidance of SEX and EXPERTISE

Observation: Contributions of the two clusters

\[
\begin{align*}
\{ & \text{EXPERTISE} \\
& \text{EXPERTISE} \} \quad \text{and} \quad \begin{Bmatrix}
\text{EXPERTISE} \\
\text{SEX} \\
\text{EXPERTISE} \end{Bmatrix}
\end{align*}
\]

cancel each other because the first one is formed by two illegal words, and the second one — by three.
Avoidance of SEX and EXPERTISE

Observation: Contributions of the two clusters

\[
\left\{ \text{EXPERTISE} \right\} \quad \text{and} \quad \left\{ \text{SEX} \right\}.
\]

cancel each other because the first one is formed by two illegal words, and the second one — by three.

After cancellations: clusters that contribute are SEX, EXPERTISE, SEXPERTISE, EXPERTISEX, SEXPERTISEX, so that

\[
f_{\text{no-SEX, no-EXPERTISE}}(t) = \frac{1}{1 - 26t + t^3 + t^9 - 2t^{10} + t^{11}}.
\]
Anick chains

Question: how to describe clusters that survive after those obvious cancellations?
Question: how to describe clusters that survive after those obvious cancellations?

Answer (D. J. Anick ’86): chains, defined as follows:
Question: how to describe clusters that survive after those obvious cancellations?

Answer (D. J. Anick ’86): chains, defined as follows:
— a single letter is a 0-chain;

Example: EXPERTISEXPERTISE, even though can be represented as a link of two illegal words, is not a 2-chain because its proper beginning EXPERTISEX is already a 2-chain! It’s not a 3-chain either, because the first and the third illegal words are linked.
Anick chains

Question: how to describe clusters that survive after those obvious cancellations?

Answer (D. J. Anick ’86): chains, defined as follows:
— a single letter is a 0-chain;
— an m-chain is obtained by linking together m illegal words so that only neighbours are linked, the first $(m − 1)$ illegal words form an $(m − 1)$-chain, and no proper beginning forms an m-chain.

Example: EXPERTISEXPERTISE, even though can be represented as a link of two illegal words, is not a 2-chain because its proper beginning EXPERTISEX is already a 2-chain! It's not a 3-chain either, because the first and the third illegal words are linked.
Anick chains

Question: how to describe clusters that survive after those obvious cancellations?

Answer (D. J. Anick ’86): chains, defined as follows:
— a single letter is a 0-chain;
— an m-chain is obtained by linking together m illegal words so that only neighbours are linked, the first $(m-1)$ illegal words form an $(m-1)$-chain, and no proper beginning forms an m-chain.

Example:
EXPERTISEEXPERTISE, even though can be represented as a link of two illegal words, is not a 2-chain because its proper beginning EXPERTISEX is already a 2-chain! It’s not a 3-chain either, because the first and the third illegal words are linked.
Theorem (D. J. Anick ’86): We have

\[f_{\text{no-P}}(t) = \frac{1}{1 - |X|t + C_P(t, -1)}, \]

where \(C_P(t, s) = \sum c_{n,m}^P t^n s^m \) counts chains (\(c_{n,m}^P \) is the number of \(m \)-chains on \(n \) letters).
Anick resolution

Proof: Denote by A the associative algebra with generators X and relations $P = 0$. Also, denote by C_m the vector space with a basis of m-chains. Then there exists a chain complex

\[\ldots \to C_n \otimes A \to C_{n-1} \otimes A \to \ldots \to C_1 \otimes A \to C_0 \otimes A \to A \to 0, \]

whose homology is concentrated in the rightmost term and is one-dimensional. Boundary maps move “tails” through the tensor product: $\partial(w't \otimes a) = w' \otimes ta$.

Compute (graded) Euler characteristics of this complex:

\[(1 - C_0(t) + C_1(t) - \ldots) A(t) = 1. \]

Clearly, $1 - C_0(t) + C_1(t) - \ldots = 1 - mt + C_P(t) - 1$, and $A(t)$ enumerates words that avoid P.
Proof: Denote by A the associative algebra with generators X and relations $P = 0$. Also, denote by C_m the vector space with a basis of m-chains. Then there exists a chain complex

$$\ldots \rightarrow C_n \otimes A \rightarrow C_{n-1} \otimes A \rightarrow \ldots \rightarrow C_1 \otimes A \rightarrow C_0 \otimes A \rightarrow A \rightarrow 0,$$

whose homology is concentrated in the rightmost term and is one-dimensional. Boundary maps move “tails” through the tensor product: $\partial(w't \otimes a) = w' \otimes ta$.

Compute (graded) Euler characteristics of this complex:

$$(1 - C_0(t) + C_1(t) - \ldots)A(t) = 1.$$

Clearly, $1 - C_0(t) + C_1(t) - \ldots = 1 - mt + C_P(t, -1)$, and $A(t)$ enumerates words that avoid P. □
Definition: Let $\sigma \in S_n$, $\tau \in S_m$ be permutations. We say that σ contains τ as a consecutive pattern if a subword of σ is order-isomorphic to τ. Otherwise we say that σ avoids τ. For example, 132 is contained in 41532 (since 153 is order-isomorphic to 132), and is avoided by 52134. For enumeration, exponential generating functions are used, e.g. $f_{\text{no}-132}(t) = 1 + \sum_{n \geq 1} a_{\text{no}-132}(n) \frac{n!}{n!} t^n$.
Definition: Let $\sigma \in S_n$, $\tau \in S_m$ be permutations. We say that σ contains τ as a consecutive pattern if a subword of σ is order-isomorphic to τ. Otherwise we say that σ avoids τ.

For example, 132 is contained in 41532 (since 153 is order-isomorphic to 132), and is avoided by 52134.
Definition: Let $\sigma \in S_n$, $\tau \in S_m$ be permutations. We say that σ contains τ as a consecutive pattern if a subword of σ is order-isomorphic to τ. Otherwise we say that σ avoids τ.

For example, 132 is contained in 41532 (since 153 is order-isomorphic to 132), and is avoided by 52134.

For enumeration, exponential generating functions are used, e.g.

$$f_{\text{no}-132}(t) = 1 + \sum_{n \geq 1} \frac{a_{\text{no}-132}(n)}{n!} t^n.$$
Theorem (I. P. Goulden & D. M. Jackson ’79):

\[f_{\text{no-123}}(t) = \frac{1}{1 - t + \frac{t^3}{3!} - \frac{t^4}{4!} + \frac{t^6}{6!} - \frac{t^7}{7!} + \ldots}. \]
Pattern avoidance in permutations

Theorem (I. P. Goulden & D. M. Jackson ’79):

\[f_{\text{no}-123}(t) = \frac{1}{1 - t + \frac{t^3}{3!} - \frac{t^4}{4!} + \frac{t^6}{6!} - \frac{t^7}{7!} + \ldots}. \]

Theorem (S. Elizalde & M. Noy ’03):

\[f_{\text{no}-132}(t) = \frac{1}{1 - \int_0^t e^{-u^2/2} \, du}. \]
Shuffle product of graded vector spaces

Wanted: a materialization on the level of vector spaces for the product of *exponential* generating functions; on the level of coefficients,

\[c_n = \sum_k \binom{n}{k} a_k b_{n-k}. \]
Shuffle product of graded vector spaces

Wanted: a materialization on the level of vector spaces for the product of *exponential* generating functions; on the level of coefficients,

\[c_n = \sum_k \binom{n}{k} a_k b_{n-k}. \]

Claim: Such a product of vector spaces exists!
Shuffle product of graded vector spaces

Wanted: a materialization on the level of vector spaces for the product of exponential generating functions; on the level of coefficients,

\[c_n = \sum_k \binom{n}{k} a_k b_{n-k}. \]

Claim: Such a product of vector spaces exists!

For two graded \(k \)-vector spaces \(A = \bigoplus_{n \geq 1} A_n \) and \(B = \bigoplus_{n \geq 1} B_n \), their shuffle product \(A \boxtimes B \) is defined as the graded vector space \(C = \bigoplus_{n \geq 1} C_n \) with

\[C_n = \bigoplus_{k+l=n} k\text{Sh}(k, l) \otimes A_k \otimes B_l, \]

where \(\text{Sh}(k, l) \) is the set of all \((k, l)\)-shuffles in \(S_n \). It’s what we want for generating functions, since \(|\text{Sh}(k, l)| = \binom{k+l}{k} \).
Shuffle algebras

Definition (M. Ronco ’07): A shuffle algebra is a graded vector space with an associative product $A \boxtimes A \rightarrow A$.

Example: The vector space $\bigoplus n k S_n$ is a free shuffle algebra with one generator.

Generalisation: let P be a set of illegal patterns, and let A_n, P be the linear span in $k S_n$ of all P-avoiding permutations. Then A_P is a shuffle algebra which is the quotient of the free algebra by the ideal generated by P.

If we start with the free shuffle algebra with several generators, we shall end up with the notion of coloured patterns (Mansour ’01); all our further statements remain.
Shuffle algebras

Definition (M. Ronco ’07): A shuffle algebra is a graded vector space with an associative product $A \boxtimes A \rightarrow A$.

Example: The vector space

$$\bigoplus_{n} \mathbb{k}S_n$$

is a free shuffle algebra with one generator.
Definition (M. Ronco ’07): A shuffle algebra is a graded vector space with an associative product $A \boxtimes A \rightarrow A$.

Example: The vector space

$$\bigoplus_n \mathbb{k}S_n$$

is a *free* shuffle algebra with one generator.

Generalisation: let P be a set of illegal patterns, and let $A_{n,P}$ be the linear span in $\mathbb{k}S_n$ of all P-avoiding permutations. Then A_P is a shuffle algebra which is the quotient of the free algebra by the ideal generated by P.
Shuffle algebras

Definition (M. Ronco ’07): A shuffle algebra is a graded vector space with an associative product $A \boxtimes A \rightarrow A$.

Example: The vector space

$$\bigoplus_n \mathbb{k}S_n$$

is a *free* shuffle algebra with one generator.

Generalisation: let P be a set of illegal patterns, and let $A_{n,P}$ be the linear span in $\mathbb{k}S_n$ of all P-avoiding permutations. Then A_P is a shuffle algebra which is the quotient of the free algebra by the ideal generated by P.

If we start with the free shuffle algebra with several generators, we shall end up with the notion of *coloured patterns* (Mansour ’01); all our further statements remain.
Chains in the context of permutations are defined as follows:
Anick-type chains

Chains in the context of permutations are defined as follows:
— the only permutation of one element is a 0-chain;
Chains in the context of permutations are defined as follows:
— the only permutation of one element is a 0-chain;
— an m-chain is obtained by linking together m illegal patterns so that only neighbours are linked, the first $(m - 1)$ illegal patterns form an $(m - 1)$-chain (up to order-iso), and no proper beginning forms an m-chain.
Anick-type chains

Chains in the context of permutations are defined as follows:
— the only permutation of one element is a 0-chain;
— an m-chain is obtained by linking together m illegal patterns so that only neighbours are linked, the first $(m - 1)$ illegal patterns form an $(m - 1)$-chain (up to order-iso), and no proper beginning forms an m-chain.

Example: for $P = \{123\}$ we get 1, 123, \(\begin{cases} 123 \\ 234 \end{cases} \), \(\begin{cases} 123 \\ 234 \\ 456 \end{cases} \), ...

Note that 12345 is neither a 2-chain (as 1234 is already a 2-chain) nor a 3-chain (as 123 and 345 are linked).
Denote by A the shuffle algebra with one generator whose relations are all illegal patterns. Also, denote by C_m the vector space with a basis of m-chains. Then there exists a chain complex

$$\ldots \rightarrow C_n \boxtimes A \rightarrow C_{n-1} \boxtimes A \rightarrow \ldots \rightarrow C_1 \boxtimes A \rightarrow C_0 \boxtimes A \rightarrow A \rightarrow 0,$$

whose homology is concentrated in the rightmost term and is one-dimensional. Boundary maps move “tails” through the shuffle product.
Consequently, we proved the following

\begin{equation}
\sum_{c P(n, m)} t^n s^m = \frac{1}{1 - t} + C P(t, s),
\end{equation}

where \(C P(t, s) \) is the exponential generating function counting chains (\(c P(n, m) \) is the number of \(m \)-chains on \(n \) letters).

Many corollaries, for example, a proof of the following Conjecture (S. Elizalde '03):

For a pattern \(\tau \) without self-overlaps, the number of permutations avoiding \(\tau \) depends only on the first and the last element of \(\tau \).
Consequently, we proved the following

Theorem: We have

\[f_{\text{no-P}}(t) = \frac{1}{1 - t + C_P(t, -1)}, \]

where

\[C_P(t, s) = \sum c_{n,m}^P \frac{t^n}{n!} s^m \]

is the exponential generating function counting chains (\(c_{n,m}^P \) is the number of \(m \)-chains on \(n \) letters).
Consequently, we proved the following

Theorem: We have

\[f_{\text{no-P}}(t) = \frac{1}{1 - t + C_P(t, -1)}, \]

where

\[C_P(t, s) = \sum c_{n,m}^{P} \frac{t^n}{n!} s^m \]

is the exponential generating function counting chains (\(c_{n,m}^{P}\) is the number of \(m\)-chains on \(n\) letters).

Many corollaries, for example, a proof of the following
Consequently, we proved the following

Theorem: We have

\[f_{\text{no-P}}(t) = \frac{1}{1 - t + C_P(t, -1)}, \]

where

\[C_P(t, s) = \sum c_{n,m}^P \frac{t^n}{n!} s^m \]

is the exponential generating function counting chains (\(c_{n,m}^P \) is the number of \(m \)-chains on \(n \) letters).

Many corollaries, for example, a proof of the following

Conjecture (S. Elizalde '03): For a pattern \(\tau \) without self-overlaps, the number of permutations avoiding \(\tau \) depends only on the first and the last element of \(\tau \).
Thank you for your patience!