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SUMMARY

• After A. Weil’s program of studying zeta–functions of varieties over finite fields an exciting
challenge emerged: to discover the geometry over an “absolute point” Spec F1 which would
allow one to apply Weil’s philosophy to the study of Riemann’s zeta and its global
generalisations.

• A. Grothendieck critically contributed to this program, by presenting the whole algebraic
geometry as a category containing local objects “affine schemes” (opposite to commutative
rings) and prescriptions for gluing global objects from them, including machinery of
Grothendieck topologies and sites.
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SUMMARY

• After A. Weil’s program of studying zeta–functions of varieties over finite fields an exciting
challenge emerged: to discover the geometry over an “absolute point” Spec F1 which would
allow one to apply Weil’s philosophy to the study of Riemann’s zeta and its global
generalisations.

• A. Grothendieck critically contributed to this program, by presenting the whole algebraic
geometry as a category containing local objects “affine schemes” (opposite to commutative
rings) and prescriptions for gluing global objects from them, including machinery of
Grothendieck topologies and sites.

• In this presentation, I will review several attempts to build an F1–geometry, starting with
a generalisation/variation of the basic category of commutative rings and proceeding in Weil–
Grothendieck style, with higher structures lurking on the backstage.

• In particular, starting with certain constructions by Shai Haran, I will then focus upon the
idea developed by A. Connes and C. Consani, according to which the natural habitat for
F1–geometry is the theory of Segal Γ–sets as a

combinatorial version of stable homotopy theory.
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PLAN

PART I: SHAI HARAN’s MODELS: Sections 1–3

S. Haran New foundations for geometry. Memoirs AMS, vol. 246, 2017.
S. Haran. Geometry over F1. arXiv:1709.05831

PART II: CONNES–CONSANI’s MODELS: Sections 4–6

A. Connes, C. Consani. Absolute algebra and Segal’s Γ–rings au dessous de Spec (Z).
arXiv:1502.05585
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1. THE BASIC CATEGORY F

• Definition. We consider two equivalent realisations of this category, F and F∗:

Realisation 1. ObF:= finite sets, F(X,Y ) := bijective partial maps, i.e. triples ϕ,D(ϕ), I(ϕ)
where

D(ϕ) ⊆ X, I(ϕ) ⊆ Y, bijection ϕ : D(ϕ)→ I(ϕ)

Realisation 2. ObF∗:= pointed finite sets X0 = X ∪ {∗X}, F∗(X,Y ) := maps ϕ0 : X → Y , injective
on X.

Equivalence functor: X 7→ X ∪ {∗X}, ϕ 7→ ϕ0 where ϕ0 agrees with ϕ on D(ϕ) and sends X \D(ϕ)
to ∗Y .

• Exercise. Define compositions of morphisms and show that we get an equivalence functor.

• Exercise. Generalise this construction to various other subcategories of sets with partial
maps as morphisms, e. g. finite words in a finite alphabet and semi–computable (partial
recursive) maps.
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• Involutive self − duality functor. It is defined as antiequivalence ()t : F→ Fop:
for ϕ ∈ F(X,Y ) : D(ϕ)→ I(ϕ), we put

ϕt = ϕ−1 : D(ϕt) := I(ϕ)→ I(ϕt) := D(ϕ).

• The category F has no sums or products, but has a symmetric monoidal structure
⊕ which is the disjoint sum on objects, commuting with self–duality.
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2. COMMUTATIVE RINGS AND THEIR VERSIONS

• (i) CRing := Category of commutative rings, opposite to the category of affine schemes.

• (ii) CRig := Category of commutative semirings i. e. “commutative rings without negation”.

More precisely, an object of CRig is a family (R,+, ·, 0, 1), where R is a set, + and ·
are two commutative associative operations with units 0, resp. 1 with distributivity, and
such that 0 · x = 0 for all x ∈ R.

Morphisms are set–theoretic maps compatible with all these structures.

• Examples. Objects (subsets of R) and embedding morphisms:

{0, 1} ⊂ [0, 1] ⊂ [0,∞).

Operations:
x+ y := max (x, y), x · y := xy.
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• Given B ∈ ObCRig, we define the category F(B) of finitely generated free B–modules
with a basis.

Its objects are finite sets indexing the bases, morphisms X → Y are given by matrices
whose elements belong to B and whose lines (resp. columns) are indexed by Y (resp. X),
with composition ◦ as matrix multiplication in which basic operations (·,+) in B take part:

HomF(B)(X,Y ) := {b = (by,x) | y ∈ Y, x ∈ X, by,x ∈ B},

[(b′z,y) ◦ (by,x)]z,x =
∑
y

b′z,y · by,x

F(B) has a symmetric monoidal structure given by direct sums of matrices.
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• CGR:= Category of commutative generalized rings.

Start with a functor A : F→ Sets. For X,Y ∈ F, f ∈ HomSets(X,Y ), put

Af :=
∏
y∈Y

Af−1(y).

Then we have natural operations:

multiplication: / : AY ×Af → AX ,

contraction: ‖: AX ×Af → AY ,

and their fibrewise extensions: for an additional g ∈ HomSets(Y,Z),

/ : Ag ×Af → Ag◦f , ‖: Ag◦f ×Af → Ag.
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Definition. (a) A functor A as above is called a generalized ring iff it satisfies
the axioms of associativity

ah / (ag / af ) = (ah / ag) / af

whenever both sides make sense, and existence of unit 1 ∈ A[1]: for each a ∈ AX ,

1 / a = a = a / (1)x∈X .

(b) A homomorphism of generalized rings is a natural transformation of functors,
compatible with multiplications, contractions, and units.

We thus get the category GR.

(c) A generalized ring is called commutative if we have identically

a / (b ‖ b′) = (a / b) ‖ b′
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and moreover, if for any f : X → Y, g : Z → Y , a ∈ AX , b ∈ Af , c ∈ Ag, we have in AZ

(a ‖ b) / c = (a / f∗c) ‖ g∗b.

We thus get the category CGR.

• The “field with one element” in this context is the initial object of CGR:

FX := X
∐
{∗X}, FY,X = F(X,Y ).
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3. GEOMETRIC CONSTRUCTIONS BASED UPON CGR

I will give now a very brief account of results of geometrizations of the categories
introduced above.

• One can define affine scheme, localizations and gluing of spectra of objects of CGR:
CGR–schemes.

• One can define an important for arithmetics extension of this category to the
category of CGR–Pro–schemes.

• One can define formalism of valuations and construct the “zeta–machine”
producing p–factors and ∞–factor of the Riemann zeta:

ζp(s) = (1− p−s)−1 ζR(s) = 2s/2Γ(s/2).



13

4. SEGAL′s Γ− SETS

• Denote by Γop the category of pointed finite sets k+ := {0, . . . , k}, k = 0, 1, 2, . . . ,
whose morphisms are set–theoretic maps sending 0 to 0.

NB Objects in Γop are essentially the same as in F∗ from Sec. 1, but there are more morphisms.

• A Γ–set F is a pointed functor between pointed categories F : Γop → Sets∗ where Sets∗
is the category of pointed sets.

• Definition. The category ΓSets∗ consists of Γ–sets as objects and natural transformations
of functors as morphisms.

• Example. We will now show that Γ–sets generalize commutative monoids (written
additively) with zero (M,+, 0).

Namely, for such M define a Γ–set HM : Γop → Sets∗ by
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—————————————————————————————————————————

On objects k+: HM(k+) := Mk.
On morphisms f : k+ → n+: HM(f) : Mk →Mn, where HM(f) sends (m1, . . . ,mk) to (l1, . . . , ln) if

li =
∑

j∈f−1(i)

mj .

—————————————————————————————————————————

• Exercise. Compare this with the definition of generalised rings in Sec. 2 using F in place
of Γop.

• Smash products. Let C be a category with internal homomorphisms HomC .

A smash product in such a category is a bifunctor ∧ : C × C → C such that we have
a functorial adjunction formula

HomC(X ∧ Y,Z) ∼= HomC(X,HomC(Y, Z))



15

• The smash product of pointed sets. It is defined by the simple formula

(X, ∗X) ∧ (Y, ∗Y ) := the result of collapsing (X × {∗Y }) ∪ ({∗X} × Y ) in X × Y.

• The smash product of Γ− sets. Here I will restrict myself to the description of
smash product of two Γ–sets F1, F2 in F: the evaluation of F1 ∧ F2 on a pointed
finite set Z ∈ ObF is the colimit

(F1 ∧ F2)(Z) = colim F1(X) ∧ F2(Y )

taken over the family of all morphisms v : X ∧ Y → Z.

This means that a (non base) point of (F1 ∧ F2)(Z) is represented by the quintuple
(X,Y, v, x, y) where X,Y are two finite sets with base points; v : X ∧ Y → Z; x ∈ F1(X),
y ∈ F2(Y ) two non base points.
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Denote now by S the canonical inclusion functor Γop → Sets∗ considered as a Γ–set.

• Definition. An S–algebra is a Γ–set A endowed with an associative multiplication with unit

µ : A ∧A → A, 1 : S→ A.

—————————————————————————————————————————
• BASIC INTUITION:

(A) S is F1 in our framework.

(B) Various subcategories of S-algebras form a natural habitat for algebra “under SpecZ”.

(C) The smash product ∧ is an incarnation of the imaginary tensor product ⊗F1
.

—————————————————————————————————————————
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• Key examples. (a) From monoids to S–algebras.

Let (M, ·, 1; 0) be a multiplicative monoid with unit and absorbing zero, considered as its
base point.

For X ∈ Fin∗, put SM(X) := M ∧X. Then the product in M endows SM with a structure
of S–algebra.

(b) From semirings to S–algebras.

Let (R, (·, 1); (+, 0)) be a set with two structures of multiplicative monoids, resp. with unit
and zero, considered as its base point. We assume + to be commutative, and · left and
right distributive wrt multiplication.

For X ∈ Fin∗, put HR(X) := RX\{∗}. Then the functor X 7→ HR(X) is naturally endowed
with a structure of S–algebra.
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(c) From hyperrings A/G to S–algebras.

A hyperring is, roughly speaking, a ring with multivalued addition. Natural examples of
hyperrings are sets of adèle classes of fields of algebraic numbers.

Let A be a commutative ring and G ⊂ A× a subgroup of the group of invertible elements of A.

For X ∈ Fin∗, put HA/G(X) := the quotient of HA(X) by the following equivalence relation:

ϕ ∼ ψ iff there exists g ∈ G such that for all non base points x ∈ X we have ψ(x) = gϕ(x).

Then the functor HA/G : Γop → Sets∗ is naturally endowed with a structure of S–algebra,
and the quotient map HA→ HA/G is a morphism of S–algebras.

Moreover, the classical hyperring A/G can be reconstructed from this S–algebra as HA/G(1+).
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5. EXAMPLE : THE SEMIRING B

• B := ({0, 1}, ·,+) in which 1 + 1 = 1 is the smallest semiring of characteristic one. It already
leads to quite nontrivial objects.

• FACT: HB is the functor Γop → Sets∗ which associates to an object X the set of subsets of
X containing the base point ∗X .

HB ∧HB is already a quite nontrivial combinatorial object.

• A LYRICAL DIGRESSION: Niels Henrik Abel and “characteristic 1”.

Niels Henrik and his siblings were educated by their father [...] for teaching purposes he had handwritten
book on history, geography, the mother tongue and mathematics. In mathematics one found not only
multiplication and division tables, but also tables for addition and subtraction; in the first line there stood:

1 + 0 = 0.

(from A. Stubhaug, The life of Niels Henrik Abel)
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6. HZ vs Z and HZ ∧HZ vs Z⊗F1 Z

• In N. Durov’s paper New approach to Arakelov Geometry , arXiv:0704.2030, a series of definitions
and facts involving geometry over F1 is suggested. However, the basic defect of his theory
is the fact that Z⊗F1

Z turns out to be isomorphic to Z.

• To the contrary, Connes and Consani prove that HZ ∧HZ is not isomorphic to HZ.
The similar statement in the category of the Eilenberg–MacLane spectra also holds.
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THANK YOU FOR YOUR ATTENTION !


