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SUMMARY

o After A. Weil’s program of studying zeta—functions of varieties over finite fields an exciting
challenge emerged: to discover the geometry over an “absolute point” SpecF; which would
allow one to apply Weil’s philosophy to the study of Riemann’s zeta and its global
generalisations.

e A. Grothendieck critically contributed to this program, by presenting the whole algebraic
geometry as a category containing local objects “affine schemes” (opposite to commutative
rings) and prescriptions for gluing global objects from them, including machinery of
Grothendieck topologies and sites.
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e A. Grothendieck critically contributed to this program, by presenting the whole algebraic
geometry as a category containing local objects “affine schemes” (opposite to commutative
rings) and prescriptions for gluing global objects from them, including machinery of
Grothendieck topologies and sites.

e In this presentation, I will review several attempts to build an F;—geometry, starting with
a generalisation /variation of the basic category of commutative rings and proceeding in Weil—
Grothendieck style, with higher structures lurking on the backstage.

e In particular, starting with certain constructions by Shai Haran, I will then focus upon the
idea developed by A. Connes and C. Consani, according to which the natural habitat for
F1—-geometry is the theory of Segal I'-sets as a

combinatorial version of stable homotopy theory.
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PART 1I: SHAI HARAN’s MODELS: Sections 1-3

S. Haran New foundations for geometry. Memoirs AMS, vol. 246, 2017.
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PART II: CONNES-CONSANI’s MODELS: Sections 4—6

A. Connes, C. Consani. Absolute algebra and Segal’s T'-rings au dessous de Spec (Z).
arXiv:1502.05585



1. THE BASIC CATEGORY F

e Definition. We consider two equivalent realisations of this category, F and F,:

Realisation 1. ObF:= finite sets, F(X,Y) := bijective partial maps, i.e. triples ¢, D(p), I(y)
where
D(p) € X, I(p) €Y, bijection ¢ : D(p) — I(p)

Realisation 2. ObF,:= pointed finite sets Xo = X U {xx}, F.(X,Y) := maps ¢y : X — Y, injective
on X.

Equivalence functor: X — X U {xx}, ¢ — po where ¢y agrees with ¢ on D(y) and sends X \ D(p)
to Xy .

e Exercise. Define compositions of morphisms and show that we get an equivalence functor.

e Exercise. Generalise this construction to various other subcategories of sets with partial
maps as morphisms, e. g. finite words in a finite alphabet and semi—computable (partial
recursive) maps.



e Involutive self — duality functor. It is defined as antiequivalence ()' : F — FP:
for p e F(X,Y): D(p) = I(p), we put

o' = ' D(¢") = I(p) = I(¢") :== D(p).

e The category F has no sums or products, but has a symmetric monoidal structure
¢ which is the disjoint sum on objects, commuting with self—duality.



2. COMMUTATIVE RINGS AND THEIR VERSIONS

e (i) CRing:= Category of commutative rings, opposite to the category of affine schemes.

e (ii) CRig := Category of commutative semirings i. e. “commutative Tings without negation”.

More precisely, an object of CRig is a family (R,+,-,0,1), where R is a set, + and -
are two commutative associative operations with units 0, resp. 1 with distributivity, and
such that 0-z =0 for all z € R.

Morphisms are set—theoretic maps compatible with all these structures.

e Examples. Objects (subsets of R) and embedding morphisms:

{0,1} C [0,1] C [0, 00).

Operations:
x +y = max (x,y), Ty = Y.



e Given B € ObCRig, we define the category F(B) of finitely generated free B—modules
with a basis.

Its objects are finite sets indexing the bases, morphisms X — Y are given by matrices
whose elements belong to B and whose lines (resp. columns) are indexed by Y (resp. X),
with composition o as matrix multiplication in which basic operations (-, +) in B take part:

Hompp)(X,Y) :={b= (byz) |y €Y,z € X,b,, € B},

[(0) 0 (bya)low = Y VL by
Y

F(B) has a symmetric monoidal structure given by direct sums of matrices.



o CGR:= Category of commutative generalized rings.

Start with a functor A : F — Sets. For X,Y € F, f € Homges(X,Y), put

Af = H Af—l(y).

yey
Then we have natural operations:
multiplication: <: Ay x Ay — Ax,
contraction: ||: Ax x Ay — Ay,

and their fibrewise extensions: for an additional g € Homges(Y, Z),

<1:Ag><Af—>Agof, ||:Agof><Af—>Ag.
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Definition. (a) A functor A as above is called a generalized ring iff it satisfies

the axioms of associativity
ap < (ag<ayr) = (ap<ag)<ay

whenever both sides make sense, and existence of unit 1 € Ap: for each a € Ax,
lda=a=a<(1)zex-.

(b) A homomorphism of generalized rings is a natural transformation of functors,
compatible with multiplications, contractions, and units.

We thus get the category GR.

(c) A generalized ring is called commutative if we have identically

a< (bl V)= (aab) |V



and moreover, if forany f: X =Y, 9: Z —=Y,ac Ax,bc Ay,c€ A,;, we have in Ay
(a]lb)<c=(aqfrc) | g*b.
We thus get the category CGR.

e The “field with one element” in this context is the initial object of CGR:

Fx =X ][[{*x}, Fyrx=FX,)Y).
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3. GEOMETRIC CONSTRUCTIONS BASED UPON CgR

I will give now a very brief account of results of geometrizations of the categories
introduced above.

e One can define affine scheme, localizations and gluing of spectra of objects of CGR:

CGR—schemes.

e One can define an important for arithmetics extension of this category to the
category of C'GR—Pro—schemes.

e One can define formalism of valuations and construct the “zeta—machine”
producing p—factors and co—factor of the Riemann zeta:

G(s) = (1=p~°)"" (rls) = 2°/°T(s/2).
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4. SEGAL's I' — SETS

e Denote by I'°? the category of pointed finite sets k. :={0,...,k}, k=0,1,2,...,
whose morphisms are set—theoretic maps sending 0 to 0.

NB Objects in I'°? are essentially the same as in F, from Sec. 1, but there are more morphisms.

e A ['—set F' is a pointed functor between pointed categories F' : I'°? — Sets, where Sets,
is the category of pointed sets.

e Definition. The category ['Sets, consists of ['-sets as objects and natural transformations
of functors as morphisms.

e Example. We will now show that ['-sets generalize commutative monoids (written
additively) with zero (M, +,0).

Namely, for such M define a I'-set HM : I'°? — Sets, by




14

On objects k,: HM (ky) := MF.
On morphisms f: ky —ny: HM(f): M* — M™, where HM(f) sends (my,...,ms) to (I1,...,1,) if

li = Z mj.

jef—1(4)

e Exercise. Compare this with the definition of generalised rings in Sec. 2 using F in place
of I'°P.

e Smash products. Let C be a category with internal homomorphisms Hom,.

A smash product in such a category is a bifunctor A : C x C — C such that we have
a functorial adjunction formula

Homc (X ANY,Z) =2 Home (X, Homq(Y, Z))
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e The smash product of pointed sets. It is defined by the simple formula

(X, *x) A (Y, *y) := the result of collapsing (X x {*y})U ({*x} xY) in X x Y.

e The smash product of I' — sets. Here I will restrict myself to the description of
smash product of two I'—sets F}, F5 in F: the evaluation of F; A F5 on a pointed
finite set Z € ObF is the colimit

(Fl N FQ)(Z) = colim Fl(X) N FQ(Y)

taken over the family of all morphismsv: X NY — Z.

This means that a (non base) point of (F; A F5)(Z) is represented by the quintuple
(X,Y,v,z,y) where X,Y are two finite sets with base points; v: X AY — Z; x € F}(X),
y € F5(Y) two non base points.
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Denote now by S the canonical inclusion functor I'°? — Sets, considered as a I'—set.

e Definition. An S—algebra is a '-set A endowed with an associative multiplication with unit

pw: ANA—-A, 1:S— A

e BASIC INTUITION:
(A) S is F; in our framework.
(B) Various subcategories of S-algebras form a natural habitat for algebra “under SpecZ”.

(C) The smash product A is an incarnation of the imaginary tensor product ®,.
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e Key examples. (a) From monoids to S—algebras.

Let (M,-,1;0) be a multiplicative monoid with unit and absorbing zero, considered as its
base point.

For X € Fin,, put SM(X):= M A X. Then the product in M endows SM with a structure
of S—algebra.

(b) From semirings to S—algebras.

Let (R,(-,1);(+,0)) be a set with two structures of multiplicative monoids, resp. with unit
and zero, considered as its base point. We assume + to be commutative, and - left and
right distributive wrt multiplication.

For X € Fin,, put HR(X) := RX\*}. Then the functor X — HR(X) is naturally endowed
with a structure of S—algebra.
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(c) From hyperrings A/G to S—algebras.

A hyperring is, roughly speaking, a ring with multivalued addition. Natural examples of
hyperrings are sets of adele classes of fields of algebraic numbers.

Let A be a commutative ring and G C A* a subgroup of the group of invertible elements of A.

For X € Fin,, put HA/G(X) := the quotient of HA(X) by the following equivalence relation:
@ ~ 1 iff there exists g € G such that for all non base points x € X we have ¥(x) = gp(x).

Then the functor HA/G : I'°? — Sets, is naturally endowed with a structure of S—algebra,
and the quotient map HA — HA/G is a morphism of S—algebras.

Moreover, the classical hyperring A/G can be reconstructed from this S—algebra as HA/G(1,).



19

5. EXAMPLE : THE SEMIRING B

e B:=({0,1},-,4) in which 1+ 1 =1 is the smallest semiring of characteristic one. It already
leads to quite nontrivial objects.

e FACT: HB is the functor I'°? — Sets, which associates to an object X the set of subsets of
X containing the base point *xx.

HB N HB is already a quite nontrivial combinatorial object.

e A LYRICAL DIGRESSION: Niels Henrik Abel and ‘“characteristic 1”.

Niels Henrik and his siblings were educated by their father [...] for teaching purposes he had handwritten
book on history, geography, the mother tongue and mathematics. In mathematics one found not only
multiplication and division tables, but also tables for addition and subtraction; in the first line there stood:

14+0=0.

(from A. Stubhaug, The life of Niels Henrik Abel)
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6. HZ vs Z and HZ N HZ vs Z Qy, Z

e In N. Durov’s paper New approach to Arakelov Geometry , arXiv:0704.2030, a series of definitions
and facts involving geometry over F; is suggested. However, the basic defect of his theory
is the fact that Z ®r, Z turns out to be isomorphic to Z.

e To the contrary, Connes and Consani prove that HZ N HZ is not isomorphic to HZ.
The similar statement in the category of the Eilenberg—MacLane spectra also holds.



THANK YOU FOR YOUR ATTENTION !
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