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SUMMARY

• I start with a brief history of several fifferent ideas, programs, and constructions,
that recently acquired in minds of several mathematicians the traits of Borgesian

“El jardín de senderos que se bifurcan”

“the garden of diverging paths.”

• Their list, starting with Gauss’ q–deformed binomial coefficients, includes H. Weyl’s
commutation relations, Jacque Tits’ combinatorics of Chevalley groups, M. Kapranov’s
and A. Smirnov’s introduction of F1n , J. Borger’s interpretation of Grothendieck’s
λ–calculus as descent data “to F1”, et al.

• For more details and more constructions, see the collection

Absolute Arithmetic and F1–Geometry. Ed. K. Thas, European Math. Soc., 2016,

including the survey

L. Le Bruyn. Absolute geometry and the Habiro topology., arXiv:1304.6532
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1. A BRIEF HISTORY

————————————————————————————————————–
• 1863: From 1 to q – Gaussian binomial coefficients and q–integers

————————————————————————————————————–

[n]q := qn−1 + qn−2 + · · ·+ 1 =
qn − 1

q − 1
, n ≥ 1.

[n]q! := [n]q[n− 1]q . . . [1]q, [0]q! := 1.(
n
j

)
q

:=
[n]q!

[j]q![n− j]q!

Two natural habitats of q–integers:

(i) Quantum mechanics/noncommutative geometry habitat: define the q–commutator by

[x, y]q := xy − q−1yx
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Natural values of q in quantum physics: q = e2πi/h, |q| = 1.

q–binomial formula: if [x, y]q = 0 (Weyl’s commutation relation), then

(x+ y)n =
n∑
j=0

(
n

j

)
q

xn−jyj .

Limit q → 1 = classical physics.

(ii) Finite geometries habitat:

card Pn−1(Fq) =
card (An(Fq) \ {0})

card Gm(Fq)
=
qn − 1

q − 1
= [n]q,

cardGr (n, j)(Fq) = card {Pj(Fq) ⊂ Pn(Fq)} =

(
n

j

)
q

.

Natural values of q in (finite) geometries: q = pk, p prime, k ≥ 1.
Limit q → 1 = our imaginary geometry over F1.
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————————————————————————————————————–
• 1957: From q to 1 – Jacques Tits’ projective space

————————————————————————————————————–

Pn−1(F1):= a finite set P of cardinality n.

Gr (n, j))(F1) := the set of subsets of P of cardinality j.

If one puts q = 1 in the previous formulas, all cardinalities agree!

Tits’ program: make sense of algebraic geometry over “a field of characteristic one”
so that the “projective geometry” above becomes a special case of the geometry of
Chevalley groups and their homogeneous spaces.

NB: The first implementation of Tits’ program appears only in 2008:
A. Connes, C. Consani, arXiv: 0809.2926

However, as s a field of definition C.–C. need F12 , not just F1!
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————————————————————————————————————–
• 1991: F1n – Kapranov–Smirnov

————————————————————————————————————–

F1n “is” the monoid {0} ∪ µn.

A vector space over F1n is a pointed set (V, 0) with an action of µn free on V \ {0}.
Invertible linear maps = permutations compatible with action.

Example. If q ≡ 1 modn and µn is embedded in F∗q, Fq becomes a vector space over F1n ,
and the power residue symbol (

a

Fq

)
n

:= a
q−1
n ∈ µn

is the determinant of the multiplication by a in F1n–geometry.
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————————————————————————————————————–
• 1992: Z⊗F1 Z and zeta : Yu. M.

————————————————————————————————————–
(i) We need an “absolute point”, say SpecF1, in arithmetic geometry: then we could
try to imitate Weil’s proof of Riemann Conjecture for curves C over finite fields
using intersection theory on C × C.

(ii) There might exist a category of motives over F1, partly visible through their
zeta–functions. The zetas of non–negative powers of the “Lefschetz (dual Tate)
motive” L must be:

Z(L×n, s) =
s+ n

2π
.

(iii) This provides a conjectural bridge between F1–geometry and geometry of SpecZ
at the archimedean infinity, that is, Arakelov geometry: the Γ–factor of classical zetas

ΓC(s) := [(2π)−sΓ(s)]−1 =
∏
n≥0

s+ n

2π

(regularized product) looks like F1–zeta of inf–dim projective space over F1.
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————————————————————————————————————–
• 1999, 2004 and later: Emergence of categories of schemes/F1:

Soulé, Toën–Vaquié, Deitmar, Haran, Durov, Connes–Consani ...
————————————————————————————————————–
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. . . but new constructions “in characteristic 1” that do not fit any of the
definitions keep appearing.

2. CYCLOTOMY

AND ANALYTIC GEOMETRY OVER F1

• Introduction : roots of unity and Morse− Smale diffeomorphisms.

(i) Let M be a compact smooth manifold, f a diffeomorphism of M . It is called
Morse–Smale, if it is structurally stable, and only a finite number of points x
are non–wandering, i. e., for any neighborhood U of x, we have U ∩ fn(U) 6= ∅
infinitely often.

Assume that all eigenvalues of the action of f on integral cohomology of M
are roots of unity and put the question: when f is isotopic to a Morse–Smale map?

There is an obstruction to this, lying in the group SK1(R), where R is the ring
obtained by localizing Z[q] with respect to Φ0(q) := q and all cyclotomic polynomials

Φn(q) :=
∏
η

(q − η)

where η runs over all primitive roots of unity of degree n ≥ 1.
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(ii) This ring R turns out to be a principal ideal domain. The reason for this is that
each closed point (a prime ideal of depth two) of the “arithmetical plane”
SpecZ[q] is situated on an arithmetic curve Φn(q) = 0, n ≥ 0, because all finite fields
consist of roots of unity and zero.

Localization cuts all these curves off, and all closed points go with them. Remaining
prime ideals are of height one, and they are principal ones.

(iii) The same effect is achieved by localizing wrt all primes p ∈ Z, thus getting the
principal ideal domain Q[q]. This localization cuts away the closed fibers of the
projection SpecZ[q]→ SpecZ, and all the closed points with them.
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————————————————————————————————————–
This suggests that the union of all cyclotomic arithmetic curves Φn(q) = 0 can be
imagined as the union of closed fibers of the projection SpecZ[q]→ SpecF1[q],
and the arithmetic plane itself as the product of two coordinate axes, arithmetic one SpecZ
and geometric one, SpecF1[q], over the “absolute point” SpecF1.
————————————————————————————————————–

Question. Is there a context in which diffeomorphisms f , acting on integral cohomology
of M with eigenvalues roots of unity, could be interpreted as “Frobenius maps in
caracteristic 1”, and their fixed (or non–wandering) points in a Morse–Smale situation
as F1n–points of an appropriate variety?
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• Habiro′s analytic functions of many variables.

Notations. Rings in this section are associative, commutative and unital.
Ring homomorphisms are unital. Letters R,R0, R1 . . . denote rings, q, q0, q1... are
independent commuting variables.

Let R be a ring, I = {Iα} a family of ideals filtered by inclusion. The projective limit

lim←−αR/Iα is called the completion of R with respect to I and denoted R̂I. When
I is (cofinal to) the family of powers of one ideal I, the respective limit is called
the I–adic completion.

We say that R is I– (resp. I–adically) separated, if ∩αIα = ∅. Equivalently, the

canonical homomorphism R→ R̂I is injective.

When q is considered as a “quantization parameter”, our q-deformed versions
of integers and factorials will be here

{N}q := qN − 1, {N}q! := {N}q{N − 1}q . . . {1}q.
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Fix an integral domain R0 of characteristic zero and put Rn := R0[q, . . . , qn], with
natural embeddings R0 ⊂ R1 ⊂ R2 ⊂ . . .

Denote by In,N ⊂ Rn the ideal ({N}q1 !, . . . , {N}qn !), N ≥ 1. Clearly, In,N ⊂ In,N+1

so that the rings R
(N)
n := Rn/In,N , n being fixed, form an inverse system.

• Definition. The ring of Habiro’s analytic functions of n variables over R0 is defined as

R̂n := lim←−
N

R(N)
n .

• Taylor series of analytic functions. Choose a vector of roots of unity ζ = (ζ1, . . . , ζn)
such that all ζi are in R0.

For each integer M > 0, there exists N0 = N0(ζ,M) such that for all N ≥ N0

In,N ⊂ (q1 − ζ1, . . . , qn − ζn)M
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In fact, {N}qi ! is divisible by any fixed monomial (qi − ζ)M , ζ ∈ µ, if N is large enough.

The completion lim←−M Rn/(q1 − ζ1, . . . , qn − ζn)M is R[[q1 − ζ1, . . . , qn − ζn]].

Therefore we obtain a ring homomorphism “Taylor expansion at the point ζ”:

Tn(ζ) : R̂n → R0[[q1 − ζ1, . . . , qn − ζn]].

• Theorem. If R0 is an integral domain, p–adically separated for all primes p, then the same

is true for R̂n, and the Habiro–Taylor homomorphism Tn(ζ) is injective.

More generally, let F = {F1, . . . , Fn} ∈ Z[q] be a family of monic polynomials in R0[q]
whose all roots are roots of unity. Denote by (F ) the ideal generated by F1(q1), . . . , Fn(qn)
in Rn. In place of the formal series ring above, we can consider the completion

R̂F := lim←−
M

Rn/(F )M
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and the respective Taylor expansion homomorphism:

Tn(F ) : R̂n → R̂F .

• Theorem. If R0 is an integral domain, p–adically separated for all p, R[[F ]] is as well
p–adically separated, and the homomorphism Tn(F ) is injective.

• Differential calculus. Divided powers of partial derivatives with respect to qk
are continuous wrt linear topologies generated by In,N , resp. by all

(q1 − ζ1, . . . , qn − ζn)M . Hence these derivatives make sense in R̂n, and their values at
(ζ1, . . . , ζn) are the Taylor coefficients of the respective series.

Thus we can develop for R̂n the conventional formalism of tangent and cotangent
modules, differential forms etc.
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• Elements of R̂n as functions on roots of unity. Let R′0 ⊃ R0 be an integral domain
flat over R0 and containing all roots of unity (that is, all cyclotomic polynomials
qn − 1 completely split in R′0).

Denote by µ the set of all roots of unity in R′0. Choose ζ := (ζ1, . . . , ζn) ∈ µn. Any element
of Rn, being a polynomial in (q1, . . . , qn), takes a certain value at ζ belonging to R′0.

If N ≥ N0(ζ), all elements of In,N vanish at ζ. Hence any element f ∈ R̂n defines
a map f̄ : µn → R′0. This map is R0–linear and compatible with pointwise addition
and multiplication of functions.

Besides assuming that R0 is p–adically separated for all primes p, impose the
following separatedness condition: for any infinite sequence of pairwise distinct primes
p1, . . . , pk, . . . , we have

∩∞m=1Rp1 . . . pm = {0}.
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• Theorem. Under these assumptions, the map f 7→ f̄ is injective.

K. Habiro has also shown that vanishing of f̄ on certain sufficiently large subsets of µ
suffices to establish the vanishing of f .

More precisely, Habiro’s topology on the set µ of all roots of unity is defined as follows.

Two roots of unity ξ, η are called adjacent, if ξη−1 is of order pm, m ∈ Z, p a prime;
or equivalently, if ξ − η is not a unit (as an algebraic number). Clearly, the action
of Gal (Q/Q) preserves adjacency.

• Definition. A subset U ⊂ µ is called open, if for any point ξ ∈ U , all except of finitely many
η ∈ µ adjacent to ξ, belong to U .

The Galois action is continuous in this topology, in marked contrast to the topology
induced from C.
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Let now µ′ be an infinite set of roots of unity. A point ξ ∈ µ′ is a limit point of µ′,
if for any open neighborhood U of ξ we have µ′ ∩ (U \ ξ) 6= ∅. In Habiro’s topology,
this means that µ′ contains infinitely many points, adjacent to ξ.

• Theorem. Let ν = ν1 × · · · × νn ⊂ µn be a set, such that each νi ⊂ µ has a limit point.

Let f ∈ R̂n. If the restriction f̄ |ν is identical zero, then f = 0.

• Analogs of Habiro′s functions on the arithmetic axis and analytic continuation.

The Habiro ring of one variable lim←−N Z[q]/({N}q!) “is” the lift to Z of an imaginary
ring lim←−N F1[q]/({N}q!).

Along the arithmetical axis, the straightforward analog of the latter exists: this is

the topological ring of profinite integers Ẑ := lim←−N Z/(N !). Its elements can be
uniquely represented by infinite series

∑∞
n=1 cnn! where cn are integers 0 ≤ cn ≤ n.
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An analog of the profinite number 1 +
∑∞
n=1(−1)nn! is the remarkable example of

Habiro function of one variable

1 +
∞∑
n=1

(−1)n{n}q! = 1 +
∞∑
n=1

(1− q) . . . (1− qn).

Considered as a function on roots of unity, it emerged in a work of M. Kontsevich
on Feynman integrals (talk at MPIM, 1997). Don Zagier proved that its values,
as well as values of its derivatives, are radial limits of the function (resp.
its derivatives) holomorphic in the unit circle

1

2

∞∑
n=1

nχ(n)q(n
2−1)/24,

where χ is the quadratic character of conductor 12.
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L–FUNCTIONS AND ZETA POLYNOMIALS

• Notations.

U(z) ∈ R[z] a polynomial of degree e ≥ 1, U(1) 6= 0,

P (z) := U(z)
(1−z)d , d > e,

H(x) := the polynomial of degree d− 1 such that if for |z| < 1 we have

P (z) :=
U(z)

(1− z)d
=
∞∑
n=0

hnz
n,

then

H(n) = hn for all n ≥ max {0, e− d+ 1}.
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• Theorem. (Popoviciu, Rodriguez–Villegas, et al.) Assume that all roots of U lie on the unit
circle.

Then H satisfies the zeta–type functional equation

H(x) = (−1)d−1H(−d+ e− x),

and vanishes at integer points x = −1, . . . ,−d+ e+ 1 inside its “critical strip”.

Moreover, all the remaining zeroes lie on the vertical line passing through the middle
of the critical strip:

Re(x) =
−d+ e+ 1

2
.

• Examples : Hilbert polynomials H of certain graded commutative rings,
in particular anticanonical rings of Fano varieties, and their versions for
Calabi–Yau varieties.
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• Heuristics : relationship between H and P as a “discrete Mellin transform′′.

– Classical Mellin transform: f(z) a Fourier series in upper half–plane, e. g.
a cusp form, Zf (s) the associated Dirichlet series:

Zf (s) =
(2π)s

Γ(s)

∫ i∞

0

f(z)
(z
i

)s−1
d
(z
i

)
.

– Integral representation of the passage from P (z) to H(x):

Hf (n) =
1

2πi

∫
γ

Pf (z)z−(n+1)dz,

where γ is a small contour around zero.

• NB This explains also that s corresponds to −n.
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ZETA POLYNOMIALS FROM MODULAR FORMS

• I will call polynomials H as above zeta polynomials.

Below I will show how to obtain zeta polynomials from those PSL(2,Z)–cusp forms f
that are eigenforms for all Hecke operators.

• Heuristics : These zeta polynomials correspond to Euler factors of the respective
L–series “in characteristics one”.

• Period polynomials. Let f be a cusp form of positive even weight k, w := k + 2. Put

rf (z) :=

∫ i∞

0

f(τ)(τ − z)k−2dτ, r±f (z) :=
rf (z)± rf (−z)

2
.
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• Proposition. (J. B. Conrey, D. W. Farmer, Ö. Imamoglu).

Let f be a cusp Hecke eigenform of weight k with real Fourier coefficients. Then

Uf (z) :=
r−f (z)

z(z2 − 4)(z2 − 1/4)(z2 − 1)2
∈ R[z]

is a polynomial of degree e := w − 10 without real zeros whose complex zeros all lie
on the unit circle.
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• Final result. Fix an integer d > e = w − 10 and put

Pf (z) :=
Uf (z)

(1− z)d
=
∞∑
n=0

hf (n)zn.

Let Hf (x) ∈ R[x] be the polynomial of degree d− 1 such that

hf (n) = Hf (n)

for |z| < 1 and n big enough.

This polynomial satisfies the functional equation

Hf (x) = (−1)d−1H(−d+ e− x)

and vanishes at x = −1, . . . ,−d+ e+ 1. All its remaining zeros lie on the vertical
line Rex = −(d− e− 1)/2.
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THANK YOU FOR YOUR ATTENTION !


