More Phylogenetic polytopes: filtering the STSP.
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The Balanced minimal evolution method: ex. tree metric.

x(t)y = 20 1p)

Givend = (6, 8,9, 12,7, 15), find the tree whose branches
may be assigned lengths to achieve those distances.

t x(?) d-x(1)
2,1,1,1,1,2) 78
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The Balanced minimal evolution method: ex. tree metric.

Givend = (6, 8,9, 12,7, 15), find the tree whose branches
may be assigned lengths to achieve those distances.

t x(7) d-x(1)

(1,2,1,1,2,1) 72

e+y+q=9
w+y+z=12
z+q=7
w+y+q=15




Notes.

1) This is slow—better to use linear programming on the polytope:
hence the search for facets.

2) Notice that this method fixes the long branch problem.

3) The proof relies on the fact that our dot product calculates a
multiple of the sum of the edge lengths.

4) Recall that the method returns an answer even if the distances
are not a tree metric.



The Balanced minimal evolution method: ex. tree metric?

Givend = (7, 11, 4, 10, 5, 13), find the tree whose branches
may be assigned lengths to achieve those distances.

x(7) d-x(1)
2,1,1,1,1,2) 66

(1,2,1,1,2, 1) 64

(1,1,2,2,1, 1) 70

...but
solving for the edges gives no solution.



The Balanced minimal evolution method: ex. tree metric?

Givend = (7, 11, 4, 10, 5, 13), find the tree whose branches
may be assigned lengths to achieve those distances.

S x(S) d-x(S)

2 4

0,1,1,1,1,0) 30
3 1
2 3

(1,0,1,1,0, 1) 34
1 4
2 4

(1,1,0,0,1, 1) 36




The Balanced minimal evolution method: ex. tree metric?

Givend = (7, 11, 4, 10, 5, 13), find the tree whose branches
may be assigned lengths to achieve those distances.

S x(S) d-x(S)

r y r (Oa 15 15 15 ]-5 0) 30

solve
e+ty+z+r=7
e+r+w=11
e+y+q=4 X
W+y+z=10 y
z+r+q=>5 z
W+y+q+r=13 q
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Permutoassociahedron KP,







Projection to BME(n)

Theorem

If x <y as faces in the face lattice of KPp, then ¢(x) < ¢(y) as
faces in the face lattice of P,, the BME polytope.



split-facet

clade-face

Figure: Examples of chains in the lattice of tree-faces of the BME
polytope Py.



Projection to BME(3)
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Now we show how the target of the map ¢ is actually the BME
polytope.

Theorem

For each non-binary phylogenetic tree t with n leaves there is a
corresponding face F(t) of the BME polytope BME(n). The
vertices of F(t) are the binary phylogenetic trees which are
refinements of t.



proof idea.
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Theorem

For t an n-leaved phylogenetic tree with exactly one node v of
degree m > 3, the tree face F(t) is precisely the clade-face
Fc,...c., defined in [H,H,Y], corresponding to the collection of
clades Cy, ..., Cp which result from deletion of v. Thus F(t) is
combinatorially equivalent to the smaller dimensional BME
polytope BME(m).



Clade face




Clade face




Split facets.

Theorem

Let t be a phylogenetic tree with n > 5 leaves which has exactly
two nodes v and i, with degrees both larger than 3. Then the trees
which refine t are the vertices of a facet of the BME polytope P,,.



Split facets.
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Split facets.
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Features

of the BME polytope BME(n)

number | dim. vertices | facets facet inequalities number of number of
of of Py of P, of Py (classification) facets vertices
species in facet
3 0 1 0 - - -
7 2 3 3 Xop > 1 3 2
Xab + Xpe — Xac £ 2 3 2
5 5 15 52 Xab > 1 10 6
(caterpillar)
Xab + Xbe — Xac < 4 30 6
(intersecting-cherry)
Xab + Xbe + Xed + Xdf + X2 < 13 12 5
(cyclic ordering)
6 9 105 90262 Xap > 1 15 24
(caterpillar)
Xab + Xbe — Xac < 8 60 30
(intersecting-cherry)
Xab + Xbe + Xac < 16 10 9
(3.3)-split
n 5) —n| (2n—5) ? Xap > 1 (5) (n—2)!
(caterpillar)
Xab + Xpe — Xac <2773 | (5)(n—2) 2(2n — 7\
(intersecting-cherry)
Xab + Xpe + Xae < 2072 (3) 3(2n —9)!!
(m, 3)-split, m >3
Sor < (m-127 |27 = (3) | (2n—m) - )1
(m,n— m)-split S, —n—1 x(2m —3)1
m>2n>5




Definitions

A split network is a collection of splits of a set of leaves.

A split network diagram represents each split with a set of parallel
edges.

A circular split network, also known as a planar split network, is a
network whose diagram can be drawn on the plane without
crossing edges.

A network of compatible splits is one whose diagram is a tree.

A binary split network is one whose diagram has vertices of degree
three (or one, for the leaves) only.



Definitions.
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Definitions.




Definitions.
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More polytopes.

For any circular split network S, x(S) is a vector whose
ijj-component is the number of cycles consistent with that network
for which i and j are adjacent.

n
These vertices x(S) obey Zx,-j =2 forj=1,...,n
3
where k is the number of (non-leaf edge) bridges in the diagram.
(These are non-crossing diagonals in the multitriangulation).
Q
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Split network vectors.

o a9 o
2,1,1,1,1,2 1,4,1,2,1,4,2,1,2,2

| | @0,1,1,0,1)

4,2,1,0,1,2,1,0,1,2,0,2,4,0,4) (2,0,1,0,1,2,0,0,0,1,0,1,2,0,2)
Notes: Agrees with previous x(t). Gives STSP when there are no
bridges.



Split network vectors.
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2,1,1,1,1,2 1,4,1,2,1,4,2,1,2,2
;;>——€; 2 1,1,1,1,2) o © ( )
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(4,2,1,0,1,2,1,0,1,2,0,2,4,0,4) 2,0,1,0,1,2,0,0,0,1,0,1,2,0,2)

Notes: Agrees with previous x(t). Gives STSP when there are no
bridges.



A filtration of split networks.

Definition. Let BME(n, k) be the convex hull of the split network
vectors for the split networks having n leaves and k bridges.

Idea: a split network distance vector d (seen as a linear functional)
from a split network S (with edge lengths) and j > k bridges will
be simultaneously minimized at the vertices of BME(n, k) which
correspond to the split networks that S resolves.

S resolves S’ means that some splits of S’ are collapsed (the
parallel edges are assigned length zero) to achieve S.



A filtration of split networks.

Specifically: A tree metric d (as linear functional) is minimized
simultaneously at the vertices of the STSP(n) = BME(n, 0) which
correspond to the cycles with which d is compatible



A filtration of split networks.

S x(S) d-x(S)
2 4
<0,1,1,1,1,0) 36
3 1 <6,8,9,12,7,15> QO
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<1,0,1,1,0,1) 42

{1,1,0,0,1,1 36




Corollary

Every circular split network with k bridges corresponds to a face of
each BME(n, j) polytope for j < k.



A filtration of split networks.

Every circular split network with k bridges corresponds to a face of
each BME(n, ) polytope for j < k.
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is a vertex in BME(5,2):  (4,2,1,1,2,1,1,2,2,4)
and a face with 4 vertices in BME(5,1):

and a face with 4 vertices in BME(5,0):
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Thanks for day 2! New question tomorrow...

Question 1. Which split networks correspond to faces
(and especially facets)
of the Balanced Minimal Evolution polytope?
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Al. any set of compatible splits.

e

{;@?



Al. any set of compatible splits.
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x(H)=(2,2,2,2,4,1,1,1,1,4) x(H)=(24,1,1,2,2,2,1,1,4)




Al. Intersecting cherry splits




Al: Cyclic splits for n =5




Al: Four split networks.
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Al: Nearest Neighbor Interchange.
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Q2: Split faces; split facets.

Question 2. If we use branch and bound to optimize
on the region bounded by split faces of the BME polytope,

are we guaranteed to get a valid tree?
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Splitohedron.

S,

E 255 < (m— 1)2n 3
i< j, leaves 7,7 € Sy
m
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Theorem: the Splitohedron is a bounded polytope that is a
relaxation of the BME polytope.

Proof: The split-faces include the cherries where the inequality is
xjj < 273 and the caterpillar facets have the inequality x; > 1,
thus the resulting intersection of halfspaces is a bounded polytope
since it is inside the hypercube [1,2"*3](2).



Features

of the BME polytope P,

number | dim. vertices | facets facet inequalities number of number of
of of Py of P, of Py (classification) facets vertices
species in facet
3 0 1 0 - - -
7 2 3 3 Xop > 1 3 2
Xab + Xpe — Xac £ 2 3 2
5 5 15 52 Xab > 1 10 6
(caterpillar)
Xab + Xbe — Xac < 4 30 6
(intersecting-cherry)
Xab + Xbe + Xed + Xdf + X2 < 13 12 5
(cyclic ordering)
6 9 105 90262 Xap > 1 15 24
(caterpillar)
Xab + Xbe — Xac < 8 60 30
(intersecting-cherry)
Xab + Xbe + Xac < 16 10 9
(3.3)-split
n 5) —n| (2n—5) ? Xap > 1 (5) (n—2)!
(caterpillar)
Xab + Xpe — Xac <2773 | (5)(n—2) 2(2n — 7\
(intersecting-cherry)
Xab + Xpe + Xae < 2072 (3) 3(2n —9)!!
(m, 3)-split, m >3
Sor < (m-127 |27 = (3) | (2n—m) - )1
(m,n— m)-split S, —n—1 x(2m —3)1
m>2n>5




Splitohedron.

polytope > print $p->VERTICES;

11214241221
11241214221
11421124212
11124421212
11142412122
11412142122
12141222141
18/34/38/34/34/34/38/38/38/34/3
12114222411
14/34/38/38/38/38/34/34/38/34/3
14/38/34/38/38/38/34/34/34/38/3
14121121242
14211211224
18/34/34/38/34/38/34/38/38/34/3

12222114411
12222141141
14/38/38/34/38/34/38/34/34/38/3
14/38/38/34/34/38/38/34/38/34/3
14112112422
18/34/34/38/38/34/34/38/34/38/3
18/34/38/34/38/34/34/34/38/38/3
12222411114
18/38/34/34/34/38/34/34/38/38/3
18/38/34/34/34/34/38/38/34/38/3
12411222114
14/34/38/38/38/34/38/38/34/34/3
14/38/34/38/34/38/38/38/34/34/3



Splitohedron.

polytope > print $p->VERTICES;

18/34/38/34/34/34/38/38/38/34/3

14/34/38/38/38/38/34/34/38/34/3
14/38/34/38/38/38/34/34/34/38/3

18/34/34/38/34/38/34/38/38/34/3

14/38/38/34/38/34/38/34/34/38/3
14/38/38/34/34/38/38/34/38/34/3

18/34/34/38/38/34/34/38/34/38/3
18/34/38/34/38/34/34/34/38/38/3

18/38/34/34/34/38/34/34/38/38/3
18/38/34/34/34/34/38/38/34/38/3

14/34/38/38/38/34/38/38/34/34/3
14/38/34/38/34/38/38/38/34/34/3



BnB.




A2: So far so good!

e We tested up to n = 10, with and without noise.
e Results are completely accurate...
e We need to find a way to break it! MatLab code available: http:

//www.math.uakron.edu/ " sf34/class_home/research.htm


http://www.math.uakron.edu/~sf34/class_home/research.htm�
http://www.math.uakron.edu/~sf34/class_home/research.htm�

Or...

We might propose an extension of the BME polytope which is the
the convex hull of all vectors n(S) for binary split systems S on a
set of size n.

This new polytope has vertices corresponding to all the binary split
systems.

These binary split systems come in two varieties: the binary
phylogenetic trees and the split systems for which any split is
incompatible with at most one other split.



Next.
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Next.
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Thanks so much!



