Triangulating the Permutahedron.

Tom Brady Emanuele Delucchi Colum Watt

The Question

For an Artin group A(W) of finite type W we have a pair of K(A(W), 1)'s.

One is given by making identifications on the boundary of the type W permutahedron. (Salvetti K(A(W), 1))

The other is given by making identifications on the boundary of order complex of the type W NCP lattice. (NCP K(A(W), 1))

Since they have the same homotopy type there should be a homotopy equivalence between them. Is there a closed formula?

The Salvetti K(A(W), 1)

Consider the type W permutahedron P.

P is obtained by taking the convex hull in \mathbb{R}^n of the translates under *W* of a single point in the interior of some chamber.

The edges at each vertex are labelled by simple reflections.

Direct the edges from some chosen identity vertex e towards the longest element vertex w_0 .

Define an identification space P/\sim , where cells on the boundary with the same labels are identified.

The resulting cell complex satisfies $\pi_1(P/\sim) \cong A(W)$ and $\pi_k(P/\sim) \cong 0$ for k > 1.

Call P/\sim the Salvetti K(A(W), 1).

The Salvetti K(A(W), 1)

The NCP K(A(W), 1)

For $w \in W$, define |w| to be the total reflection length of w and define a partial order \leq on W by $w_1 \leq w_2$ if and only if $|w_2| = |w_1| + |w_1^{-1}w_2|$.

Fix a Coxeter element γ and define NCP(W), the lattice of type W non-crossing partitions to be the set of elements in $[e, \gamma]$ ordered by \leq . Define Q = |NCP(W)| to be the order complex of NCP(W).

As with the permutahedron, identify faces of ${\cal Q}$ with the same labels.

The resulting cell complex also satisfies $\pi_1(Q/\sim) \cong A(W)$ and $\pi_k(Q/\sim) \cong 0$ for k > 1.

Call Q/\sim the NCP K(A(W), 1).

NCP example, $W = \Sigma_4$

Here reflections are transpositions, |w| is transposition length, $\gamma = (1, 2, 3, 4)$ 4-cycle, $w \leq \gamma$ if and only if blocks of w do not cross and cyclic order in blocks is that induced by γ . Q has 16 3-cells corresponding to the 16 ways of factoring a 4-cycle as a product of 3 transpositions.

 $1:(1,2),\ 2:(3,4),\ 3:(1,3),\ 4:(2,3),\ 5:(1,4),\ 6:(2,4)$

Dihedral Sal to NCP map

Bruhat Intervals

Let v_0 be the chosen point in the interior of the fundamental (identity) chamber.

Definition: Declare a facet on the ordered subset $(w_0(v_0), w_1(v_0), \ldots, w_n(v_0))$ of \mathbb{R}^n if and only if (i) $l_S(w_i) = l_S(w_0) + i$ and (ii) $e < w_0^{-1} w_1 < \cdots < w_0^{-1} w_n$ is a maximal chain in the NCP lattice.

In particular, each $w_i^{-1}w_{i+1}$ is a reflection and $w_0^{-1}w_n = \gamma$.

Note: Thus $w_0 < w_1 < \cdots < w_n$ is a maximal chain in the Bruhat interval $[w_0, w_0\gamma]$.

Note: In general a collection of maximally independent subsets of a point set in \mathbb{R}^n (a) may not exhaust the convex hull and (b) may overlap in their interiors.

Permutahedron

Crash course on W-associahedron

W frrg of rank n acting on \mathbb{R}^n C fundamental domain for W action $\{\alpha_1, \ldots, \alpha_n\}$ inward unit normals to walls of C R_1, \ldots, R_n corresponding reflections $\gamma = R_1 R_2 \dots R_n$, a Coxeter element with order h Define roots $\rho_i = R_1 \dots R_{i-1} \alpha_i$, where $R_{n+i} := R_i$, $\alpha_{n+i} := \alpha_i$ Let $\{\beta_1, \ldots, \beta_n\}$ be dual basis to $\{\alpha_1, \ldots, \alpha_n\}$ Define $\mu_i = \mu(\rho_i) = R_1 \dots R_{i-1}\beta_i$, where $R_{n+i} := R_i$, $\beta_{n+i} := \beta_i$ Define $\mu A(X(\gamma))$ to be simplicial complex with vertex set

$$\mu_1, \mu_2, \ldots, \mu_{nh/2}, \mu_{nh/2+1}, \ldots, \mu_{nh/2+n}$$

and a simplex on $\{\mu(\tau_1), \ldots, \mu(\tau_k)\}$ provided

 $\rho_1 \leq \tau_1 < \tau_2 < \cdots < \tau_k \leq \rho_{nh/2+n} \text{ and } |R(\tau_1) \dots R(\tau_k)\gamma| = n-k.$

W-associahedron for icosahedral W

Proposition: Fix an element $w_0 \in W$ and positive roots $\theta_1, \ldots, \theta_n$ with $\gamma = R(\theta_1)R(\theta_2)\cdots R(\theta_n)$. Define the elements $w_j = w_0R(\theta_1)R(\theta_2)\cdots R(\theta_j)$ for $0 \le j \le n$. Then (w_0, w_1, \ldots, w_n) is a facet $\Leftrightarrow w_n^{-1}(v_0) \in \operatorname{cone}(\{-\mu(\theta_1), -\mu(\theta_2), \ldots, -\mu(\theta_n)\})$.

Proof: (\Rightarrow) The maximal chain condition implies $w_j^{-1}(v_0) \cdot \theta_j < 0$. Define the root τ_j by $\tau_j = R(\theta_n) \cdots R(\theta_{j+1})\theta_j$ for $1 \le j \le n$. $w_n^{-1}(v_0) = a_1\mu(\theta_1) + \cdots + a_n\mu(\theta_n), \exists !a_1, \ldots, a_n$.

$$D > w_j^{-1}(v_0) \cdot \theta_j$$

$$= w_n^{-1}(v_0) \cdot \tau_j$$

$$= [a_1\mu(\theta_1) + \dots + a_n\mu(\theta_n)] \cdot \tau_j$$

$$= a_j\mu(\theta_j) \cdot \tau_j \quad (by (*))$$

$$= a_j\mu(\theta_j) \cdot R(\theta_n) \dots R(\theta_{j+1})\theta_j$$

$$= a_j[R(\theta_{j+1}) \dots R(\theta_n)\mu(\theta_j)] \cdot \theta_j$$

$$= a_j\mu(\theta_j) \cdot \theta_j \quad (by (**))$$

$$= a_j$$