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Preface

This book is intended as an introduction to concrete methods for working with
associative structures of all sorts, most notably commutative associative alge-
bras, noncommutative associative algebras, and operads. The first two are very
well known; the third is an algebraic device that captures properties exhibited
by substitutions of operations with several arguments into one another (and
of course these compositions of operations are associative). In each of these
cases, an object is often presented by generators and relations: commutative
associative algebras are quotients of algebras of commutative polynomials,
noncommutative associative algebras are quotients of tensor algebras, where
elements are linear combinations of noncommutative monomials, or words,
and operads are quotients of free operads, where elements are combinations
of monomials shaped in the form of a tree.

Both testing hypotheses and proving theorems about polynomial expres-
sions of all those types often involves highly complex symbolic computations
which can never be completed in a reasonable time unless one approaches
them in an extremely structured way. The least one can do to that end is to
come up with a reasonable way to represent elements of the given quotient al-
gebra, that is to determine unique “normal forms” of such elements. A general
strategy for accomplishing that comes from a very powerful theoretical result
known as the diamond lemma of Newman [204]. Our goal in this book is to
present the solution to the problem of determining normal forms in a way that
all the individual building blocks of that solution are clearly identified; this
makes desired generalizations of the theory straightforward. We give complete
proofs of key facts, many detailed examples, a large array of exercises, mostly
coming from actual research questions, and references to further reading.

This book is a result of a collaboration of two people coming from two
very different backgrounds. The first author did his graduate studies in Lie
theory, and then developed a focus on computational methods for the study of
nonassociative structures, using methods involving linear algebra over large
integer matrices and the representation theory of the symmetric group. He
strongly prefers to explain even the most abstract concepts in the most con-
crete and algorithmic way, which, he believes, is the main way to truly under-
stand them. The second author encountered during his formative years many
instances where a high level of abstraction with minimum examples was a
commonplace and learned to find that style enjoyable and stimulating, so he
generally prefers to use computational methods mainly at the stage of forming

xiii
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conjectures and making educated guesses, and then replace them by abstract
reasoning at all other stages whenever possible. Together, the authors repre-
sent a team which is not afraid of either a computational challenge or abstract
reasoning; this combination is often useful when attacking a research problem.
Merging these approaches resulted in this book, which aims to demonstrate
both the theoretical value of the subject and the power of actual computations
involved. Whether the authors have succeeded at it is for the reader to decide.

Both authors have an extensive experience of teaching courses and doing
research on topics that are related, both directly and indirectly, to normal
forms, diamond lemmas, and their applications. The first author has taught
graduate courses in quantum groups, Lie algebras, computer algebra, and
lattice basis reduction, and a short course on algorithms for free associative
algebras. At present he is especially interested in applications of CoCoA (com-
putational commutative algebra) to the classification of operads. The second
author has taught courses on Gröbner bases on various occasions in all pos-
sible flavors: an undergraduate course, a masters course, and mini-courses at
research schools. He has been working on various questions of operads theory
for several years. The authors’ combined experience provided them with an
insight into how to convey the topics presented in the book in a way that
would be useful to researchers in both nonassociative algebra and the operad
theory; to those who prefer a theoretical approach, and to those whose main
interest is computation.

While writing this book, we had three particular books in mind as our
inspiration. The first book is the monograph Ideals, Varieties and Algorithms
by Cox, Little, and O’Shea [64], which convinced us that a large and very
complex subject could be made basically comprehensible at the undergraduate
level with enough focus on letting the readers “get their hands dirty” applying
general methods to particular examples. The second one is the survey Com-
binatorial and Asymptotic Methods in Algebra by Victor Ufnarovski [252], a
book that fundamentally shaped our view of the subject. The last inspiration
was the extraordinary monograph Algebraic Operads by Jean-Louis Loday and
Bruno Vallette [180], which became the standard and encyclopedic treatment
of the topic from the moment it appeared. It is fairly accurate to say that
the aim of this book is to create an accessible companion book to [180] which
would, in the spirit of [64], contain enough hands-on methods for working with
specific operads: making experiments, formulating conjectures, and, hopefully,
proving theorems, as well as, in the spirit of [252], include enough interesting
examples to stimulate the reader toward those experiments, conjectures, and
theorems.

The first author would like to thank first and foremost his wonderful par-
ents, who instilled in him from an early age a love for knowledge and a capacity
for hard work. Although they have both passed away, they remain a great in-
spiration. A number of primary and high school teachers let him proceed at his
own pace and thus permitted him to develop his own taste in mathematics at



Preface xv

a very early age. His most important mentor as an undergraduate and beyond
was Robert V. Moody, co-discoverer of Kac–Moody algebras and co-winner of
the Wigner Medal. The further contributions of his teachers and supervisors
in graduate school, and his early career mentors, have also been of inestimable
value. He has also been very fortunate to have had very talented graduate stu-
dents and postdoctoral fellows: Jiaxiong Hu, Stavros Stavrou, Hader Elgendy,
Marina Tvalavadze, Juana Sánchez Ortega, and Sara Madariaga.

The second author wishes to thank first and foremost his mother, who
has always encouraged him to be curious about anything and everything, and
to not give up no matter what. He also is eternally grateful to his teachers
from his undergraduate years in Moscow: Boris Feigin and Michael Finkel-
berg, who first introduced him to the captivating world of homotopical alge-
bra and Koszul duality, and Natalia Iyudu, Victor N. Latyshev, and Dmitri
Piontkovski, who taught him about the power of the diamond lemma and
Gröbner bases. During early stages of his development as an independent
researcher he also benefited a lot from the mentorship of Jean-Louis Loday
whose untimely death in 2012 marked the end of an era in operad theory. He
also learned important things related to the topics of this book from his collab-
orators James Griffin, Eric Hoffbeck, Anton Khoroshkin, and Bruno Vallette.
Finally, he would like to thank Ewan Dalby and Joshua Tobin who wrote
their B. Sc. theses under his supervision on subjects related to the topic of
this book and ended up teaching him something new about the subject, and
Stephen Lavelle who read some parts of the final draft of the book and made
a few very valuable comments.

Both authors thank the staff at CRC Press for their assistance: Robert
Ross, Kathryn Everett, Olivia Anderson, and Shashi Kumar.

The epigraph by Gian-Carlo Rota is from his dialogue with David Sharp
entitled “Mathematics, Philosophy, and Artificial Intelligence”, published in
Los Alamos Science, spring/summer 1985, pages 92–104. The epigraph by
Alan Alexander Milne is from “The House at Pooh Corner”, first published
by Methuen & Co. Ltd. (London) in 1928.

The artwork on the front cover of the book is original work of Matilda
Moreton (http://www.matildamoreton.com).

No doubt there remain some errors in the book, either typographical or
otherwise, for which the authors accept full responsibility. The authors would
be very happy to receive comments, suggestions, and corrections from readers,
by email at the addresses below.

Murray R. Bremner (bremner@math.usask.ca)
Vladimir Dotsenko (vdots@maths.tcd.ie)
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Introduction

Normal forms: a historical overview
One of the most common things to do in mathematics is solving equa-

tions. Since the introduction of the coordinate method for geometric problems
by Descartes, everyone knows that combining algebra and geometry leads to
mutual benefits: geometric problems may be approached in a uniform way
through solving algebraic equations, and algebraic equations may become eas-
ier to deal with if one tries to think in terms of geometric properties of solutions
to those equations. On the other hand, in the 20th century it became com-
mon to view geometric objects via algebras of functions on those objects. Once
this viewpoint is taken, it becomes absolutely crucial to be able to work with
algebras in an effective way. That does not necessarily have to mean using
computer algebra systems; a computation using pen and paper, or blackboard
and chalk, also needs to represent elements of algebras in a concrete way in
order to write them down, decide whether two elements are equal to each
other, etc. This naturally leads to hunting for “normal forms”, some canoni-
cal ways to represent elements. In this book, we mainly use that philosophy
to study algebraic objects that are somewhat more abstract than polynomial
equations that Descartes would have used: noncommutative algebras, twisted
associative algebras, and operads.

Since determining normal forms within some algebraic structure is such
a natural question to consider, one cannot really make decisive conclusions
on priority. Many mathematicians for over a century considered eliminating
leading terms of the ideal generated by given polynomials as a way to deter-
mine normal forms, and most of them remained blissfully unaware of each
other’s work until much later. For that reason, it is mere curiosity that made
us conduct our own little historical investigation and mention some of these
mathematicians here; we are not implying any completeness of our brief sur-
vey. (We also refer the reader to the surveys in [34, 36, 46, 85] which highlight
a range of different historical aspects.)

1
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Commutative Gröbner bases
The term “Gröbner bases” was coined by Buchberger [48, 49], whose su-

pervisor Gröbner posed to him in 1964 a question of finding a basis in the
quotient of the polynomial algebra by an ideal. At that stage, Gröbner him-
self had been making computations for particular cases of this problem for
many years, since at least 1939 [123], his inspiration coming from the 1927
paper by Macaulay [181]. However, similar ideas for determining normal forms
can be traced back to a 1900 paper by Gordan [116]. It is also worth men-
tioning papers by Gjunter from the 1910s [107, 108] published in Proceedings
of the Institute of Railway Engineers, which for that reason had remained un-
noticed for a long time until they were accidentally discovered in the list of
references of [109], see [216, 217]. For power series rings, these ideas are promi-
nent in works of Hironaka [134] and Grauert [120]. It is true, however, that
only Buchberger’s approach made the algorithmic side of the story receive due
attention.

Noncommutative Gröbner bases
At the same time, more general term rewriting aiming to compute normal

forms has been of interest to mathematicians for many decades as well. The
earliest general result that certainly belongs to the core of this research area
is a result of Newman [204] that he used to prove the Church–Rosser theorem
[59]; this result is conventionally known as the diamond lemma. Similar ideas
emerged in other research areas of mathematics and theoretical computer sci-
ence, for instance in the works of Evans [91], Prawitz [209], and Robinson
[220]; this culminated in the Knuth–Bendix completion procedure [150]. In
the early 1960s, a version of the diamond lemma for Lie algebras was proved
by Shirshov [232] (see also [233]), who used the term “composition”; indepen-
dently, Cohn emphasized the importance of the diamond lemma for studying
normal forms in algebras in his famous book [63, Th. III.9.3]. A version of
Shirshov’s Composition lemma for associative algebras was proved by Bokut’
[24], while the diamond lemma of Newman (and, importantly, Cohn’s view of
it) inspired the diamond lemma in the paper of Bergman [21]. It is also worth
mentioning the work of Priddy [210] who used normal forms in the noncom-
mutative case for some striking homological applications a few years before
[21, 24]; in the language that did not exist when Priddy published his result,
he in particular proved that an associative algebra with a quadratic Gröb-
ner basis is Koszul. Nowadays, noncommutative Gröbner bases are frequently
used by mathematicians doing research in many different areas of algebra.

Operads, their normal forms, and Gröbner bases
Operads give a language to discuss algebraic properties of operations with

several arguments. They were originally invented for purposes of topology,
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and remained a relatively isolated area of algebraic topology until the period
of “renaissance of operads” (in the words of Jean-Louis Loday [174]) in the
1990s, marked by a wide range of influential works in algebraic geometry and
mathematical physics demonstrating the relevance of operad theory for those
subjects [101, 102, 105, 154, 155, 156, 157, 158]. Since then, as more and
more research in operad theory was done, many ingenious methods tailored
specifically for dealing with individual operads emerged, but only few general
approaches have been made available. On the algebraic side, many researchers
studied operads under the name varieties of algebras, using the language of
identities and T-ideals going back to Specht [240]; we refer the reader to recent
monographs [103, 143] and references therein for some insight into the very
impressive results obtained using that language. For about a decade, the only
monograph in operad theory systematically reflecting the development of that
theory since the renaissance period has been [187], however, many aspects of
the theory have been clarified and extended during that decade, and at this
stage, we believe, the state-of-art exposition of the theory of algebraic operads
is given in [180]. As it is apparent from the title of our book, one of the aims
of our work is to augment the book [180], making some aspects of the operad
theory more concrete and amenable to experiments.

Elements of operads are conventionally represented by linear combinations
of trees, “tree polynomials”. In the past decade, a few papers discussing tree
polynomials appeared [80, 99, 212]; however, these papers deal with Gröbner
bases in nonassociative algebras, not allowing any kind of substitutions of op-
erations, and as such remain infinitely far from operadic applications. Until
2007, the only paper that briefly discussed normal forms in operads was [127];
that paper highlights some similarities and differences between operads and
associative algebras, but does not go as far as to develop a functioning theory
of normal forms. In 2007, the situation changed dramatically when Hoffbeck
released a preprint [135] proving an operadic version of Priddy’s theorem men-
tioned above. He introduced a monomial basis of the free operad, and a partial
ordering of that basis which was enough to prove what instantly became the
most general criterion in operadic Koszul duality. Once the second author of
this book saw the paper [135], he recalled the Gröbner basis reformulation of
Priddy’s theorem, and became convinced that there must be a theory of Gröb-
ner bases for operads of which Hoffbeck’s criterion is a shadow. After some
preliminary work, he teamed up with his former classmate Khoroshkin, which
resulted in releasing on the Christmas eve of 2008 the preprint [74] introducing
the notion of a shuffle operad and using that notion to establish a theory of
Gröbner bases for operads and prove the corresponding diamond lemma. (To
be historically fair, partitional composition [94, 141] of combinatorial species
admits an analogue for “ordered species” [20, Sec. 5.1], and it is merely coin-
cidental that no one previously considered the corresponding monoids, which
effectively are shuffle operads.) Later, methods of [74] were used in [78] to work
with algebras over arbitrary nonsymmetric operads. Generalizations of these
methods to algebraic structures where monomials are graphs that possibly
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have loops and are possibly disconnected, e.g., properads, PROPs, wheeled
operads, etc., are still unknown, and it is not quite clear if it is at all possible
to extend Gröbner-flavored methods to those structures.

Outline of the book
This book, roughly speaking, consists of two parts. In the first part, we

explain the general theory of Gröbner bases for operads, building it from
scratch in several accessible steps, from noncommutative associative algebras
to nonsymmetric operads to twisted associative algebras to general algebraic
operads. We believe that it is generally sensible from the pedagogical point of
view to highlight the core factors that make these theories work, and illustrate
those individual factors on examples that are much simpler than the simplest
examples for the most general version of the theory; a similar strategy is used
in [180]. Quite fortunately for the reader, in the case of operadic Gröbner bases
it is entirely possible: for each particular aspect of the theory, there is a way
to illustrate that very aspect without diving at the deep end straight away. In
particular, the way to deal with symmetries of operations that is crucial for
the operad theory is first illustrated on the example of twisted associative al-
gebras; those algebras have become more prominent recently, following recent
breakthroughs in representation stability [161, 225, 223, 224]. In the second
part, we show how more familiar Gröbner bases for commutative algebras can
be utilized for classification of operads. For that, we focus on the two simplest
instances going beyond classification questions where no theory is required.
All the way through, we discuss a wide range of examples and connections to
various topics in algebra; some of those examples may be the terminal stop
for a fraction of the readers who are mainly interested in noncommutative
associative algebras, or combinatorics of patterns in permutations and trees,
or computations in nonsymmetric operads. Because of this, we felt inclined to
include a detailed outline of the book, hoping that it would help the reader
who is interested in particular aspects of the topic with choosing chapters to
focus on, and to allow ourselves to be occasionally repetitive, both highlighting
similarities between different theories and helping the readers who are only
interested in certain aspects of the book to localize their reading.

In Chapter 1, we use examples of linear reductions in subspaces of vector
spaces and long division for polynomials in one variable to give some important
intuition for normal forms. This chapter is used in most of the subsequent
chapters, and we strongly recommend to the reader to browse through it,
since it in particular fixes some terminology used throughout the book.

In Chapter 2, we develop the theory of normal forms and Gröbner bases
for noncommutative associative algebras, and discuss its various applications.
This chapter may be viewed as an elaborate version of some of the sections
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of [252], told from the perspective that is easily generalizable to the setup of
algebraic operads later on. We want to emphasize that the theory for non-
commutative associative algebras bears many important similarities with the
more general theory for operads, while the possibly most famous instance of a
theory of Gröbner bases, that for commutative associative algebras, has many
features which are “too good to be true” in the general case. For that reason,
we do not discuss commutative Gröbner bases in the beginning, hoping to
avoid developing unnecessary false intuition.

In Chapter 3, we discuss normal forms and Gröbner bases for nonsymmet-
ric operads. In many ways, this is the next logical step in generalizing the
theory: technical issues arising from extra symmetries do not arise yet, while
the combinatorics of monomials changes (words are replaced by trees). We
use a definition of trees which we have not encountered in the literature in
that exact form; we believe that this definition is quite useful in the operadic
context, and that using it in the setup of nonsymmetric operads is optimal for
the reader to get used to it. We also explain how the theory developed in this
chapter leads to normal forms in algebras over nonsymmetric operads; this
was first established in the paper [78] focusing on higher Koszul duality for
associative algebras, and for that reason may have remained partly unnoticed.

In Chapter 4, we explain how the theory must be adapted to deal with
twisted associative algebras, that is graded algebras whose components are
equipped with symmetric group actions, and whose product is reasonably
equivariant with respect to those actions. This is the most elementary in-
stance where the idea of applying the forgetful functor between two monoidal
categories proves to be very useful. We define a “less symmetric” notion of a
shuffle algebra, explain how to develop a theory of Gröbner bases for shuffle
algebras, and how to associate to a twisted associative algebra A a shuffle
algebra Af which encodes basis elements of A in a faithful way but is much
easier to study. This chapter would be of particular interest to readers inter-
ested in applications of Gröbner methods in combinatorics and representation
theory.

In Chapter 5, we consolidate the methods of previous chapters to work with
algebraic operads in full generality. We explain how to adapt combinatorics of
trees to encode operations with symmetries, define a “less symmetric” notion
of a shuffle operad, develop a theory of Gröbner bases and normal forms for
shuffle operads, and associate to an algebraic operad O a shuffle operad Of
which encodes basis elements of O in a faithful way but is much easier to
study. This chapter would be of particular interest to readers who need hands-
on methods to work with symmetric operads, and is, in some sense, the main
focus of this book.

In Chapter 6, we explain how various aspects of the theory must be adapted
for the purposes of homological algebra, incorporating the “Koszul sign rule”
in all computations, and illustrate applications of Gröbner bases in a wide
range of applications. This chapter would be especially useful to those who
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would like to use operadic Gröbner bases for homotopical algebra, in particular
for the Koszul duality theory.

In Chapter 7, we recall some necessary background on Gröbner bases for
commutative algebras, which is then applied to the study of operads in the
last two chapters of the book. Since this theory has already been explained
extremely well from different points of view in many different textbooks, we
focus on presenting the results that we need, and on some results that are
usually not covered at length in the standard presentations. In particular, we
include a proof of Robbiano’s classification theorem on monomial orders, and
a historical survey of results on the complexity of computing Gröbner bases
(which to the surprise of many turned out to be EXPSPACE-complete). We
also include (in Appendix A) detailed Maple code for implementing Buch-
berger’s algorithm, which is built from the ground up, in the sense that it
does not rely on any of the standard Maple commands from the Groebner
package.

Chapter 8 discusses an important topic related to commutative Gröbner
bases which hides in the background in many applications but is not often
brought into the foreground: we mean using Gröbner basis to study linear al-
gebra over matrices whose entries belong to polynomial rings. As soon as the
number of variables becomes greater than one, the coefficient ring is no longer
a PID and this introduces a number of difficulties that can be used to moti-
vate many of the theoretical and computational developments in commutative
algebra in the last 100 years.

Chapters 9 and 10 apply the results of the previous two chapters in an ini-
tial attempt to classify nonsymmetric operads in two cases: one binary opera-
tion satisfying cubic relations, and one ternary operation satisfying quadratic
relations. The basic idea here is to consider parameterized families of oper-
ads defined by relations of a given arity, and then construct the consequences
of these relations in the next arity. The coefficients of the consequences are
polynomials in the original parameters, and this allows us to combine compu-
tational commutative algebra with Gröbner bases for nonsymmetric operads
to obtain information about the original families of operads. Thus, this chap-
ter blends several different methods discussed in this book for the purposes of
operad theory. An example of a similar blend applied to a problem involving
symmetric operads is our recent preprint [42].

Terminological and notational remarks
Our decision on terminology is a result of some tough choices. It is

quite common nowadays to refer to machinery that provides normal forms
in quotient algebras (for some algebraic structures, often nonassociative), as
“Gröbner–Shirshov bases”, and refer to the key result that makes those meth-
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ods constructive as the “Composition–Diamond lemma”. After a careful de-
liberation, we chose to use the terms “Gröbner bases” and “diamond lemma”
throughout this book. This, of course, should not by any means suggest that
Shirshov’s influence on the subject area should be neglected. (In recent years,
exploring applicability of Shirshov’s ideas to various nonassociative structures
led to interesting discoveries in an impressive range of cases; see, e.g., a very
incomplete list [23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 56] and references therein.)
In our humble opinion, the remarkable ideas of [232] are particularly notable
because their generality allows one to adapt them to nonassociative structures;
moreover, it appears that these ideas were coined specifically for the purpose
of advancing research of nonassociative algebras, while our exposition can
only accomplish the level of uniformity that we aim for by considering normal
forms for monoids in various monoidal categories. Besides our genuine belief
that using the words “diamond lemma” is a good way to emphasize the pio-
neering work of Newman, our preference is prompted by the fact that the word
“composition” in the context of monoids is unnecessarily ambiguous, since it
is used to refer to product is many natural examples of monoids, including
operads.

Finally, let us mention one rather unconventional notational decision. In
the last few chapters of the book we occasionally had to display large sparse
matrices, and using the standard symbol 0 for zero often makes it difficult
to recognize the pattern of the nonzero entries. In these cases we found it
convenient to follow the eastern Arabic custom of writing dot instead of zero
(that is, · instead of 0); we hope that a little experience will lead the reader
to appreciate the advantage of this convention.

Computer algebra systems
Over the years, commutative Gröbner bases have been implemented

in many different computer algebra systems, and it is hardly possible
to give a comprehensive survey of those within a short paragraph, so
we just mention some examples that we find interesting. Notable in-
stances of free software that can handle commutative Gröbner bases are
Axiom (http://www.axiom-developer.org), CoCoA (http://cocoa.dima.
unige.it), Macaulay (http://www.math.uiuc.edu/Macaulay2), and Singular
(http://www.singular.uni-kl.de). Needless to say, most respectable pro-
prietary software systems, e.g., Maple, Mathematica, and Magma, have imple-
mentations of commutative Gröbner bases inside them; those implementations
are used to solve systems of polynomial equations and as such are used by sci-
entists around the world in a most extensive way. Our particular choice of
Maple for commutative Gröbner basis computations is a historical accident
based on the fact that one of the authors is Canadian.
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The most powerful free computer algebra software for computing noncom-
mutative Gröbner bases that we are aware of is bergman (http://servus.
math.su.se/bergman/). Many proprietary software systems also have some
packages for computing noncommutative Gröbner bases. Notably, the expe-
rience of the second author suggests that the web interface http://magma.
maths.usyd.edu.au/calc/ for Magma which permits one (for free) to per-
form calculations that do not require more than two minutes, turned out to
be more efficient than any other system, free or proprietary.

The Haskell package for computing operadic Gröbner bases created by
M. Vejdemo Johansson [67, 68], who was mentored by the second author, is
particularly notable as a proof of concept: there was no focus on optimization,
and most Gröbner bases which that package can compute, the second author
can compute by hand in a comparable time. Currently, a new package for
computing operadic Gröbner bases, also written in Haskell, is being finished
by W. Heijltjes, also under the mentorship of the second author; once finished,
this package will be made available on the second author’s webpage http:
//www.maths.tcd.ie/~vdots.



Chapter 1
Normal Forms for Vectors and
Univariate Polynomials

In this chapter, we recall two very classical approaches to normal forms in quo-
tients, one relying on the celebrated Gaussian elimination method for solving
systems of linear equations, and the other based on the Euclidean algorithm
for computing the greatest common divisor of univariate polynomials. We
present them in a way that emphasizes some general ideas we are going to use
extensively in the rest of the book, and lay out some terminology and notation
which is used in many subsequent chapters. For both key results on normal
forms that we present in this chapter, we give two proofs, a theoretical one
which proves existence of something without a specific computational recipe,
and a constructive one which gives an algorithm one can use to achieve the
goal. Throughout the book, we aim to keep a certain balance between the
two approaches: theoretical applications are always our goal, but actual com-
putations sometimes end up being the key to them, and as such cannot be
dismissed. Knowing that something exists is always useful, but knowing how
to construct it may be even more useful.

1.1 Standard forms
In order to work with any kind of monomials and polynomials in practice,

some sort of convention on standard forms is needed: we regard polynomials as
vectors in a vector space that has a basis of monomials, and strictly speaking
we can only write down those vectors when some order of basis monomials is
imposed. Let us recall some basic terminology related to orders of sets.

1.1.1 Orders of sets
Definition 1.1.1.1 (Order on a set). A (partial) order on a setM is a binary
relation Ξ ⊂M ×M which is:

• irreflexive: (m,m) /∈ Ξ for all m ∈M ;

• asymmetric: for any m1,m2 ∈M , if (m1,m2) ∈ Ξ then (m2,m1) /∈ Ξ;

9
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• transitive: for any m1,m2,m3 ∈ M , if (m1,m2) ∈ Ξ and (m2,m3) ∈ Ξ,
then (m1,m3) ∈ Ξ.

Instead of writing (m1,m2) ∈ Ξ, we shall write m1 ≺Ξ m2, or even
m1 ≺ m2, if Ξ is clear from the context. We shall also write m1 � m2 iff
m2 ≺ m1. We shall describe the relation m1 ≺ m2 by saying that m1 is less
than m2 or precedes m2, and that m2 is greater than m1 or succeeds m1.

Definition 1.1.1.2 (Total order). An order Ξ is said to be a total order if
for all m1 6= m2 ∈M , we have either m1 ≺Ξ m2 or m1 �Ξ m2.

The most important type of total orders which we shall use throughout
the book is given by well-orders.

Definition 1.1.1.3 (Well-order). A total order on a set M is said to be a
well-order , or a Noetherian order, or a well-founded order, if each (nonempty)
subset S of M has a (unique) minimal element with respect to that order.

1.1.2 Monomials and polynomials
In the following chapters, we shall be working with various kinds of alge-

bras, operads, etc. In the first place, each such object is a vector space with
a basis of monomials, or sequence of vector spaces with distinguished bases.
We now fix some general terminology for monomials and polynomials of any
sort which we shall be using throughout the book.

Unless otherwise specified, F denotes an arbitrary field. Vector spaces we
work with are usually finite-dimensional or at least are direct sums of finite-
dimensional components, although the well-order assumption for the basis
removes the need for finite-dimensionality for theoretical results we establish.
(Of course, in the case of infinite-dimensional spaces, it is not realistic to talk
about the algorithmic side.)

Definition 1.1.2.1 (Terminology for monomials and polynomials). Suppose
that V is a vector space over F with a well-ordered basis {ei}i∈I.

While we do not assume V to possess any specific algebraic structure, in
practice we shall be only dealing with the cases where some algebraic structure
is present, and for that reason we introduce the following terminology:

• each basis element ei ∈ V is called a monomial, and each vector v ∈ V
is called a polynomial;

• for each polynomial
f =

∑
i∈I

ciei ∈ V,

we call the set {ei : ci 6= 0} the support of the polynomial f , and denote
it by supp(f);
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• for each nonzero polynomial f ,

– we call the maximal element of supp(f) the leading monomial of
f , and denote it by lm(f),

– we call the coefficient of lm(f) in f the leading coefficient of f , and
denote it by lc(f),

– we call the corresponding term lc(f) lm(f) of f the leading term
of f , and denote it by lt(f);

• we call a polynomial f ∈ V with lc(f) = 1 monic.

Using the notion of the leading monomial and the leading coefficient, we
can normalize polynomials that we encounter in computations.

Definition 1.1.2.2 (Standard form). The standard form of a nonzero poly-
nomial f ∈ V consists of f divided by lc(f) with the monomials in decreasing
order.

1.2 Normal forms
1.2.1 Normal forms of vectors

One of our main goals throughout this book is to develop (at least some-
what) constructive methods to work with the quotients of various types of
free algebras modulo their ideals. That goal will be achieved in several steps.
What we will discuss now is a first step toward that goal; it approaches this
problem within just basic linear algebra. For that, we shall mimic the row
reduction operations, not utilizing any algebra structure.

Definition 1.2.1.1 (Space of leading terms). Let S be a subset of V . We
shall consider the vector space

lt(S) := span(lm(f) : f 6= 0 ∈ S),

which we call the space of leading terms of S.
Note that the elements of lt(S) are all possible linear combinations of

leading terms, and not just leading terms alone.

We introduce the notion of linearly reduced elements and self-reduced sets,
which are abstract counterparts of row canonical forms (reduced row echelon
forms) of matrices.

Definition 1.2.1.2 (Linearly reduced elements). Let S be a subset of V . A
monomial ei is said to be linearly reduced with respect to S if ei /∈ lm(S); in
other words, if ei is not a leading monomial of an element of S. More generally,
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an element f ∈ V is said to be linearly reduced with respect to S, if its support
consists of basis monomials that are linearly reduced with respect to S.

A subset S ⊂ V is said to be linearly self-reduced if each element s ∈ S is
monic and linearly reduced with respect to S \ {s}.

Lemma 1.2.1.3. Let S be a subspace of V . Cosets of the monomials that are
linearly reduced with respect to S form a basis of the quotient V/S.

Proof. Let us first prove the spanning property. For that, it is enough to show
that the coset f + S of every element f ∈ V contains an element that is
linearly reduced with respect to S. Assume that is not true, and let us pick
a counterexample f with the smallest possible leading monomial. There are
two possibilities.

First, it is possible that ei = lm(f) ∈ lm(S), in which case we take some
s ∈ S for which ei = lm(s), and replace f by

f ′ = f − lc(f)
lc(s) s.

Note that f ′ + S = f + S, and f ′ = 0 or lm(f ′) ≺ lm(f); in either of
these cases, by our assumption, f ′ + S contains a linearly reduced element, a
contradiction.

Second, it is possible that m = lm(f) /∈ lm(S), in which case we consider
the element f ′ = f − lt(f). By our assumption, f ′ + S contains a linearly
reduced element g, so

f + S = lt(f) + f ′ + S

contains a linearly reduced element lt(f) + g, a contradiction.
It remains to prove linear independence. For that, note that if f 6= 0 ∈ S,

then lm(f) ∈ lm(S), so f is not linearly reduced with respect to S. Therefore,
the zero coset S does not contain nonzero linearly reduced elements.

In the language of undergraduate linear algebra, our viewpoint basically
translates to a well known result stating that once an ordered basis is chosen
for a vector space V , each subspace S corresponds to a unique matrix in
row canonical form (RCF), the columns of that RCF containing the pivots
correspond to the basis in the space of leading terms of S, and hence the
other columns correspond to the basis of the quotient V/S; see, for example,
[136] for a detailed discussion from this angle.

The result of Lemma 1.2.1.3 justifies the following definition.

Definition 1.2.1.4 (Normal forms). Let S be a subspace of V . We call mono-
mials that are linearly reduced with respect to S normal modulo S, and linear
combinations of normal monomials normal forms. For each f in V , we call
the unique element in the coset f + S that is reduced with respect to S the
normal form of f modulo S.
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If we know a self-reduced basis B of a subspace S, the normal forms are
precisely elements that are linearly reduced with respect to B, and that is
the smallest set of conditions one has to check. Moreover, from the proof of
Lemma 1.2.1.3 it is possible to infer an algorithm for computing the normal
form of a given element f , which we will now describe. For these reasons,
self-reduced bases are invaluable for working with normal forms.

Algorithm 1.2.1.5 (Normal form computation).

Input: A linearly self-reduced basis B of a subspace S of V , and an
element f ∈ V .

Output: The normal form of f modulo S.

• If f = 0, return f .

• If there exists b ∈ B for which lm(b) = lm(f), return the normal
form of f − lc(f)b.

• Otherwise, lm(f) is linearly reduced with respect to S, so let f̃ be
the normal form of f − lt(f); return lt(f) + f̃ .

Proposition 1.2.1.6. Every subspace S ⊂ V has a linearly self-reduced ba-
sis B.

Proof 1 (theoretical). In fact, we shall prove more: not only does such a basis
exist but it is unique.

Let us first prove uniqueness. If B is a linearly self-reduced basis of S,
then lm(S) = lm(B). Moreover, because B is linearly self-reduced, for each
ei ∈ lm(S) there exists exactly one element b ∈ B with lm(b) = ei; for such b
we have b = ei−h, where h is linearly reduced with respect to S. Finally, this
element h must be equal to the unique linearly reduced element in the coset
ei + S.

Let us now prove existence. As we just saw, the only feasible candidate
for B is the set of all elements ei − h, where ei ∈ lm(S), and h is the unique
linearly reduced element in the coset ei+S. This set B is linearly self-reduced
by construction, and hence is linearly independent. Suppose that S 6= span(B);
take an element s ∈ S \ span(B) with the smallest possible leading monomial.
Since s ∈ S, we have lm(s) − h ∈ B for some h with lm(h) ≺ lm(s), so
the element s− lc(s)(lm(s)− h), which belongs to the same coset but has a
smaller leading monomial, is in span(B). In that case we have s ∈ span(B),
which is a contradiction.

Proof 2 (constructive). From a constructive point of view, it only makes sense
to talk about a subspace if it is actually defined in an effective way; an effective
way to define a subspace is via a basis s1, . . . , sm.
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Recall that the row canonical form of a matrix A, is a matrix R obtained
from A by elementary row operations for which the first nonzero entry of each
nonzero row of R is equal to 1 (this entry is called the pivot of that row), the
positions of the pivots increase with the increase in the row number, and all
entries in each column containing a pivot are equal to zero.

The following algorithm for computing canonical forms of matrices is well-
known. (This algorithm is recursive in the number of rows of the matrix.)

Algorithm 1.2.1.7 (Row canonical form computation).

Input: A m× n-matrix A = [aik]1≤i≤m,1≤k≤n.

Output: The row canonical form of A.

• Find the smallest k for which aik 6= 0 for at least one i, that is, the
kth column of the matrix A has a nonzero entry. Pick one such i, and
swap the first row of A with the ith one.

• Divide row 1 by a1k.

• If m = 1, return A.

• Else, if m > 1

– For each j = 2, . . . ,m, subtract from row j the first row multi-
plied by ajk.

– Compute the row canonical form of the matrix consisting of the
last m− 1 rows.

– For each j = 2, . . . ,m, if s is the smallest number for which
ajs 6= 0 (in which case ajs = 1 is a pivot), subtract from row 1
row j multiplied by a1s.

To compute a linearly self-reduced basis of S, one should put the coordi-
nates of s1, . . . , sm in rows of a matrix, and compute the row canonical form
of that matrix. For the set B, one may take the set of polynomials whose co-
ordinates are the nonzero rows of the row canonical form. (They are linearly
independent, which is clear from looking at pivotal coordinates, and they span
the same subspace as s1, . . . , sm, since all the operations we performed are in-
vertible.)

Methods that we recalled in this section lead to normal forms in quotients
of an arbitrary vector space with a well-ordered basis. For instance, our results
lead to a strategy for working with the quotients T (X)/I of free associative
algebras: one should just regard I as a subspace, find its space of leading
terms, and apply basic linear algebra to determine normal forms. However,
that strategy has serious deficiencies: on the one hand, we have to work with
the whole ideal I, a very large (most certainly infinite-dimensional) space; on
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the other hand, it makes no use of the multiplicative structure of an ideal at
all. In the next section, we demonstrate, on the toy model of polynomials in
one variable, how one can use the algebra structure to simplify this approach.
This will be greatly generalized in the following chapters, where for the general
case we shall consider a special class of total orders, and a better notion of
reducibility.

1.2.2 Normal forms of univariate polynomials
A very important feature of the ring F[x] of univariate polynomials with

coefficients in a field is that it is a Euclidean domain: for every two polynomials
f(x) and g(x) 6= 0, we can divide f(x) by g(x) with remainder, that is there
exist polynomials q(x), the quotient, and r(x), the remainder, for which

f(x) = q(x)g(x) + r(x),

and either r(x) = 0 or deg(r(x)) < deg(g(x)). This property is behind most
nice properties of F[x].

The following result about ideals in F[x] is well known; we shall present
here two different proofs that resonate well with the two recurring approaches
from the subsequent chapters.
Theorem 1.2.2.1. Every ideal I ⊂ F[x] is a principal ideal, that is the ideal
of multiples of some polynomial d(x).

Proof 1 (theoretical). The ring of polynomials is an F-vector space with a
basis {xn}n≥0; this basis is assumed to have the standard well-order

1 ≺ x ≺ x2 ≺ . . . ≺ xn ≺ . . .

Let us apply our methods of the previous section, and consider lt(I), the
space of leading terms of I.

First, we note that if xn is the leading monomial of some f ∈ I, then xn+k

is the leading monomial of xkf ∈ I, so the space of leading terms is spanned
by xn for n ≥ p for some (uniquely determined) integer p.

Next, it is clear that there is a unique monic polynomial d(x) ∈ I of
degree p, for otherwise, if there were two different ones, d1(x) and d2(x), we
would have d1(x)− d2(x) ∈ I of smaller degree, which is a contradiction with
the definition of p as the lowest degree of a monomial from lt(I).

Finally, every element f(x) ∈ I must be divisible by d(x): otherwise the
remainder r(x) from division of f(x) by d(x) would be a nonzero polynomial of
degree smaller than d(x) which belongs to I (since r(x) = f(x)−q(x)d(x)).
Proof 2 (constructive). From a constructive point of view, it only makes sense
to talk about an ideal if it is actually defined in an effective way; an effective
way to define an ideal I is to give its generators f1(x), . . . , fm(x) so that
every element of I is equal to a combination c1(x)f1(x) + · · ·+ cm(x)fm(x).

Recall the following algorithm for computing greatest common divisors.
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Algorithm 1.2.2.2 (Euclidean algorithm).

Input: Two monic polynomials f1(x), f2(x) ∈ F[x].

Output: A monic polynomial h(x) ∈ F[x] which is the greatest com-
mon divisor of f1(x) and f2(x).

• If f1(x) is divisible by f2(x), f1(x) = f2(x)q(x) for some polynomial
q(x), return h(x) = f2(x).

• If f1(x) is not divisible by f2(x), write f1(x) = f2(x)q(x) + r(x) with
deg(r(x)) < deg(f2(x)).

• Set f1(x) ← f2(x) and f2(x) ← 1
lc(r(x))r(x), and perform the Eu-

clidean algorithm on these f1(x) and f2(x).

To prove our result, we just need to go through the following loop, computing
as a result the greatest common divisor of f1, . . . , fm:
For j from m down to 2 do:

• Perform the Euclidean algorithm on fj−1(x) and fj(x); let dj(x) be the
result.

• Set fj−1(x)← dj(x).

Once it is completed, the resulting value of f1(x) generates the ideal I. To see
that, let us note that the Euclidean algorithm can be modified to include a
proof that h(x) belongs to the ideal generated by f1(x) and f2(x) by comput-
ing a representation

h(x) = a1(x)f1(x) + a2(x)f2(x)

for some polynomials a1(x), a2(x). It is enough to ensure that we compute
such representations for the polynomials f1(x) and f2(x) that we deal with
at each step of the algorithm. That can be easily accomplished by setting
a11(x) ← 1, a12(x) ← 0, a21(x) ← 0, a22(x) ← 1, and putting in the end of
each iteration

a11(x)← a21(x),
a12(x)← a22(x),

a21(x)← 1
lc(r(x)) (a11(x)− q(x)a21(x)),

a22(x)← 1
lc(r(x)) (a12(x)− q(x)a22(x)).

Therefore, the result of completion of the loop above, the greatest common
divisor of the polynomials f1(x), . . . , fm(x), belongs to the ideal I, and hence
generates it. This completes the proof. .



Chapter 2
Noncommutative Associative
Algebras

The theory of commutative Gröbner bases is well known and properly docu-
mented in many textbooks, however it exhibits too many lucky coincidences
to be fully generalizable to more complex algebraic structures. The goal of this
chapter is to present the similar theory of noncommutative Gröbner bases in
a way that is amenable to adaptations for other algebraic structures discussed
in this book; as the reader will see later, in many ways, noncommutative Gröb-
ner bases are closer to Gröbner bases for operads than to Gröbner bases for
commutative associative algebras.

2.1 Introduction
In the classical case of commutative algebras which we review in Chap-

ter 7, Gröbner bases solve a very important practical problem: they provide
an algorithm for solving systems of polynomial equations, which makes them
a technical tool of utmost importance in various research areas, both in pure
and applied mathematics.

However, as we hinted in the previous chapter, there is another viewpoint
one can take which makes Gröbner bases particularly useful for a mathemati-
cian, and also amenable to meaningful generalizations. This viewpoint is that
knowing a Gröbner basis G for an ideal I of a polynomial algebra R allows
one to work with elements of R/I in an efficient and algorithmic way: the
cosets of the monomials that are reduced with respect to G form a basis of
R/I, and computing, for all pairs of two reduced monomials g1 and g2, the
reduced form of the product g1g2 modulo G provides the multiplication table
for this basis. In this chapter, this approach is implemented for noncommuta-
tive polynomials. Of course, when developing such theory, one must have in
mind some goal one wants to achieve beyond merely generalizing the existing
theory for commutative algebras. In this introductory part, we outline some
reasons that we find convincing.

17
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2.1.1 Noncommutative polynomial equations
If one wishes to keep the viewpoint of solving polynomial equations, then,

as the polynomials are now noncommutative, a natural thing to do is to at-
tempt to solve them in matrices of some size (rather than numbers). Classifi-
cation of solutions in this sense is the main focus of representation theory of
associative algebras. There are many natural examples of associative algebras
presented by generators and relations, of which we mention a few below. In
fact, it is fair to say that most natural known examples of noncommutative
algebras are algebras presented by generators and relations. Therefore, it is
most beneficial to develop methods for studying such algebras in a way that
at least would allow us to find a basis and the multiplication table of such an
algebra.

Definition 2.1.1.1 (Lie algebra). A Lie algebra is a vector space L with a
bilinear operation a1, a2 7→ [a1, a2] that is anticommutative and satisfies the
Jacobi identity, so that for all a1, a2, a3 ∈ L, we have

[a1, a2] = −[a2, a1],
[[a1, a2], a3] + [[a2, a3], a1] + [[a3, a1], a2] = 0.

This identity is satisfied in many meaningful examples, e.g., the opera-
tion [a, b] = ab − ba in every associative algebra or the bracket [ξ, η] of two
vector fields on a manifold. The original motivation of Lie himself was that
Lie algebras arise as infinitesimal symmetries of differential equations, and so
they can be used to develop an analogue of Galois theory that would control
solvability of differential equations by one or more integrations (“solvability
in quadratures”), similarly as Galois theory for symmetries of algebraic equa-
tions controls solvability in radicals. Classifying representations of Lie algebras
corresponds to classifying different types of symmetries that an action of that
Lie algebra may exhibit. It turns out that for each Lie algebra L, there exists
an associative algebra with the same representations.

Definition 2.1.1.2 (Universal enveloping algebra). Let L be a Lie algebra.
The universal enveloping algebra of L is the associative algebra U(L) presented
by generators and relations (that is, as a quotient of the tensor algebra T (L)
by a certain ideal) as follows:

U(L) = T (L)/(xy − yx− [x, y] : x, y ∈ L).

The Lie algebra U(L)− is the vector space U(L) equipped with the operation
[a, b] = ab− ba. (This operation makes every associative algebra into a Lie al-
gebra.) The canonical map α : L→ U(L) is the composition of the embedding
L ↪→ T (L) and the canonical projection T (L) � U(L).

Another natural example of algebras presented by generators and rela-
tions are various “quantum” algebras; informally, those are algebras over the
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field F(q) which, after setting q = 1, specialize to various familiar algebras,
for example, algebras of functions on various algebraic varieties. Let us give
two simple instances of quantum algebras to clarify what we mean.

Example 2.1.1.3. The quantum plane, or, more precisely, the algebra of
functions on the quantum plane, is the F(q)-algebra with two generators x1, x2,
and one defining relation x2x1 = qx1x2. Note that setting q = 1 does indeed
make this relation into x2x1 = x1x2, and the algebra into the algebra of poly-
nomials, that is the algebra of (polynomial) functions on the two-dimensional
plane.

Example 2.1.1.4. The quantized algebra of functions on 2 × 2-matrices is
the F(q)-algebra with four generators x11, x12, x21, x22, and defining relations

x12x11 = qx11x12, x22x12 = qx12x22,

x21x11 = qx11x21, x22x21 = qx21x22,

x11x22 − x22x11 = (q−1 − q)x12x21, x12x21 = x21x12.

Note that setting q = 1 does make these relations into the usual relations say-
ing that all these variables commute with each other. This algebra contains
an important element x22x11 − qx12x21 called the quantum determinant. Im-
posing an extra relation x22x11− qx12x21− 1 defines the quantized algebra of
functions on the group SL2; see [55] for more details.

Further examples of naturally arising algebras presented by generators
and relations include quantum enveloping algebras [90], rational Cherednik
algebras, symplectic reflection algebras and double affine Hecke algebras [57,
117, 118], Calabi–Yau algebras [104], etc.

2.1.2 Noncommutative algebras and Koszul duality
There are several instances when viewing a commutative algebra as a par-

ticular case of a noncommutative algebra is very beneficial. A celebrated ex-
ample of applying this viewpoint is viewing the algebra of polynomials in
several variables in the larger universe of noncommutative algebras allows one
to relate it to the Grassmann algebra by means of the so-called Koszul duality.

Definition 2.1.2.1 (Koszul duality). Let A = T (V )/(R) be an associative al-
gebra for which the space of relations R is a subspace of V ⊗V , in other words,
a quadratic algebra. The Koszul dual algebra A! is the quotient T (V ∗)/(R⊥),
where R⊥ is the annihilator of R under the natural pairing between V ∗ ⊗ V ∗
and V ⊗ V . The algebras A and A! are graded,

A =
⊕
n≥0

An, A! =
⊕
n≥0

A!
n

The Koszul complex of A is the graded vector space K•(A) with components

Kn(A) = (A!
n)∗ ⊗A.
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This space is equipped with the boundary map d, which is the composite of
the inclusion ın : (A!

n)∗ ↪→ V ⊗n with the map

κ : V ⊗n ⊗A→ V ⊗(n−1) ⊗A

defined by the formula κ(v1 ⊗ · · · ⊗ vn ⊗ a) = v1 ⊗ · · · ⊗ vn−1 ⊗ (vna), where
in the product vna we regard vn as an element of A under the map

V → T (V ) � T (V )/(R) = A.

The map d makesK•(A) a chain complex. The algebra A is said to be a Koszul
algebra if the inclusion F→ K•(A), which sends 1 ∈ F to 1∨ ⊗ 1 ∈ (A!

0)∗ ⊗A,
induces an isomorphism on the homology.

Example 2.1.2.2. Suppose that A = S(V ), the quotient of T (V ) by the ideal
generated by the elements v1 ⊗ v2 − v2 ⊗ v1 (the symmetric algebra of V ).
Then A! is the quotient of T (V ∗) by the ideal generated by the elements
ξ1 ⊗ ξ2 + ξ2 ⊗ ξ1, also known as Λ(V ∗), the Grassmann algebra of V ∗. The
Koszul complex in this case is the linear dual of the polynomial de Rham
complex of V , and the homological condition of Definition 2.1.2.1 is satisfied
(Exercise 2.1), so the symmetric algebra is Koszul.

The previous example is at the core of the following theorem which is a
perfect illustration of how some property of commutative algebras may be
better understood in the noncommutative world.

Theorem 2.1.2.3 ([15, 22]).

(i) There is an equivalence of triangulated categories between the bounded
derived categories of complexes of graded finitely generated S(V )-
modules (that is, coherent sheaves on Pn) and the same for Λ(V ∗).

(ii) More generally, if A is Koszul, there is an equivalence of triangulated
categories between the bounded derived categories of complexes of graded
finitely generated modules for A and A!.

2.2 Free associative algebras
2.2.1 Monomials and polynomials
Definition 2.2.1.1 (Noncommutative monomials). Let X = {x1, . . . , xn} be
a set of indeterminates, or an alphabet. A noncommutative monomial, or a
word, in x1, . . . , xn is an expression xi1xi2 · · ·xik for all possible choices of
k ≥ 0 and 1 ≤ ip ≤ n. (If k = 0 then we have the empty word w = 1.) The
weight of a word w = xi1 · · ·xik , denoted wt(w), is equal to its length k. The
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product of words u and v is the word uv obtained by concatenation. The free
monoid generated by the set X is the set X∗ of all words in the alphabet X,
equipped with the concatenation product. The unit element of this monoid is
the empty word.

Remark 2.2.1.2. In the case of commutative algebras, it is conventional
to refer to weight as degree. We choose to avoid this in order not to clash
with [180]: associative algebras are particular cases of operads, where each
letter in a word is viewed as a unary operation, and the standard way to work
with operads forces the convention for associative algebras that we adopt.

Example 2.2.1.3. If X = {a} then X∗ = { ak | k ≥ 0 } consists of the non-
negative powers of a; we have aiaj = ai+j so X∗ is commutative. If |X| ≥ 2
then X∗ is noncommutative. If X = {a, b} then X∗ has 2k distinct words of
degree k for k ≥ 0.

Definition 2.2.1.4 (Noncommutative polynomials). Let X = {x1, . . . , xn}
be an alphabet. A noncommutative polynomial in x1, . . . , xn with coefficients
in F is a linear combination of noncommutative monomials. The support of a
noncommutative polynomial f , denoted supp(f), is the set of all noncom-
mutative monomials that appear in f with nonzero coefficients. The vec-
tor space FX∗ of all noncommutative polynomials has a binary operation
f, g 7→ fg, the product, that extends the concatenation product of words by
bilinearity, so for any polynomials f, g, h and for any scalar a ∈ F we have

f(g + h) = fg + fh, (f + g)h = fh+ gh, (af)g = a(fg) = f(ag). (2.1)

The vector space FX∗ equipped with the product operation is the free associa-
tive algebra generated by X. It is often denoted by F〈x1, . . . , xn〉, or by F〈X〉.
We will mainly use the notation T (X), or T (V ), where V = span(x1, . . . , xn),
viewing each word xi1 · · ·xin as shorthand notation for xi1⊗· · ·⊗xin ∈ Tn(V ),
called a decomposable tensor (or tensor of rank 1 or simple tensor).

In this chapter, we consider noncommutative monomials and polynomials,
so we will often drop the word “noncommutative”, hoping that it does not
lead to confusion.

2.2.2 Presentation by generators and relations
Let us formalize the intuitive notion of a presentation of an algebra by

generators and relations that we used throughout Section 2.1. Suppose that
an algebra A is generated by finitely many elements a1, . . . , an. In that case,
there is a surjective homomorphism from T (x1, . . . , xn) onto A sending xi to ai
which is uniquely defined by the universal property of the tensor algebra. By
First Homomorphism Theorem, that homomorphism is the canonical map
onto the quotient of T (x1, . . . , xn) by some ideal I. Therefore, working with
finitely generated algebras is essentially equivalent to working with ideals in
free associative algebras.
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Let A be an associative algebra, and suppose that S ⊂ A. Recall that the
ideal of A generated by S, conventionally denoted by (S), is the smallest (by
inclusion) ideal of A that contains S as a subset. Explicitly, the ideal (S) is
the linear span of all elements r1sr2 for all r1, r2 ∈ A, s ∈ S.

Definition 2.2.2.1 (Presentation by generators and relations). Suppose that
the algebra A is a quotient of the free algebra T (X) by some ideal I, and that
the ideal I is generated by the set S. In this case, we will say that the algebra
A is presented by generators X and relations S.

This way, working with finitely generated algebras can be approached
through their presentations by generators and relations. Our goal in the next
few sections is to explain how to convert a given presentation into another one
which is easy to use for computing normal forms.

2.3 Normal forms
2.3.1 Monomial orders

If we aim to involve the multiplicative structure in computing normal
forms, a very natural step to begin with is to consider well-orders that are
compatible with that multiplicative structure.

Definition 2.3.1.1 (Monomial order). A total order Ξ of X∗ is said to be a
monomial order if the following two conditions are satisfied:

• Ξ is a well-order;

• the product of monomials is a strictly increasing function in each of its
arguments; that is,

m1m2 ≺ m′1m2 if m1 ≺ m′1, m1m2 ≺ m1m
′
2 if m2 ≺ m′2.

Unless otherwise specified, all definitions and theoretical results presented
throughout this chapter are valid for an arbitrary monomial order Ξ.

The main property of leading monomials is given by the following result.

Proposition 2.3.1.2. For any two nonzero elements f1, f2 ∈ T (X), we have

lm(f1f2) = lm(f1) lm(f2).

Proof. Since the product on T (X) is multilinear, the element f1f2 is equal
to a linear combination of elements m1m2, where mp ∈ supp(fp). It remains
to notice that for each mp 6= lm(fp) we have mp ≺ lm(fp), so the defin-
ing property of monomial orders implies that m1m2 ≺ lm(f1) lm(f2), unless
m1 = lm(f1), m2 = lm(f2).
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Let us give an example of a monomial order which is similar to the glex
order on commutative monomials.

Definition 2.3.1.3 (Graded lexicographic order). Let us fix a total order Ξ
of the alphabet X. It induces an order on X∗, called the graded lexicographic
order , or glex, as follows. If m,m′ ∈ X∗ then m ≺ m′ if and only if

(i) either wt(m) < wt(m′),

(ii) or wt(m) = wt(m′), and m = m̄xim1 and m′ = m̄xjm
′
1 for some

m̄,m1,m
′
1 ∈ X∗ and xi, xj ∈ X with xi ≺ xj .

Condition (ii) says that if two monomials have the same weight, in order to
compare them we compare the first (leftmost) letters where they differ.

Remark 2.3.1.4. There are two important warnings that we would like to
make at this stage. First, though the same notation glex is commonly used
for the order we just described, it is important to emphasize that in the com-
mutative case, lex in glex stands for the lexicographic order of the exponent
sequences of the letters, and in the noncommutative case it stands for the
(more logical) lexicographic order of words. Second, the pure lexicographic
order of words is not a monomial order at all: the sequence of words

ab � aab � aaab � . . .

shows that the dictionary order is not a well-order, and moreover, the very
first pair of words in this sequence shows that the product is not an increasing
function, as a ≺ aa, but ab � aab.

(Both authors have to confess that on some occasions they have made the
mistake of believing that the concatenation product is an increasing function
for the lexicographic order, and so they believe that it is their professional
duty to prevent others from committing the same error.)

Example 2.3.1.5. For X = {a, b} with a ≺ b, the nonempty words in X∗ of
weight ≤ 3 are:

a ≺ b ≺ a2 ≺ ab ≺ ba ≺ b2 ≺ a3 ≺ a2b ≺ aba ≺ ab2 ≺ ba2 ≺ bab ≺ b2a ≺ b3.

Proposition 2.3.1.6. The order glex is a monomial order.

Proof. Exercise 2.2.

The available literature on noncommutative monomial orders mainly deals
with questions of what ordinal types can appear rather than classifying the
orders, and seems to have more precise statements for two generators only
[61, 189, 190, 191, 206, 228]. We used these references in further examples
that we give below. An interesting discussion of the multitude of orders for
three generators arises naturally when exploring possible reduced Gröbner
bases for the commutator ideal (ab− ba, bc− cb, ca− ac) ⊂ T (a, b, c); see, e.g,



24 Algebraic Operads: An Algorithmic Companion

[131, 132]. It is not unexpected for the commutator ideal to play a key role:
after all, in the commutative case all orders can be classified, as we will see in
Chapter 7, and the commutator ideal measures the discrepancy between the
commutative and the noncommutative case.

Example 2.3.1.7. The order glex can be modified in a way that differ-
ent variable haves different weights. Let us give an example of how this can
be done for T (a, b). Let λ ∈ R>0, and denote by wta(m) and wtb(m) the
number of occurrences of a and b, respectively, in the monomial m. For any
m,m′ ∈ {a, b}∗ we define m ≺λ m′ if

• wta(m) + λwtb(m) < wta(m′) + λwtb(m′), or

• wta(m) + λwtb(m) = wta(m′) + λwtb(m′), and m′ = mm′′ for some
m′′, or

• wta(m) + λwtb(m) = wta(m′) + λwtb(m′), and for the first position
where m and m′ differ, there is the letter a in the monomial m.

For example, one can easily check that

ba2 ≺2 a2ba ≺2 a4b ≺2 a3ba.

Example 2.3.1.8. There is a class of monomial orders for T (a, b) called
matrix orders, defined as follows. Let m ∈ {a, b}∗ with wtb(m) = k. Then
m can be written as m = an0ban1 · · · bank , with nonnegative exponents ni,
in which case we put ρ(m) = (n0, n1, . . . , nk) ∈ Zk+1

≥0 . For each λ ∈ R>0, we
define the matrix

Ωk =


1 λ λ2 . . . λk−1 λk

0 1 λ . . . λk−2 λk−1

...
...

...
. . .

...
...

0 0 0 . . . 1 λ
0 0 0 . . . 0 1

 .

Let m,m′ ∈ {a, b}∗. We define m ≺λ m′ if

• wtb(m) < wtb(m′), or

• wtb(m) = wtb(m′) = k, and the first nonzero entry of Ωk(ρ(m′)−ρ(m))T
is positive.

For instance, we have

ρ(a3ba) = (3, 1), ρ(ba2) = (0, 2), ρ(a2ba) = (2, 1), ρ(a4b) = (4, 0),

and a small computation demonstrates that for λ = 2 we have

a4b ≺2 a2ba ≺2 ba2 ≺2 a3ba.
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Example 2.3.1.9. The following example of a monomial order on T (a, b) is
a modification of an order frequently used for term rewriting [191]. For all
m,m′ ∈ {a, b}∗, we define m ≺L m′ if

• wtb(m) < wtb(m′), or

• wtb(m) = wtb(m′) and m′ = mm′′ for some m′′ 6= 1, or

• wtb(m) = wtb(m′) and for the first (leftmost) position where m and m′
differ, the letter in the monomial m is b.

For example, one can easily check that

ba2 ≺L a2ba ≺L a3ba ≺L a4b.

2.3.2 Long division
We are now ready to approach normal forms using a direct generalization of

long division. That approach is more economic than merely viewing the given
ideal I as a subspace of T (X). To improve the notion of reduced elements, we
will utilize divisibility of monomials by one another in the free algebra. An
important factor that helps the algorithmic/computational side is that the
algebraic notion of divisibility of monomials which uses the existing algebra
structure is described in a very straightforward way combinatorially. As we
will see, this approach does not necessarily result in unique normal forms;
that last deficiency will be resolved in the next section using the notion of a
Gröbner basis.

Definition 2.3.2.1 (Divisibility of monomials). We say that the monomial
m is divisible by a monomial m′ if m contains m′ as a subword: precisely,
m = xi1 · · ·xir and m′ = xip · · ·xiq for 1 ≤ p ≤ q ≤ r (note that we exclude
the empty subword as a divisor).

We would like to emphasize that in what happens next it is important that
we consider not just a divisor, but the place where it occurs. For example, if
we consider the monomials m = aaaa and m′ = aa in T (a), then m′ is a
divisor of m, but moreover, it is a divisor of m “in three different ways”: there
are three subwords of m equal to m′, underlined in

aaaa, aaaa, aaaa.

Definition 2.3.2.2 (Reduced monomials and polynomials). Let S ⊂ T (X).
A monomial m is said to be reduced with respect to S if m /∈ (lm(S)); in other
words, if m is not divisible by any of the leading monomials of elements of S.

In general, a noncommutative polynomial f ∈ T (X) is said to be reduced
with respect to S, if it is equal to a linear combination of monomials which
are reduced with respect to S. A subset S ⊂ T (X) is said to be self-reduced
if each element s ∈ S is monic and reduced with respect to S \ {s}.
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The linear reductions that mimic row operations on vectors are now re-
placed by reductions that take into account divisibility of monomials.

Definition 2.3.2.3 (Reduction operator). Let f, g ∈ T (X) be two nonzero
elements. We say that f is reducible with respect to g if lm(f) is not reduced
with respect to {g}, or, in plain words, if the leading monomial of f is divisible
by the leading monomial of g, lm(f) = m1 lm(g)m2 for some m1,m2 ∈ X∗.
In that case, the reduction of f with respect to g, denoted by rg(f), is defined
by the formula

rg(f) = f − lc(f)
lc(g)m1gm2.

Remark 2.3.2.4. Our notation is not completely precise, since there may be
several divisors of lm(f) equal to lm(g), and hence several different reductions.
We implicitly incorporate a choice of one particular divisor (which will always
be clear from the context) in the definition of a reduction.

Lemma 2.3.2.5. For all elements f, g ∈ T (X) such that rg(f) is defined, we
have

rg(f) = 0 or lm(rg(f)) ≺ lm(f).

Proof. Indeed, by construction we have lt(f) = lt
(

lc(f)
lc(g)m1gm2

)
.

One can view a reduction as one step of a version of the long division
algorithm. We make it more precise as follows.

Algorithm 2.3.2.6 (Long division for noncommutative algebras).

Input: An element f ∈ T (X), and a finite subset S ⊂ T (X).

Output: An element f̃ , reduced with respect to S, for which
lt(f̃) � lt(f) such that f + (S) = f̃ + (S).

• If f = 0, return f .

• Replace S by its linear self-reduction.

• If D := {s ∈ S : lm(f) is divisible by lm(s)} 6= ∅, take s0 ∈ D
with the least leading monomial (s0 is unique since S is linearly self-
reduced), and return the result of long division of f ′ := rs(f) by S.

• Otherwise, lm(f) is reduced with respect to S, so let f̃ be the result
of long division of f ′ := f − lt(f) by S; return lt(f) + f̃ .

Note that this algorithm is deterministic only because we made the decision
of choosing s0 ∈ D with the least leading monomial. The following example
demonstrates that for other choices of s0, the result of long division could be
different.



Noncommutative Associative Algebras 27

Example 2.3.2.7. Let X = {a, b}, and let s1 = a2 − 1, s2 = ab − a, and
f = a2b. Then rs1(f) = b, and rs2(f) = a2. Therefore, if we order S = {s1, s2}
in a way that s1 < s2, then the long division terminates after just one reduc-
tion, and returns b. If we order S = {s1, s2} in a way that s1 > s2, then the
long division takes two reductions, and returns 1.

Lemma 2.3.2.8. For every f ∈ T (X), the long division algorithm terminates
in a finite number of steps. Its output is an element f̃ reduced with respect to
S, for which lt(f̃) � lt(f) and f + (S) = f̃ + (S).

Proof. By Lemma 2.3.2.5, the leading monomial of the dividend (the element
that the algorithm is applied to) decreases at each step, so termination follows
from the fact that Ξ is a well-order. This also proves the second claim about
the output. Suppose that for some f the output is not reduced. Let us pick
among such f an element with the smallest leading monomial (again using
the well-order Ξ). If lm(f) is not reduced with respect to S, then the first
step applies the same algorithm to f ′ = rs(f), and by Lemma 2.3.2.5 we have
f ′ = 0 or lm(f ′) ≺ lm(f), so the output of the long division is reduced.
If lm(f) is reduced, then the second step of the algorithm applies the same
algorithm to f ′ = f − lt(f), so f ′ = 0 or lm(f ′) ≺ lm(f), and the output of
the long division is reduced, a contradiction. Finally, note that each reduction
subtracts an element in (S), which justifies the claim about the coset, and
completes the proof.

Remark 2.3.2.9. We see that in fact there is nothing particularly problem-
atic if S is an infinite self-reduced set: it is clear from the proof of Lemma
2.3.2.8 that for the given f ∈ T (X) the elements s ∈ S which we use at various
steps of our computation have decreasing leading monomials, and so there can
be only finitely many reductions performed; that is, for each f we never use
more than a finite subset of S. While for purposes of implementation this is
not particularly important, it will be beneficial for theoretical results where
S may be infinite.

We will now establish that the set of elements that are reduced with respect
to I is a suitable candidate for the set of normal forms for the elements of the
quotient T (X)/I. This is an improvement of Lemma 1.2.1.3 which takes into
account the extra structures we have on the underlying vector spaces.

Lemma 2.3.2.10. Suppose that I is an ideal of T (X). Monomials that are
reduced with respect to I form a basis of the quotient T (X)/I.

Proof. Let us first prove the spanning property. For that, it is enough to show
that the coset f + I of every element f ∈ T (X) contains an element that
is reduced with respect to I. This is true, since we can take f̃ to be the
result of long division of f with respect to I, in which case f̃ is reduced, and
f̃ + I = f + I.

It remains to prove linear independence. For that, note that if f 6= 0 ∈ I,
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then lm(f) ∈ lm(I), so f is not even linearly reduced with respect to I, so I
does not contain nonzero reduced elements.

Similarities between the results that we proved using the long division al-
gorithm and those obtained using the constructive proof of Proposition 1.2.1.6
make one think that it is possible to use long division to compute, for each
set S, a self-reduced set S′ generating the same ideal so that the elements that
are reduced with respect to S′ are precisely normal forms modulo (S). Alas,
that is not true, as the following example demonstrates.

Example 2.3.2.11. Consider the self-reduced set S = {a2 − 1, ab− a} from
Example 2.3.2.7. Two different series of reductions with respect to S that
we computed in that example demonstrate that the ideal (S) contains the
element b− 1 which is reduced with respect to S.

Nevertheless, it is possible to use long division to find, for each finite set,
a finite self-reduced set that generates the same ideal.

Algorithm 2.3.2.12 (Self-reduction for noncommutative algebras).

Input: A finite subset S ⊂ T (X).

Output: A finite self-reduced subset S′ ⊂ T (X) with (S) = (S′).

• Replace S by its linear self-reduction.

• If S is self-reduced, return S.

• Let s be the element of S with the maximal leading monomial, and
compute the self-reduction S′ of S \ {s}.

• Compute s̃, the result of long division of s by S′.

• Compute the self-reduction of S′ ∪ {s̃}.

We leave it as an exercise (Exercise 2.3) for the reader to check that for
each finite S this algorithm terminates after finitely many steps (in which case
it of course outputs a finite self-reduced set).

2.3.3 Gröbner bases
As we saw in Example 2.3.2.7, in general, there are several different re-

duced forms one may obtain when doing reductions with respect to a set S;
however, there is a canonical form with respect to the ideal (S), namely the
corresponding normal form. In this section, we will explain how to fix this
discrepancy.

Proposition 2.3.3.1. Let I be an ideal of T (X). The space of leading terms
lt(I) is an ideal of T (X).
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Proof. By definition, lt(I) is a subspace, so we just have to show that the
product of two elements belongs to lt(I) whenever at least one of the elements
belongs to lt(I). Since the product is multilinear, it is enough to consider the
case that both elements are monomials m1 and m2, and one of them, say m1,
is the leading monomial of some element f1 of I. By Proposition 2.3.1.2, in
this case we have lm(f1m2) = m1m2, and therefore m1m2 ∈ lt(I).

We are now ready to define a Gröbner basis of an ideal.

Definition 2.3.3.2 (Gröbner basis). Let I be an ideal of T (X). We say that
a subset G ⊂ I is a Gröbner basis of I with respect to a given monomial
order Ξ if the set of leading monomials lm(G) := {lm(g) : g ∈ G} generates
the leading term ideal of the ideal I:

lt(I) = (lm(G)).

A Gröbner basis which is a self-reduced subset of T (X) is said to be reduced.

Remark 2.3.3.3. A Gröbner basis is not a basis for I as a vector space, but
rather a set of generators for I as a (two-sided) ideal in T (X).

Lemma 2.3.3.4. A Gröbner basis of an ideal I ⊂ T (X) generates I.

Proof. Suppose that G is a Gröbner basis of I, and that (G) is a proper subset
of I. (Clearly, (G) ⊂ I since (G) is the smallest ideal containing G.) Let us take
f ∈ I \ (G) with the least possible leading monomial. Since lm(f) ∈ lt(I),
there exists g ∈ G for which lm(f) is divisible by lm(g). Then rg(f) is defined
and belongs to I, and by Lemma 2.3.2.5, we have lm(rg(f)) ≺ lm(f), so
rg(f) ∈ (G) by minimality of f . But this implies f ∈ (G), since rg(f) is
obtained by subtracting an element of (G) from f , which is a contradiction.

Proposition 2.3.3.5. Let I be an ideal of T (X). A subset G ⊂ I is a Gröbner
basis if and only if the cosets of monomials that are reduced with respect to G
form a basis of the quotient T (X)/I.

Proof. Let us note that the cosets of monomials that are reduced with respect
to G form a basis of the quotient T (X)/I if and only if every coset modulo I
contains a unique element that is reduced with respect to G.

First of all, we remark that if f ∈ T (X), then f̃ , the result of the long
division of f by G, is reduced, and f̃ + (G) = f + (G) ⊂ f + I, so every coset
contains at least one reduced element whether G is a Gröbner basis or not.

Suppose now that G is a Gröbner basis of I. Suppose that the cosets of
reduced monomials are linearly dependent, or, in other words, that the zero
coset I contains a nonzero reduced element f . In that case, lm(f) ∈ lt(I) is
reduced with respect to G, which is a contradiction.

Suppose that G is not a Gröbner basis. This implies that there exists an
element f ∈ I for which lm(f) is reduced with respect to G. Let f̃ be the result
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of the long division of f by G. Clearly, f̃ is a nontrivial linear combination
of reduced monomials, so the cosets of reduced monomials are in this case
linearly dependent.

Corollary 2.3.3.6. Suppose that G is a Gröbner basis of the ideal I ⊂ T (X).
Then the result of long division of f ∈ T (X) by G does not depend on either
the choices or the order of the reductions performed.

Proof. Suppose that two different choices of order of reductions yield two
different results. In this case, the coset f + I contains two different elements
that are reduced with respect to G, hence reduced monomials are linearly
dependent, a contradiction.

We summarize Proposition 2.3.3.5 and its corollary as follows.

Theorem 2.3.3.7.

(i) Let I be an ideal of T (X). A subset G ⊂ I is a Gröbner basis if and only
if the normal forms modulo I are precisely the elements that are reduced
with respect to G.

(ii) Suppose that G is a Gröbner basis of the ideal I ⊂ T (X). Given an
element f ∈ I, its normal form modulo I can be computed using long
division by G. In fact, in this long division the reductions and their order
can be chosen arbitrarily.

Previously, we proved Proposition 1.2.1.6 which showed that the linear
span of a set S contains a unique linearly self-reduced basis S′. For ideals, it
is not enough to deal with self-reduced systems of generators: for example,
(a2− 1, ab− a) = (a2− 1, b− 1), see Examples 2.3.2.7, 2.3.2.11. The following
result shows that the right way to state that proposition to adapt it from
linear reductions to polynomial reductions is to use Gröbner bases.

Proposition 2.3.3.8. Each ideal I ⊂ T (X) has a unique reduced Gröbner
basis.

Proof. Let us first prove uniqueness. If G is a Gröbner basis, then
lt(I) = (lm(G)); if G, in addition, is reduced, then lm(G) ⊂ lm(I) must
coincide with the set M of all elements m ∈ lm(I) that are not divisible
by other elements of lm(I). (In other words, M is the set of minimal ele-
ments of lm(I) with respect to the partial order of divisibility.) Indeed, each
m ∈ M ⊂ lm(I) must be divisible by a leading term of an element g ∈ G,
and by definition of M , this can only happen if lm(g) = m, so M ⊂ lm(G).
Also, if g ∈ lm(G) \M , then lm(g) is divisible by m′ for some m′ ∈ lt(I) by
definition of M , and m′ is divisible by lt(g′) for some g′ ∈ G by definition
of a Gröbner basis, so since G is reduced, we have g = g′, and lm(g) = m, a
contradiction. Moreover, since G is reduced, then for each m ∈ M = lm(G)
there exists a unique element g ∈ G with lm(g) = m; for such g we have
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g = m− h, where h is reduced with respect to I. Finally, this element h must
be equal to the unique element in the coset m+I that is reduced with respect
to I.

Now we will prove existence. As we have just seen, the only feasible can-
didate for G is the set of all elements of the form m− h, where m ∈ M , and
h is the unique element in the coset m+ I that is reduced with respect to I.
This set G is self-reduced by construction. Note that every element of lm(I)
is divisible by some element m ∈ M ; indeed, the smallest element which is
not divisible by any element of M is either not divisible by any other element
of lm(I), and hence must be in M , or is divisible by some (smaller) element,
and hence has a divisor fromM ; either way we get a contradiction. Therefore,
lt(I) = (M) = (lm(G)), which shows that G is a Gröbner basis.

2.4 Computing Gröbner bases
In this section, we will explain how to compute Gröbner bases for ideals

of T (X). Unlike the commutative case, this does not necessarily lead to an
algorithm in the proper sense, since some ideals have infinite Gröbner bases.
However, we will be able to make the solution as algorithmic as possible.

2.4.1 Diamond lemma
If the generating set S of the ideal I in T (X) is not a Gröbner basis,

then we saw in the proof of Proposition 2.3.3.5 that the cosets of reduced
monomials are linearly dependent. Those linear dependencies, see Example
2.3.2.7, may arise as results of an “ambiguity”, where two different reductions
may be applied to an element f . This can be pictorially represented by the
diagram

f

�� ��
rg1(f) rg2(f)

In the case of a Gröbner basis, subsequent reductions of those two distinct
elements lead to the same reduced element NF(f), the normal form of f :

f

{{ ##
rg1(f)

��

rg2(f)

��
NF(f)
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This is a diamond-shaped diagram that gave the name to the corresponding
formalism. Informally, in order to extend S to a Gröbner basis, one must
look for ambiguities and, in case two different reductions lead to two different
reduced expressions of the same element, we adjoin the difference of those
reduced expressions to S (“resolve the ambiguity”), making the new set a
more plausible candidate for a Gröbner basis. In other words, “to compute
a Gröbner basis, one must ensure that all rewriting diagrams close up into
diamonds”.

Definition 2.4.1.1 (S-polynomial). Let g1, g2 ∈ T (X) be two monic polyno-
mials. Assume that for some monomials u1, u2, v which are all different from 1,
we have lm(g1) = u1v and lm(g2) = vu2. (This means that lm(g1) and lm(g2)
are not proper divisors of each other, and that a terminal segment of the former
is equal to an initial segment of the latter.) In this case we say that lm(g1) and
lm(g2) have an overlap v; we call the element lm(g1)u2 = u1vu2 = u1 lm(g2)
a small common multiple of lm(g1) and lm(g2). We call the element

Sv(g1, g2) := g1u2 − u1g2,

an S-polynomial of g1 and g2; the common leading term cancels, since both
g1 and g2 are monic. Note that S-polynomials depend not only on g1 and g2,
but on v as well, since in some cases there are several different small common
multiples; we chose the notation to reflect that.

Remark 2.4.1.2. The word “small” in “small common multiple” is a way
to emphasize that we only consider small common multiples where the occur-
rences of lm(g1) and lm(g2) do overlap. (Of course, there are other common
multiples, for instance, the product of those two monomials.)

Sometimes S-polynomials are called “compositions” in the literature, how-
ever, we believe that this term has too many unnecessary connotations to be
used here. Intuitively, an S-polynomial should be thought of as a “discrepancy
between two different ways to reduce a small common multiple”. Moreover, S-
polynomials represent linear dependences of relations, often called “syzygies”,
which is one way to motivate the choice of letter.

Example 2.4.1.3. Consider w1 = a2bcba and w2 = bacba2 in X∗ where
X = {a, b, c}:

• w1 has a self-overlap: w1 = u1v = vu2 for u1 = a2bcb, v = a, u2 = abcba.

• w1 and w2 overlap: w1 = u1v, w2 = vu2 for u1 = a2bc, v = ba, u2 = cba2.

• w2 and w1 have overlaps of length 1 and length 2:

� w2 = u2v, w1 = vu1 for u2 = bacba, v = a, u1 = abcba.
� w2 = u2v, w1 = vu1 for u2 = bacb, v = a2, u1 = bcba.

We will now prove the result which is at the core of most feasible ways to
check that some subset of an ideal is a Gröbner basis. To state it, we need a
definition.
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Definition 2.4.1.4 (Parameter of a representation of an element). Let
I = (G) be an ideal of T (X). Consider the representation of an element
f ∈ I as a two-sided linear combination of elements g1, . . . , gN ∈ G:

f =
N∑
i=1

aigibi. (2.2)

We will call max(lm(aigibi)) the parameter of such a linear combination.
If f = Sv(g1, g2) is the S-polynomial of g1, g2 ∈ G (with all the notation

as above in Definition 2.4.1.1), then it has an obvious representation

f = g1u2 − u1g2,

with parameter lm(g1)u2 = u1 lm(g2). We call a representation of that S-
polynomial nontrivial if its parameter is smaller than lm(g1)u2 = u1 lm(g2).

Theorem 2.4.1.5. Let G be a self-reduced set of elements of T (X), and let
I = (G). The following statements are equivalent:

(i) G is a Gröbner basis of I.

(ii) Every S-polynomial Sv(g1, g2) has reduced form 0 with respect to G.

(iii) Every S-polynomial Sv(g1, g2) admits a nontrivial representation as a
two-sided linear combination of elements of G.

(iv) Every element f ∈ I admits a representation as a two-sided linear com-
bination of elements of G with parameter lm(f).

Remark 2.4.1.6. Conventionally, the equivalence (i)⇔ (ii) is referred to as
the diamond lemma. The implication (ii) ⇒ (i) is not at all easy to prove
directly, so the proof introduces two auxiliary statements (iii) and (iv) for
expository purposes.

Proof. We will prove the chain of implications (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i).
(i) implies (ii): Note that each S-polynomial belongs to I, and each

element of I has reduced form 0 with respect to G for a Gröbner basis.
(ii) implies (iii): If each S-polynomial has reduced form 0 with respect

to G, we record all the steps of long division of Sv(g1, g2) by G, and obtain a
representation of the desired form.

(iii) implies (iv): This is the hardest part of the proof. Suppose the
statement (iv) is not true for some f ∈ T (X). If we drop the assumption
on the parameter of the representation, then the statement is obvious, since
I = (G). Using bilinearity of products, we may expand the terms and only
consider the combinations

f =
N∑
i=1

cimigim
′
i, ci ∈ F, mi,m

′
i ∈ X∗.
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In general, lm(f) may be less than max
i

(mi lm(gi)m′i) for such a combination
because some leading terms may cancel. Suppose that for each representation
of f of that form we have lm(f) ≺ max

i
(mi lm(gi)m′i). Let us consider the

“most economic counterexample”; in other words, we assume:

• that f does not have a representation of the form (2.2) with
lm(f) = max

i
(mi lm(gi)m′i),

• that among the representations f =
∑N
i=1 cimigim

′
i for some N , some

mi,m
′
i ∈ X∗, and some gi ∈ G, we choose the one where the parameter

m = max
i

(lm(migim
′
i)) is the least possible;

• that among the representations with the chosen parameter m, the num-
ber of i for which lm(migim

′
i) is equal to m is the least possible.

Without the loss of generality, we have lm(migim
′
i) = m for i = 1, . . . , k, and

lm(migim
′
i) ≺ m for i > k. Clearly, k ≥ 2, in order for the leading monomials

of this combination to cancel each other so that the resulting leading monomial
is equal to lm(f). We have

mk−1 lm(gk−1)m′k−1 = lm(mk−1gk−1m
′
k−1) =

lm(mkgkm
′
k) = mk lm(gk)m′k,

so both lm(gk−1) and lm(gk) are divisors of m. Let us examine the relative
position of those divisors. In general, given two different divisors of the same
monomial, one may be a subword of the other, they may overlap, or they may
be disjoint.

The first of these possibilities is especially easy to handle: since G is as-
sumed self-reduced, this can only happen if gk−1 = gk, and the subwords
lm(gk−1) and lm(gk) coincide. In this case, we also must have mk−1 = mk

and m′k−1 = m′k, and so the two terms ck−1mk−1gk−1m
′
k−1 + ckmkgkm

′
k can

be merged into a single term (ck−1 + ck)mk−1gk−1m
′
k−1, resulting in a repre-

sentation for f where either the parameter is smaller (that happens if k = 2
and ck−1 + ck = 0) or the parameter is the same, but k is smaller, which is a
contradiction.

Suppose that lm(gk−1) and lm(gk) have an overlap inside m. Without loss
of generality, we have lm(gk−1) = u1v and lm(gk) = vu2 for some monomials
u1, u2, v with v 6= 1, so that

mk−1u1vm
′
k−1 = mk−1 lm(gk−1)m′k−1 = m = mk lm(gk)m′k = mkvu2m

′
k.

This implies that mk = mk−1u1, and m′k−1 = u2m
′
k. Recall the definition of

the corresponding S-polynomial Sv(gk−1, gk) = gk−1u2 − u1gk, which we will
use in the form

u1gk = gk−1u2 − Sv(gk−1, gk).
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Let us examine the sum ck−1mk−1gk−1m
′
k−1 + ckmkgkm

′
k:

ck−1mk−1gk−1u2m
′
k + ckmk−1u1gkm

′
k =

ck−1mk−1gk−1u2m
′
k + ckmk−1(gk−1u2 − Sv(gk−1, gk))m′k =

(ck−1 + ck)mk−1gk−1u2m
′
k − ckmk−1Sv(gk−1, gk)m′k. (2.3)

We assumed that every S-polynomial has a nontrivial representation

Sv(gk−1, gk) =
N ′∑
i=1

c′irigir
′
i,

for some N ′, some ri, r′i ∈ X∗, and some gi ∈ G, with

max
i

(lm(rigir′i)) ≺ lm(gk−1)u2 = u1 lm(gk).

Substituting this into (2.3), we obtain

ck−1mk−1gk−1u2m
′
k + ckmk−1u1gkm

′
k =

(ck−1 + ck)mk−1gk−1u2m
′
k − ckmk−1

N ′∑
i=1

c′irigir
′
im
′
k. (2.4)

Replacing the terms ck−1mk−1gk−1u2m
′
k + ckmk−1u1gkm

′
k in the minimal

counterexample by the right-hand side of (2.4), we obtain a representation
for f where either the parameter is smaller (that happens if k = 2 and
ck−1 + ck = 0) or the parameter is the same, but k is smaller, which is a
contradiction.

Suppose that lm(gk−1) and lm(gk) are disjoint inside m. Without loss of
generality, we have m = u1 lm(gk−1)v lm(gk)u2 for some monomials u1, u2, v,
so that mk−1 = u1, m′k−1 = v lm(gk)u2, mk = u1 lm(gk−1)v, and m′k = u2.
Let us transform the sum ck−1mk−1gk−1m

′
k−1+ckmkgkm

′
k, using the notation

gk−1 = lm(gk−1) + g′k−1 and gk = lm(gk) + g′k:

ck−1mk−1gk−1m
′
k−1 + ckmkgkm

′
k = ck−1u1gk−1v lm(gk)u2 +

cku1 lm(gk−1)vgku2 = ck−1u1gk−1v lm(gk)u2 + cku1(gk−1 − g′k−1)vgku2 =
ck−1u1gk−1v lm(gk)u2 + cku1gk−1v(lm(gk) + g′k)u2 − cku1g

′
k−1vgku2 =

(ck−1 + ck)u1gk−1v lm(gk)u2 + ck(u1gk−1vg
′
ku2 − u1g

′
k−1vgku2),

where the terms ck(u1gk−1vg
′
ku2 − u1g

′
k−1vgku2) can be expanded as a linear

combination of elements migim
′
i with the leading monomial smaller than m.

Therefore, as in the case of an overlap, we can merge two contributions to the
leading monomial m at the cost of increasing the number of terms migim

′
i

with the smaller leading monomial, so we obtain a representation for f where
either the parameter is smaller (that happens if k = 2 and ck−1 + ck = 0) or
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the parameter is the same, but k is smaller. This contradiction completes the
proof of the present implication.

(iv) implies (i): For such a representation of an element f , we have

lm(f) = lm(migim
′
i) = mi lm(gi)m′i,

for some i, so lm(f) is divisible by lm(gi). Since this is assumed true for every
f ∈ I, it follows that G is a Gröbner basis.

2.4.2 The Buchberger algorithm
Theorem 3.5.1.6 leads naturally to a recipe for computing reduced Gröbner

bases: given a set of generators of an ideal, one has to compute all pairwise
S-polynomials, adjoin all reduced forms of those to the set of generators, and
repeat the same. It is rather a “recipe” than an algorithm since we are not
guaranteed termination, but it is nevertheless very useful.

Algorithm 2.4.2.1 (Buchberger algorithm for noncommutative algebras).

Input: A finite subset G ⊂ T (X) generating an ideal I ⊂ T (X).

Output: If terminates, the output is the reduced Gröbner basis of I.

• Set newSpolynomials← true.

• While newSpolynomials do:

– Convert the elements of G to standard form.
– Sort G by glex order of leading monomials: G = {g1, . . . , gn}.
– Compute the self-reduction of G.
– Set Spolynomials← ∅.
– Set newSpolynomials← false.
– For g ∈ G do for h ∈ G do:
∗ If lm(g) and lm(h) have an overlap w then:

1. Define u, v by lm(g) = vw and lm(h) = wu.
2. Set s← gu− vh.
3. Compute t, the result of long division of s by G.
4. If t 6= 0 and t /∈ Spolynomials then
∗ Set newSpolynomials← true.
∗ Set Spolynomials← Spolynomials ∪ {t}.

– Set G← G ∪ Spolynomials.

• Return G.
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Proposition 2.4.2.2. If Algorithm 2.4.2.1 terminates then its output is the
reduced Gröbner basis of I.

Proof. Immediate corollary to Theorem 2.4.1.5.

In many computations, instead of explicitly finding the standard form at
each step, we will merely underline the leading monomial (which is being
reduced).

Example 2.4.2.3. For the quantum plane from Example 2.1.1.3, the noncom-
mutative Buchberger algorithm terminates instantly, since the only leading
monomial (for glex order with x1 ≺ x2) is x2x1 which has no self-overlaps.

Example 2.4.2.4. We consider the ideal (y2 + x2) of the tensor algebra
T (x, y), and impose the glex order with x ≺ y. The leading monomial y2 has
just one self-overlap: y2 · y = y · y2. The corresponding S-polynomial is

(y2 + x2)y − y(y2 + x2) = x2y − yx2.

It is already reduced with respect to g1 = y2 + x2, and self-reduction just
multiplies it by −1 to make it monic. The leading monomial yx2 has no self-
overlaps, and one overlap with y2, namely y2 ·x2 = y ·yx2. The corresponding
S-polynomial is

(y2 + x2)x2 − y(yx2 − x2y) = x4 + yx2y.

Reducing this with respect to { g1 = y2 +x2, g2 = yx2−x2y } goes as follows:

x4 + yx2y
g2−−−→ x4 + x2y2 g1−−−→ 0 .

The symbol above each arrow is the element with respect to which we re-
duce, and the leading monomial is underlined. This means that there are no
new elements to adjoin, and the algorithm terminates. Therefore, the reduced
Gröbner basis for (y2 + x2) consists of the elements y2 + x2 and yx2 − x2y.

Example 2.4.2.5. Let us consider the algebra F[x1, x2, x3] of polynomials
in three variables, viewed as the quotient of T (x1, x2, x3) by the commutator
ideal

( x2x1 − x1x2, x3x1 − x1x3, x3x2 − x2x3 ).

The leading monomials (for glex order with x1 ≺ x2 ≺ x3) of these ele-
ments are x2x1, x3x1, and x3x2, with the only overlap corresponding to the
common multiple x3x2x1 of the first and last monomials. The corresponding
S-polynomial is

(x3x2 − x2x3)x1 − x3(x2x1 − x1x2) = x3x1x2 − x2x3x1.

We compute the reduced form of this element, underlining the leading mono-
mials:
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x3x1x2 − x2x3x1 −→ x1x3x2 − x2x3x1 −→ x1x3x2 − x2x1x3 −→
x1x3x2 − x1x2x3 −→ 0.

Therefore, our set of relations forms a Gröbner basis. We will see a very
sophisticated generalization of this example in Theorem 2.5.3.1 below.

2.4.3 Triangle lemma
Definition 2.4.3.1 (Essential overlap). Let G be a self-reduced subset of
T (X), and let g1, g2 ∈ G be two elements for which lm(g1) = u1v and
lm(g2) = vu2 have an overlap v 6= 1. We call this overlap essential if u1v
and vu2 are the only two subwords of u1vu2 which belong to lm(G).

The term “essential” that we use is somewhat justified by the following
result.

Proposition 2.4.3.2 (Triangle lemma, [252]). Let G be a self-reduced subset
of T (X), and let g1, g2 ∈ G be two elements for which lm(g1) = u1v and
lm(g2) = vu2 have an overlap v 6= 1. Suppose that this overlap is not essential,
so that there exists g3 ∈ G for which lm(g3) is a divisor of u1vu2 different
from u1v and vu2. Then:

• The divisors u1v and lm(g3) have an overlap v′ 6= 1, and the divisors
lm(g3) and vu2 have an overlap v′′ 6= 1.

• If the S-polynomials Sv′(g1, g3) and Sv′′(g3, g2) admit nontrivial repre-
sentations as two-sided linear combinations of elements of G, then the
S-polynomial Sv(g1, g2) also admits a nontrivial representation.

Proof. Note that since G is assumed self-reduced, lm(g3) cannot be a subword
of either lm(g1) or lm(g2). Therefore, it has an overlap with both lm(g1)
and lm(g2). This means that u1vu2 can be factorized as u1vu2 = u′1u

′′
1vu

′
2u
′′
2 ,

where
u′1u
′′
1v = lm(g1), u′′1vu

′
2 = lm(g3), vu′2u

′′
2 = lm(g2),

u′′1 6= 1, u′2 6= 1, the small common multiple of lm(g1) and lm(g3) is v′ = u′′1v,
and the small common multiple of lm(g3) and lm(g2) is v′′ = vu′2. Therefore,

Sv(g1, g2) = g1u2 − u1g2 = g1u
′
2u
′′
2 − u′1u′′1g2 =

g1u
′
2u
′′
2 − u′1g3u

′′
2 + u′1g3u

′′
2 − u′1u′′1g2 = Sv′(g1, g3)u′′2 + u′1Sv′′(g3, g2).

Note that multiplying a nontrivial representation for the S-polynomial
Sv′(g1, g3) by u′′2 on the right, we get a two-sided linear combination with
parameter less than u′1u

′′
1vu

′
2u
′′
2 , and the same is true if we multiply a non-

trivial representation for the S-polynomial Sv′′(g3, g2) by u′1 on the left. This
completes the proof.

This proposition has an immediate corollary which prevents unnecessary
computations when testing or computing the reduced Gröbner basis.
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Corollary 2.4.3.3. Let G be a self-reduced set of elements of T (X).

(i) If each S-polynomial of two elements of G corresponding to an essential
overlap has reduced form 0 with respect to G, then G is the reduced
Gröbner basis of (G).

(ii) While computing the reduced Gröbner basis using Algorithm 2.4.2.1, we
may ignore all non-essential overlaps.

The Triangle Lemma seems to be better known to specialists in commuta-
tive Gröbner bases, where it is called “Buchberger’s second criterion” [153, 44].
Lecture notes [167], that in principle discuss the noncommutative case, only
mention this result for commutative Gröbner bases. The only source we are
aware of where this result is mentioned in the noncommutative case is the sur-
vey [252]. We believe that this result deserves to be known much better in the
noncommutative case, since it provides an important shortcut for otherwise
tedious computations.

2.5 Examples of Gröbner bases and their applications
2.5.1 Dimensions and Hilbert series of algebras

One of the first natural questions about a vector space is to determine
its dimension. For a finite-dimensional vector space, the dimension is a good
measure of the “size” of a space; if a vector space is infinite-dimensional, it
is still beneficial to look for some way to know “how big” it is. In the case
of algebras presented by generators and relations, there is a standard way to
introduce some measures.

Definition 2.5.1.1 (Hilbert series). Let A = T (X)/I be an algebra presented
by generators and relations. The number of normal monomials modulo I of the
given weight k is denoted by nk(A). The Hilbert series of A, denoted hA(t),
is the generating function defined by the following equation:

hA(t) :=
∑
k≥0

nk(A)tk.

Remark 2.5.1.2. An important class of algebras are algebras with homoge-
neous relations, that is, relations f = 0, where all monomials of supp(f) are
of the same weight. For an algebra with homogeneous relations, the weight of
each element is well defined, and nk(A) is the dimension of Ak, the weight k
homogeneous component of A. If relations are not homogeneous, the numbers
nk(A) may depend on the monomial order Ξ, but still may be useful to study
the algebra A.
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One of the most important results that allows us to deal with Hilbert
series is based on an elegant combinatorial construction of Ufnarovski which
we will now outline. The next definition and the two statements that follow
first appeared in [249], see also [251].
Definition 2.5.1.3 (Graph of normal forms). Let A = T (X)/I be an algebra
presented by generators and relations, and suppose that I has a finite Gröbner
basis G = {g1, . . . , gm}. Let ` = max

i
wt(lm(gi)); we denote by V the set of all

monomials of weight `− 1 that are reduced with respect to G. Let us define a
directed graph Γ, called the graph of normal forms. The vertex set of Γ is V ;
two vertices v′, v′′ ∈ V are connected by a directed edge v′ → v′′ if and only
if there exist x′, x′′ ∈ X for which v′x′ = x′′v′′ is reduced with respect to G.
Thus, edges of Γ correspond to monomials of weight ` that are reduced with
respect to G.
Proposition 2.5.1.4. There exists a bijection between the monomials of
weight w ≥ ` − 1 that are reduced with respect to G and directed paths of
length w − `+ 1 in the graph Γ.
Proof. Each monomial xi1 · · ·xiw of weight w ≥ ` − 1 that is reduced with
respect to G corresponds to the directed path

u1 → u2 → · · · → uw−`+1,

where up = xip · · ·xi`−1+p
.

Theorem 2.5.1.5. Let A = T (X)/I be an algebra presented by generators
and relations, and suppose that I has a finite Gröbner basis. Then the Hilbert
series hA(t) is a rational function.
Proof. By Proposition 2.5.1.4, if we denote by fΓ(t) the generating function
for the numbers of directed paths in Γ enumerated by length, we have

hA(t) = n0(A) + n1(A)t+ · · ·+ n`−2(A)t`−2 + t`−1fΓ(t),

so it is enough to prove that fΓ(t) is a rational function. That latter statement
is true for any finite directed graph Γ, and is established as follows. We define
a square matrix MΓ of size |V | × |V |, whose entry mij is equal to the number
of arrows from vi to vj . Then for each w the entry in the row i and column j
of the matrix Mw

Γ is the number of directed paths of length w from vi to vj ,
and the total number of paths is equal to the sum of all matrix elements, that
is, eMw

Γ e
T , where e = [1, 1, . . . , 1]. Note that by Cayley–Hamilton theorem,

we have, for k = |V |,

Mk
Γ =

k−1∑
i=0

ciM
i
Γ

with some scalars ci, which implies a recurrence relation for powers

Mk+N
Γ =

k−1∑
i=0

ciM
i+N
Γ ,
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and the same recurrence relation for the numbers of directed paths. It follows
that the corresponding generating function is rational, which completes the
proof.

Example 2.5.1.6. Consider the ideal (y2 + x2) ⊂ T (x, y), and use the glex
order with x ≺ y. The reduced Gröbner basis is

G = {y2 + x2, yx2 − x2y},

as we saw in Example 2.4.2.4. The leading monomials of G are y2 and yx2.
Therefore, ` = 3, and V = {x2, xy, yx}. The graph Γ is as follows:

x2
''

~~
xy ++ yxkk

From this, we can immediately read the matrix MΓ:

MΓ =

1 1 0
0 0 1
0 1 0

 ,

with the characteristic polynomial t3 − t2 − t+ 1, so

M3
Γ = M2

Γ +MΓ − I3.

Since the sequence for numbers of directed paths satisfies the recurrence re-
lation whose coefficients are the coefficients of the characteristic polynomial,
and starts with 3 (the number of vertices), 4 (the number of edges), 5 (the
number of paths of length 2), it continues with 6 = 5 + 4− 3, 7 = 6 + 5− 4,
etc. Thus, the Hilbert series of the algebra T (x, y)/(y2 + x2) is

1 + 2t+ 3t2 + 4t3 + · · · = 1
(1− t)2 .

Interestingly, it is the same as the Hilbert series of the algebra of commutative
polynomials, that is the quotient by the ideal (xy− yx), even though the nor-
mal monomials for the two algebras have completely different combinatorics
(for any monomial ordering).

Example 2.5.1.7. Let us consider the ideal I = (xy − z, yz − x, zx − y) in
T (x, y, z). A computation of the reduced Gröbner basis of I for the glex order
with x ≺ y ≺ z gives the following set of 10 elements:

xy − z, yz − x, zx− y, y2 − x2, z2 − x2,

x3 − zy, x2z − yx, yx2 − xz, yxz − xzy, zyx− xzy.
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The maximal weight of a leading monomial ` is 3, so V = {x2, xz, zy, yz}, and
the graph of normal forms is

x2 xz // zy yz

We conclude that the set of reduced monomials is finite, and consists of 9
elements 1, x, y, z, x2, xz, zy, yx, xzy. An interesting remark made in [252] is
that if we forget about the normal word 1, and view the equations xy = z,
yz = x, zx = y as defining relations of a semigroup (rather than monoid),
we can easily conclude that the given relations give a presentation of Q8
as a semigroup by generators and relations. (There is a natural surjective
map from this semigroup to the quaternion group Q8 sending x, y, z to i, j, k
respectively.)

2.5.2 The group algebra of the symmetric group
In this subsection we discuss how noncommutative Gröbner bases can be

used to construct matrix representations of finite semigroups. The most im-
portant example is of course the symmetric group Sn of all permutations
of {1, . . . , n}. The n − 1 standard generating transpositions will be denoted
xi = (i, i+ 1) for i = 1, . . . , n− 1. They satisfy these standard relations: x2

i = 1 (1 ≤ i ≤ n− 1)
xixj = xjxi (1 ≤ i < i+ 1 ≤ j − 1 < j ≤ n− 1)
xixi+1xi = xi+1xixi+1 (1 ≤ i ≤ n− 2)

(2.5)

We write these relations as f−g = 0 instead of f = g. The first three nontrivial
cases are as follows, avoiding subscripts:

2 a2 − 1 = 0

3 a2 − 1 = 0
b2 − 1 = 0 aba− bab = 0

4
a2 − 1 = 0
b2 − 1 = 0
c2 − 1 = 0

aba− bab = 0
bcb− cbc = 0 ac− ca = 0

We fix a field F, arbitrary for the moment, and consider the tensor algebra
Pn = T (x1, . . . , xn−1). For each n ≥ 2 we consider the two-sided ideal In ⊂ Pn
generated by the standard relations (2.5). We write Gn for the glex Gröbner
basis of In; see Figure 2.1. In general the size of this Gröbner basis is n2−3n+3;
see [37].
For all n, there are only finitely many normal words with respect to the Gröb-
ner basis Gn, and so the quotient ring Pn/In is finite dimensional; in fact
dim(Pn/In) = n!. Moreover, Pn/In ∼= FSn as associative algebras: the quo-
tient ring is isomorphic to the group algebra. To work out the multiplication
table, we compute the normal forms of the products of the normal words.
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n = 2 n = 3 n = 4
a2 − 1 a2 − 1 a2 − 1

b2 − 1 b2 − 1
bab− aba ca− ac

c2 − 1
bab− aba
cbc− bcb
cbac− bcba

FIGURE 2.1: The glex Gröbner bases for standard relations of Sn
(n = 2, 3, 4).

We then use algorithms for the Wedderburn decomposition [40] to determine
the structure of the group algebra, and from this we can obtain the character
table and the representation matrices.

We will determine explicitly the structure for n = 3, and leave the
case n = 4 to the reader (Exercise 2.8). For n = 3, the normal words are
1, a, b, ab, ba, aba and the multiplication table is as follows, using the Gröbner
basis a2 = 1, b2 = 1, bab = aba from Figure 2.1:

1 a b ab ba aba

1 1 a b ab ba aba
a a 1 ab b aba ba
b b ba 1 aba a ab
ab ab aba a ba 1 b
ba ba b aba 1 ab a
aba aba ab ba a b 1

(2.6)

This is just the multiplication table for S3, written in terms of the transpo-
sitions a = (12) and b = (23), and regarded as a monomial basis of FS3. At
this point we apply the computational structure theory of finite dimensional
associative algebras:

1. Compute the integral n!×n! Dickson matrix ∆, which is invertible if and
only if the group algebra is semisimple. The radical of the group algebra
is the nullspace of ∆, and the primes p dividing det(∆) are exactly those
for which the group algebra is not semisimple in characteristic p.

2. Factoring out the radical (if necessary), we are left with a semisimple
algebra, and we can easily determine its center using linear algebra.

3. The center is a commutative semisimple algebra, and we can decompose
it into a direct product of fields using a splitting algorithm based on the
Chinese Remainder Theorem. This gives a basis for the center consisting
of orthogonal primitive idempotents.
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4. We lift these central basis elements back to the full algebra and deter-
mine the corresponding simple two-sided ideals.

5. Each simple two-sided ideal is isomorphic to a full matrix algebra; it
is in theory extremely difficult in general, but in practice usually quite
easy, to construct an explicit isomorphism, which gives us the matrix
units.

6. From this we recover the representation matrices for all the permutations
in Sn and all partitions of n (which are in bijection with the simple
ideals).

We summarize the details of this procedure in the case n = 3.
Part (1). To recover the Dickson matrix from the multiplication table

(2.6), we replace the elements by their index numbers, writing µij for the i, j
entry:

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 5 1 6 2 4
4 4 6 2 5 1 3
5 5 3 6 1 4 2
6 6 4 5 2 3 1

(2.7)

The entries of the Dickson matrix ∆ are defined by this general equation which
applies to all semigroups:

∆ij = |{ k | µ(µ(j, i), k)) = k}| .

In the case of groups, ∆ij equals the number of gk for which (gjgi)gk = gk,
and cancellation gives gjgi = 1; thus for Sn we have ∆ij = n! if gigj = 1 and
0 otherwise. For n = 3, we obtain

∆ =


6 0 0 0 0 0
0 6 0 0 0 0
0 0 6 0 0 0
0 0 0 0 6 0
0 0 0 6 0 0
0 0 0 0 0 6

 det(∆) = −2636

If we avoid characteristics 2 and 3, the group algebra FS3 will be semisimple,
and we make this assumption from now on.

Part (2). To find the center Z of FS3, we apply some linear algebra
to (2.7). Consider an element X ∈ FS3; then X is central if and only if
Xg − gX = 0 for all g ∈ S3, and this gives a homogeneous system of linear
equations in n! variables. Solving these equations produces the following basis
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elements for Z(FS3), which are the sums over the conjugacy classes (identity,
transpositions, 3-cycles):

f1 = 1, f2 = a+ b+ aba, f3 = ab+ ba.

We now have to find a new basis of the center consisting of orthogonal prim-
itive idempotents. It will be useful to have the multiplication table for the
center:

f2
2 = 1 + ab+ ba+ ba+ 1 + ab+ ab+ ba+ 1 = 3f1 + 3f3,

f2f3 = b+ aba+ aba+ a+ a+ b = 2f2, f2
3 = ba+ 1 + 1 + ab = 2f1 + f3

The multiplication table is therefore

f1 f2 f3

f1 f1 f2 f3
f2 f2 3f1 + 3f3 2f2
f3 f3 2f2 2f1 + f3

(2.8)

Part (3). Choose a non-identity central basis element, say f2, and com-
pute its minimal polynomial. Using (2.8) we obtain

f3
2 = 9f2 =⇒ f3

2 − 9f2 = 0 =⇒ f2(f2 − 3f1)(f2 + 3f1) = 0.

which splits over Q as expected. We have f2
2 − 9f1 = −3(2f1 − f3). Since the

ideals I1 = (2f1 − f3) and I2 = (f2) and have coprime generators, we have
I1∩I2 = {0} and I1I2 = {0}, so there is an orthogonal direct sum Z = I1⊕I2.
It is easy to check that I1 is 1-dimensional:

(2f1 − f3)2 = 4f1 − 4f3 + f2
3 = 4f1 − 4f3 + 2f1 + f3 = 3(2f1 − f3).

This gives the primitive idempotent

g1 = 1
3 (2f1 − f3).

It remains to split I2. Since I2 is the orthogonal complement of I1, we find a
basis by solving this equation:

0 = (2f1 − f3)(af1 + bf2 + cf3) = (a− c)(2f1 − f3).

Thus the elements of I2 have the form af1 + bf2 + af3 and we can take
{ f1 + f3, f2 } as a basis. (In this particular case, the same could be observed
by inspection of the second column of (2.8)). To continue, we need to find the
identity element e in this ideal; solving the equations e(f1 + f3) = f1 + f3,
ef2 = f2, and e2 = e, we obtain e = 1

3 (f1 + f3). From (2.8), we see that
f2

2 = 9e, so the two remaining primitive idempotents are

g2 = 1
2 (e+ 1

3f2) = 1
6 (f1 + f2 + f3), g3 = 1

2 (e− 1
3f2) = 1

6 (f1 − f2 + f3).



46 Algebraic Operads: An Algorithmic Companion

We renumber these idempotents for reasons which will soon be clear:

h1 = 1
6 (f1 + f2 + f3), h2 = 1

3 (2f1 − f3), h3 = 1
6 (f1 − f2 + f3)

Part (4). We first rewrite these central idempotents using the original
basis of coset representatives:

h1 = 1
6 (1 + a+ b+ ab+ ba+ aba),

h2 = 1
3 (2− ab− ba),

h3 = 1
6 (1− a− b+ ab+ ba− aba).

The meaning of these equations becomes immediately obvious if we remember
that a = (12) and b = (23) and write permutations using cycle notation:

h1 = 1
6 (() + (12) + (23) + (123) + (132) + (13)),

h2 = 1
3

(
2()− (123)− (132)

)
,

h3 = 1
6 (()− (12)− (23) + (123) + (132)− (13)).

The permutations naturally appear in lex order: 123, 132, 213, 231, 321, 321.
It is now straightforward to verify that h1 and h3 generate 1-dimensional
simple two-sided ideals in FS3, whereas h2 generates a 4-dimensional simple
two-sided ideal.

Part (5). In this example, the only remaining nontrivial step is to find
an explicit isomorphism (h2) ∼= M2(F), and this is left as an exercise for the
reader. This can usually be accomplished by trial and error. But in theory, we
have the following problem.
Problem 2.5.2.1. Let A be an associative algebra over F of dimension n2

given by a basis a1, . . . , an2 and structure constants

aiaj =
n2∑
k=1

c
(i,j)
k ak (1 ≤ i, j, k ≤ n2).

Assume that A ∼= Mn(F), the algebra of n × n matrices over F. Determine
explicitly a basis of A consisting of elements eij (1 ≤ i, j ≤ n) corresponding
to matrix units:

eijek` = δjkei` (1 ≤ i, j, k, ` ≤ n).

That is, the linear isomorphism A ∼= Mn(F) induced by the correspondence
eij 7→ Eij must be an isomorphism of algebras.

Solving this problem is equivalent to finding a minimal left ideal in A: a
subspace of “column vectors” on which A can act by (left) “matrix-vector”
multiplication. However, finding minimal left ideals can be surprisingly dif-
ficult. In fact, the best-known algorithms for this problem, when F is an al-
gebraic number field, achieve polynomial time only because they are allowed
to call oracles for factoring integers and factoring univariate polynomials over
finite fields [139].
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2.5.3 Universal enveloping algebras of Lie algebras
Theorem 2.5.3.1 (Poincaré–Birkhoff–Witt (PBW) theorem). If L is a fi-
nite dimensional Lie algebra over a field F with a totally ordered basis
X = {x1, . . . , xn}, then a basis of its universal associative enveloping alge-
bra U(L) consists of the monomials xe11 · · ·xen

n with e1, . . . , en ≥ 0. Therefore:

(i) U(L) is infinite dimensional.

(ii) The canonical map α : L→ U(L) is injective.

(iii) L is isomorphic to a subalgebra of the Lie algebra U(L)−.

Proof. By Definition 2.1.1.2, the algebra U(L) is a quotient of T (L) ∼= T (X).
We equip T (X) with the glex order with x1 ≺ · · · ≺ xn. Since both the
Lie bracket and the product in T (L) ∼= T (X) are bilinear, it is sufficient to
take x, y in Definition 2.1.1.2 to be basis elements, so the universal associative
envelope U(L) is the quotient of the free associative algebra T (X) by the
ideal I generated by the elements

gij = xixj − xjxi − [xi, xj ] = xixj − xjxi −
n∑
k=1

ckijxk,

where the last equation defines the set of scalars ckij , the structure constants
of L. Note that due to anticommutativity of the Lie bracket we have gii = 0,
and for i 6= j we may assume i > j, and hence xixj is the leading monomial
of gij .

We will show that the set G = { gij | 1 ≤ j < i ≤ n } is the reduced Gröb-
ner basis for I. Consider two leading monomials, lm(gij) = xixj (i > j) and
lm(g`k) = x`xk (` > k). The only possible overlaps of these monomials occur
when either j = ` or k = i. Without loss of generality, j = `, so we consider
gij and gjk where i > j > k. We have lm(gij)xk = xixjxk = xi lm(gjk),
which produces the S-polynomial

gijxk − xigjk =
(
xixj − xjxi − [xi, xj ]

)
xk − xi

(
xjxk − xkxj − [xj , xk]

)
= xixjxk − xjxixk − [xi, xj ]xk − xixjxk + xixkxj + xi[xj , xk]
= −xjxixk − [xi, xj ]xk + xixkxj + xi[xj , xk]
= xixkxj − xjxixk − [xi, xj ]xk + xi[xj , xk].

(It is convenient to avoid explicit structure constants in this calculation; re-
call that [xi, xj ] is a homogeneous polynomial of weight 1.) This element is
not reduced; both its leading monomial xixkxj and the non-leading mono-
mial xjxixk are divisible by xixk = lm(gik). To reduce those, we subtract
gikxj and add xjgik:

xixkxj − xjxixk − [xi, xj ]xk + xi[xj , xk]
−
(
xixk − xkxi − [xi, xk]

)
xj + xj

(
xixk − xkxi − [xi, xk]

)
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= xixkxj − xjxixk − [xi, xj ]xk + xi[xj , xk]
− xixkxj + xkxixj + [xi, xk]xj + xjxixk − xjxkxi − xj [xi, xk]

= −[xi, xj ]xk + xi[xj , xk] + xkxixj + [xi, xk]xj − xjxkxi − xj [xi, xk]
= −xjxkxi + xkxixj − [xi, xj ]xk + xi[xj , xk] + [xi, xk]xj − xj [xi, xk].

We see that the leading monomial xjxkxi is divisible by xjxk = lm(gjk), and
that the other monomial of weight 3 is divisible by xixj = lm(gij). To reduce
those, we add gjkxi and subtract xkgij :

− xjxkxi + xkxixj − [xi, xj ]xk + xi[xj , xk] + [xi, xk]xj − xj [xi, xk]
+
(
xjxk − xkxj − [xj , xk]

)
xi − xk

(
xixj − xjxi − [xi, xj ]

)
= −xjxkxi + xkxixj − [xi, xj ]xk + xi[xj , xk] + [xi, xk]xj − xj [xi, xk]

+ xjxkxi − xkxjxi − [xj , xk]xi − xkxixj + xkxjxi + xk[xi, xj ]
= −[xi, xj ]xk + xi[xj , xk] + [xi, xk]xj − xj [xi, xk]− [xj , xk]xi + xk[xi, xj ]
= xi[xj , xk]− [xj , xk]xi + xj [xk, xi]− [xk, xi]xj + xk[xi, xj ]− [xi, xj ]xk.

The last expression, once the brackets are expanded in structure constants,
and all the quadratic leading monomials are reduced, has the reduced form
[xi, [xj , xk]] + [xj , [xk, xi]] + [xk, [xi, xj ]], which is zero by the Jacobi identity.
Thus every S-polynomial has reduced form zero, proving that we have a Gröb-
ner basis. The leading monomials of this Gröbner basis are xixj where i > j.
A basis for U(L) consists of all monomials w which are not divisible by any
of these. That is, if w contains a subword xixj then i ≤ j. It follows that the
monomials in the statement of the theorem form a basis for U(L). In partic-
ular, the monomials x1, . . . , xn of degree 1 are linearly independent in U(L),
and hence the canonical map from L to U(L) is injective.

Corollary 2.5.3.2. Every polynomial identity satisfied by the Lie bracket in
every associative algebra is a consequence of anticommutativity and the Jacobi
identity.

Proof. If p(a1, . . . , an) ≡ 0 is a polynomial identity which is not a consequence
of anticommutativity and the Jacobi identity, then p(a1, . . . , an) is a nonzero
element of the free Lie algebra L generated by {a1, . . . , an}. If A is any as-
sociative algebra, and ε : L → A− is any morphism of Lie algebras, then by
definition of polynomial identity, ε(p) = 0. If we take A = U(L) and let ε be
the injective map L → U(L)− from the PBW theorem, then p 6= 0 implies
ε(p) 6= 0, a contradiction.

The proof of the Poincaré–Birkhoff–Witt theorem that we presented here is
due to [21, 24]. It is deemed by many people to be one of the most remarkable
early theoretical applications of Gröbner bases in ring theory. It is important
to emphasize that our proof only works for Lie algebras over a field (the
assumption that we made that the Lie algebra is finite-dimensional is not
essential). For Lie algebras over commutative rings our approach would not



Noncommutative Associative Algebras 49

work, but the PBW theorem does not hold in general over every commutative
unital ring anyway; there are counterexamples in the papers [51, 62, 170, 231],
see also Exercise 2.9. A Gröbner bases-driven approach to Lie algebras over
rings can come from developing a theory of Gröbner bases for ideals in the
algebra F[x1, . . . , xn] ⊗ T (y1, . . . , ym), see [198], or from developing a theory
of Gröbner–Shirshov bases for Lie algebras over rings, see [27]. The reader
interested in the history of the PBW theorem is referred to [39, 122, 125, 248].
Two-dimensional solvable Lie algebra. The PBW theorem shows that for
every Lie algebra L, the ideal generators obtained from the structure constants
form a Gröbner basis. These generators can be interpreted as rewriting rules
in U(L) as follows:

xixj − xjxi −
n∑
k=1

ckijxk ∈ I ⇐⇒ xixj = xjxi +
n∑
k=1

ckijxk ∈ U(L).

Repeated application of these rules allows us to work out multiplication for-
mulas for monomials in U(L). Let us demonstrate how this is done on an
example of the 2-dimensional solvable Lie algebra, that is the Lie algebra L
with a basis {a, b} for which [a, b] = b.

The basis of its universal enveloping algebra U(L) from the PBW the-
orem consists of the monomials arbs for r, s ≥ 0. The ideal I is generated
by ab − ba − b, and so for the ordering a ≺ b the element ba is the leading
monomial; it has no self-overlaps, so it forms the reduced Gröbner basis.

In U(L) we have ba = ab − b = (a − 1)b, which tells us how to move one
b to the right past one a. Using this, and induction on the exponents, we can
work out a formula for the product (arbs)(atbu) as a linear combination of
basis monomials. In fact, it suffices to prove a formula which expresses bsat
as a linear combination of basis monomials, for then(

arbs
)(
atbu

)
= ar

(
bsat

)
bu = ar

(∑
p,q

xpqa
pbq
)
bu =

∑
p,q

xpqa
p+rbq+u. (2.9)

Computing the reduced forms for bsat for small s and t directly using the
Gröbner bases, one starts noticing some patterns. For example, multiplying
the defining relation ba = ab− b by b on the left and computing the reduced
form, we get

b2a = bab− b2 = (ba− b)b = (ab− 2b)b = (a− 2)b2.

Iterating this, we can figure out how to move any power of b to the right
past a.

Lemma 2.5.3.3. We have bsa = (a− s)bs for all s ≥ 0.

Proof. Induction on s; the basis is the defining relation ba = (a − 1)b. If the
claim holds for some particular s ≥ 1, we have

bs+1a = b(bsa) = b(a− s)bs =
(
ab− (s+ 1)b

)
bs =

(
a− (s+ 1)

)
bs+1,
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and this completes the proof.

In general, we wish to be able to move any power of b to the right past
any power of a; then by Equation (2.9) this will give us the formula we seek.
Iterating Lemma 2.5.3.3, we get the following result.

Proposition 2.5.3.4. We have bsat = (a− s)tbs for all s, t ≥ 0.

Proof. Induction on t; the basis is Lemma 2.5.3.3.

Combining Equation (2.9) and Proposition 2.5.3.4 gives the final result.

Theorem 2.5.3.5. Multiplication in the universal associative envelope of the
2-dimensional solvable Lie algebra is given by the following formula:

(arbs)(atbu) = ar(a− s)tbu+s.

Jordan algebras and finite-dimensional enveloping algebras. Let us discuss an
example of a nonassociative structure whose universal associative envelope is
finite dimensional. (See also Exercises 2.12–2.14.) The underlying vector space
consists of the 2× 2 matrices M2(F) over F with basis:

a =
[
1 0
0 0

]
, b =

[
0 1
0 0

]
, c =

[
0 0
1 0

]
, d =

[
0 0
0 1

]
.

We make M2(F) into a special Jordan algebra J using the product
x ◦ y = xy + yx. The universal associative envelope U(J) is T (a, b, c, d)/I,
where the ideal I is generated by the following 10 elements, obtained from the
structure constants of J :

g1 = a2 − a, g2 = ba+ ab− b, g3 = b2, g4 = ca+ ac− c,
g5 = cb+ bc− d− a, g6 = c2, g7 = da+ ad, (2.10)
g8 = db+ bd− b, g9 = dc+ cd− c, g10 = d2 − d.

We obtain three distinct S-polynomials from the ordered pairs (g5, g2), (g5, g3)
and (g6, g5); reducing them with respect to (2.10) we obtain their standard
forms:

s1 = ad, s2 = bd− ab, s3 = cd− ac. (2.11)

Combining (2.10) and (2.11) we obtain a new set of 13 generators:

a2 − a, ad, ba+ ab− b, b2, bd− ab, ca+ ac− c,
cb+ bc− d− a, c2, cd− ac, da+ ad, db+ bd− b, (2.12)
dc+ cd− c, d2 − d.

The set of polynomials (2.12) is not self-reduced; making it self-reduced, we
obtain the following set in which every S-polynomial has reduced form 0:

a2 − a, ad, ba+ ab− b, b2, bd− ab, ca+ ac− c,
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1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 2 6 7 · 6 7 9 9
3 3 3−6 · 8 6 · 8−9 · ·
4 4 4−7 2+5−8 · 7 5−8+9 · 4 4−7
5 5 · 3−6 4−7 5 · · 8−9 ·
6 6 · · 9 6 · · · ·
7 7 · 2−9 · 7 · · 7 ·
8 8 9 3 · 8−9 6 · 8 9
9 9 9 6 · · 6 · 9 9

FIGURE 2.2: Structure constants for the universal associative envelope U(J)
of the special Jordan algebra J = M2(F)+.

cb+ bc− d− a, c2, cd− ac, da, db+ ab− b, (2.13)
dc+ ac− c, d2 − d.

There are only 9 monomials in T (a, b, c, d) which are not divisible by any of
the leading monomials of the Gröbner basis elements (2.13):

1, a, b, c, d, ab, ac, bc, abc,

which we denote by u1, . . . , u9. The cosets of these monomials modulo I form
a basis for U(J).

Figure 2.2 contains the multiplication table for U(J), where ui is denoted i
and dot, as we mentioned in Introduction, indicates 0. The entry in position
(i, j) is the normal form of the product uiuj ; in this case, computing the
normal form of uiuj for all i, j is rather trivial. For example,

u7u3 = acb = a(−bc+ d+ a) = −abc+ ad+ a2 =
− abc+ 0 + a = a− abc = u2 − u9.

The algorithms described in the survey paper [40] applied to the structure
constants in Figure 2.2 lead to the conclusion that U(J) is a semisimple asso-
ciative algebra with the following Wedderburn decomposition:

U(J) ≈ F⊕M2(F)⊕M2(F).

2.5.4 PBW bases, Gröbner bases, and Koszul duality
The PBW theorem, besides its applications in representation theory of Lie

algebras and theory of polynomial identities, inspired Priddy [210] to introduce
a class of quadratic algebras for which the Koszul property is easy to establish.
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We will recall his original definition, and explain how to view it in the language
of Gröbner bases.

Definition 2.5.4.1 (PBW basis). Let A = T (x1, . . . , xn)/(R) be a quadratic
algebra. Suppose that for each i ≥ 0, cosets of monomials belonging to the set
B := Bi ⊂ Xi is a basis for the homogeneous component Ai. This means, as
usual, that the structure constants of A with respect to B are defined:

(b1 + I)(b2 + I) =
∑
b∈B

cbb1,b2(b+ I). (2.14)

Equip T (x1, . . . , xn) with the glex order. The basis B is called a Poincaré–
Birkhoff–Witt (PBW) basis of A if the following two conditions hold:

1. for each two basis elements b1, b2 ∈ B, we either have b1b2 ∈ B, or the
structure constants cbb1,b2 vanish for b ≺ b1b2 in X∗,

2. an element m ∈ X∗ belongs to B if and only if each two-letter subword
of m belongs to B.

Proposition 2.5.4.2. An algebra A = T (V )/(R) has a PBW basis if and
only if the ideal (R) has a quadratic Gröbner basis for the glex order with
xn ≺ xn−1 ≺ · · · ≺ x1.

Proof. Suppose that A has a PBW basis. Note that for the order we specified,
the left hand side of Equation 2.14 is the leading monomial of the relation

b1b2 −
∑
b∈B

cbb1,b2b = 0.

The PBW condition states that the reduced monomials with respect to this
set of elements form a basis of A, hence these elements form a Gröbner basis
(for the leading monomial of any other element that we could possibly need
to adjoin would make one of the reduced monomials nonreduced). Similarly,
if the ideal (R) has a quadratic Gröbner basis G, cosets of all monomials that
are reduced with respect to G form a PBW basis of A.

Remark 2.5.4.3. It is common to state Proposition 2.5.4.2 somewhat infor-
mally, saying that “PBW bases are dual to Gröbner bases” (meaning that a
Gröbner basis generates the ideal, while a PBW basis is a basis for the quo-
tient). We hope that it is apparent to the reader that the notion of a Gröbner
basis is much more general than that of a PBW basis (which, to be precise,
is dual to the notion of a quadratic Gröbner basis).

Theorem 2.5.4.4. A quadratic algebra equipped with a PBW basis is Koszul.

Proof. See [210], or alternatively, use Proposition 2.5.4.2 together with a much
more general Theorem 6.3.3.2.
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This result, in the view of Proposition 2.5.4.2, is extremely useful for Koszul
duality, since it allows, in many cases, to prove Koszulness by a short direct
computation. Note that the PBW condition is something that is hard to check
directly: without Gröbner bases, we don’t really have good intuition for con-
structing monomial bases.

We conclude this section with an example of a Koszul algebra that does
not admit a quadratic Gröbner basis. For another example, see Exercise 2.16.

Example 2.5.4.5. Assume that the ground field F has characteristic 0. In
[18], Berger considers a family of algebras with three generators a, b, c and
three quadratic relations depending on the point (α : β : γ) ∈ P2 as follows:

αab+ βba = γc2, αbc+ βcb = γa2, αca+ βac = γb2.

These algebras are “type A algebras” of Artin and Schelter [5], also com-
monly known as “three-dimensional Sklyanin algebras”, since many of their
properties resemble those of “four-dimensional Sklyanin algebras”, certain al-
gebras with four generators and six relations introduced earlier by Sklyanin
[234, 235]; see [237] for more details on connections between those algebras.
It is known [4] that these algebras are Koszul for all generic values of parame-
ters, e.g., for parameters that are algebraically independent over Q. It is also
known that for such values of parameters the Hilbert series of this algebra is
equal to (1 − t)−3; that is, it coincides with the Hilbert series of the algebra
of polynomials in three variables (it is a particular case of these relations for
α = 1, β = −1, γ = 0).

Berger established the lack of a quadratic Gröbner basis combining the
observation that one of the squares a2, b2, c2 is the leading term of the corre-
sponding relation with the following pretty combinatorial result [18, Lemma
5.2]:

LetM be the set of all noncommutative monomials of degree two in
a, b, c. For each subset N ofM of cardinality 6, we denote by c(N)
the number of monomials uvw of degree three whose submonomials
uv, vw of degree two belong to N . If N does not contain c2, then
d(N) > 10.

(The set M has 32 = 9 elements, so there are 84 choices for N .) For a more
general statement, see Exercise 2.18.

For the particular values of parameters (α : β : γ) = (1 : −1 : 1) we obtain
the following beautiful relations,

ab− ba = c2, bc− cb = a2, ca− ac = b2, (2.15)

in which the commutator of any two generators is the square of the third.
This algebra is also known to be Koszul. Let us outline the first few elements
in its reduced Gröbner basis, using the glex order with a ≺ b ≺ c. With this
order, the original relations take this ordered form:

ca− b2 − ac, cb− bc+ a2, c2 + ba− ab.
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There are two nontrivial S-polynomials whose reduced forms are as follows:

b2a− bab+ ab2 + a2c, b2c− aba.

The set containing the last five polynomials is already self-reduced. The second
iteration produces another two S-polynomials:

bab2 + ba2c− abac, b4 + babc− aba2 − a3b.

The set containing the last seven polynomials is already self-reduced, and
the third iteration produces 12 new S-polynomials. The combined set of 19
relations is not self-reduced; after self-reduction we obtain the 15 relations

ca− b2 − ac, cb− bc+ a2, c2 + ba− ab, b2a− bab+ ab2 + a2c,

b2c− aba, bab2 + ba2c− abac, b4 + babc− aba2 − a3b, babab− a2bac,

ba3b+ ababa− aba2b, ba2b3 + ba2bac− ba5 − ababac+ aba4 + a3ba2 − a4ba,

ba2bc− ba4 − ababc+ aba3 + a3ba, baba2c− ba2bac+ a2babc− a2ba3,

ba4ba+ a2baba2 − a2ba2ba− a3baba+ a3ba2b, baba2ba− a2ba2b2,

baba2b2 + baba3c− ba2ba2c− ba4bc+ a3babc.

Iteration 4 produces 82 new S-polynomials, the combined set of 97 relations
self-reduces to 34, and at this point further computation becomes impractical.

While preparing the final draft of the book, we became aware of a preprint
[140], where Gröbner methods are utilized to study homological properties
of Sklyanin algebras. It is possible that ideas in that preprint admit further
extension to other notable examples of quadratic algebras.

2.5.5 Viewing commutative algebras as noncommutative ones
As we mentioned in the beginning of this chapter, it sometimes is

beneficial to consider commutative algebras as particular cases of non-
commutative ones. Formally, if A = F[x1, . . . , xn]/I, then we can con-
sider the preimage Î = π−1(I) of the ideal I under the canonical
projection π : T (x1, . . . , xn) → F[x1, . . . , xn]; in that case, of course,
Â := T (x1, . . . , xn)/Î ∼= A.

Since each ideal I of F[x1, . . . , xn] is finitely generated, we can
at least be sure that the corresponding ideal Î is finitely gener-
ated; if I = (g1, . . . , gm), then the ideal Î is generated by the set
{xixj − xjxi : 1 ≤ i < j ≤ n} ∪ {ĝ1, . . . , ĝm}, where the elements ĝ1, . . . ,
ĝm are arbitrary lifts of g1, . . . , gm to T (x1, . . . , xn). One however must be
very careful about lifting Gröbner bases.

Example 2.5.5.1 ([86]). Consider the ideal (x1x2x3) ⊂ F[x1, x2, x3]. Let
us show that Î does not admit a finite Gröbner basis, regardless of the
choice of a monomial order. Without loss of generality, x1 ≺ x2 ≺ x3.
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In that case, the only element of Î of degree 3 which is reduced with
respect to {x1x2 − x2x1, x1x3 − x3x1, x2x3 − x3x2} is x1x2x3. We must
adjoin this element in order to get a Gröbner basis; after that x1x

2
2x3

is the only element of Î of degree 3 which is reduced with respect to
{x1x2 − x2x1, x1x3 − x3x1, x2x3 − x3x2, x1x2x3} etc. Altogether, the reduced
Gröbner basis of this ideal is

{x1x2 − x2x1, x1x3 − x3x1, x2x3 − x3x2} ∪ {x1x
k
2x3 : k ≥ 1}.

We refer the reader to [86] for general results on lifting Gröbner bases. In
particular, an interesting unexpected phenomenon is that when F is infinite,
it is possible to perform a linear change of variables after which the lifted ideal
Î admits a finite Gröbner basis, but this may fail over a finite field.

One instance where it would be particularly beneficial to lift Gröbner bases
is the case of algebras with quadratic relations because of Theorem 2.5.4.4 as
the easiest possible criterion for algebra to be Koszul. Unfortunately, there are
examples of algebras which have a quadratic Gröbner basis as commutative
algebras, but not as noncommutative algebras, as we will now see.

Example 2.5.5.2 ([207]). Consider the ideal

I = (x2
1, x

2
2, . . . , x

2
7, x1x4, x2x5, x3x6, x2x7, x4x7, x6x7)

of F[x1, . . . , x7]. For the algebra A = F[x1, . . . , x7]/I, its Hilbert series is
1+7z+15z2 +11z3 +z4. Suppose that the ideal Î admits a quadratic Gröbner
basis G (for some monomial order). Consider the corresponding graph of nor-
mal words, as in Definition 2.5.1.3. Since the relations are assumed quadratic,
the vertices are x1, . . . , x7, and the edges correspond to quadratic elements
outside lm(G). Since A is finite-dimensional, this graph cannot have loops
or directed cycles, and there is just one directed path of length 3. Let it be
v1 → v2 → v3 → v4 for some vertices v1, . . . , v4, and denote by w1, w2, w3
the three remaining vertices. To avoid cycles, the subgraph with the vertices
v1, . . . , v4 cannot have more than 6 edges, and the subgraph with the vertices
w1, w2, w3 cannot have more than 3 edges. Absence of cycles together with the
uniqueness of a path of length 3 implies that each of the vertices w1, w2, w3
can be joined with the set {v1, . . . , v4} by at most 2 edges. Altogether, we may
have at most 15 edges, which is the dimension of A2, so all these estimates
must be attained. Examining these conditions, we find just one graph with 7
vertices, 15 edges, and exactly one path of length 3. However, it can be checked
directly (Exercise 2.20) that it has 10 paths of length 2, a contradiction.

2.5.6 Computation of noncommutative Gröbner bases
In this section, we will give some examples that show that unlike the com-

mutative case, computation of a noncommutative Gröbner basis may never
terminate, even for the case when the ideal I is finitely generated (of course,
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for infinitely generated ideals, like I = (abka : k ≥ 1) ⊂ T (a, b), it would be too
naïve to hope for a finite Gröbner basis). The lack of termination here could
mean, for example, any of the following three increasingly strong assertions:

• The algorithm does not terminate for a particular monomial order.

• The algorithm does not terminate for any monomial order.

• The algorithm does not terminate for any monomial order, allowing for
arbitrary invertible linear changes of variables. That is, we are allowed
not only to change the monomial order but also to replace the original
variables [X] = [x1, . . . , xn] by new variables

[X ′] = [X]A = [x′1, . . . , x′n], A ∈ GLn(F).

We learned some of the examples of this section from the paper [121] which
exhibits several interesting instances of “monsters” in the theory of noncom-
mutative Gröbner bases.

The first kind of non-termination is extremely easy to encounter: this kind
of behavior is exhibited in many cases. However, sometimes one may be lucky
enough to be able to change the order to obtain a finite Gröbner basis.

Example 2.5.6.1 ([121]). Consider two indeterminates X = {a, b}, and the
principal ideal I = (g0) ⊂ T (a, b) generated by the relation g0 = a2−ab. Sup-
pose that we take some monomial order with b ≺ a. In that case, the leading
monomial a2 has an overlap with itself, and the reduction of the corresponding
S-polynomial g0a−ag0 = a2b−aba is ab2−aba, with the leading monomial aba;
this leading monomial has an overlap with itself and with the leading mono-
mial of g0. A few more iterations suggest that all elements gi = abia − abi+1

must belong to the reduced Gröbner basis of I; in fact, it is true that the set

R = { gi | i ≥ 0 }

is the reduced Gröbner basis (Exercise 2.21). However, if we consider a mono-
mial order with a ≺ b, then the leading monomial ab has no self-overlaps, and
so g0 is a Gröbner basis.

Unfortunately, for some cases, it is impossible to achieve termination by
changing the monomial order. One source of such examples comes from 2.5.1.5;
there are examples of algebras with an irrational Hilbert series, and this of
course contradicts the possibility of having a finite Gröbner basis.

Example 2.5.6.2. Let us again take X = {a, b}. We consider, for the element
g1 := aba− ba the principal ideal I = (g1) ⊆ T (a, b). Note that since for any
monomial order Ξ we have 1 ≺ a, so ba ≺ aba, and lm(g1) = aba. The first
iteration of the algorithm produces one S-polynomial:

g1ba−abg1 = (aba−ba)ba−ab(aba−ba) = −baba+ab2a −→ baba−ab2a = g′2.
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Computing the reduced form of g′2 with respect to { g1 }, we obtain:

(baba− ab2a)− b(aba− ba) = −ab2a+ b2a −→ ab2a− b2a = g2.

We obtain a new bigger self-reduced set:

R1 = { g1 = aba− ba, g2 = ab2a− b2a }.

Again, we see that lm(g2) = ab2a for any monomial order. The second itera-
tion produces three S-polynomials:

g1b
2a− abg2 = (aba− ba)b2a− ab(ab2a− b2a) −→ bab2a− ab3a = g′3,

g2ba− ab2g1 = (ab2a− b2a)ba− ab2(aba− ba) −→ b2aba− ab3a = g′4,

g2b
2a− ab2g2 = (ab2a− b2a)b2a− ab2(ab2a− b2a) −→ b2ab2a− ab4a = g′5.

Computing the normal forms of g′3, g′4, g′5 with respect to { g1, g2 } gives:

(bab2a− ab3a)− b(ab2a− b2a) = −ab3a+ b3a −→ ab3a− b3a = g3,

(b2aba− ab3a)− b2(aba− ba) = −ab3a+ b3a −→ ab3a− b3a = g3 (again),
(b2ab2a− ab4a)− b2(ab2a− b2a) = −ab4a+ b4a −→ ab4a− b4a = g4.

We obtain the new self-reduced set:

R2 = { g1 = aba− ba, g2 = ab2a− b2a, g3 = ab3a− b3a, g4 = ab4a− b4a }.

At this point it becomes fairly clear what is happening: the size of the set dou-
bles after each iteration, and the highest degrees also increase exponentially.

Proposition 2.5.6.3. We have

Rn = { (a− 1)bia | 1 ≤ i ≤ 2n }.

For the glex order a ≺ b, the algorithm never terminates. Moreover, the set

R∞ = { (a− 1)bia | i ≥ 1 },

is the reduced Gröbner basis for the principal ideal (aba−ba) for any monomial
order.

Proof. Exercise 2.22.

The former example used an inhomogeneous relation. Let us give one ex-
ample with homogeneous relations.

Example 2.5.6.4 ([10, 121, 250]). Let X = {a, b, c}, and consider the ho-
mogeneous ideal I = ( a2, ca + ab ) ⊂ T (a, b, c) generated by two quadratic
relations. It turns out that the reduced Gröbner basis of this ideal is infinite
for any monomial order. Let us outline an argument establishing that. With-
out loss of generality, ab ≺ ca (the case ca ≺ ab is completely analogous),
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in which case lm(ca + ab) = ca. After n iterations of the noncommutative
Buchberger algorithm, the set of relations is as follows (Exercise 2.23):

n = 0: { a2, ca+ ab } n ≥ 1: { a2, ca+ ab, aba, . . . , abna }.

In fact, it is true that in this case the computation does not terminate for
any monomial order even after allowing for arbitrary invertible linear changes
of variables. To the best of our knowledge, it is not known if there exists a
homogeneous principal ideal with the same properties (infinite Gröbner basis
for all monomial orders and changes of basis).

Example 2.5.6.5 ([121]). Given a principal ideal generated by a nonho-
mogeneous polynomial f , a fundamental question is to determine whether
(f) = (1); this is particularly difficult over a field of positive characteristic,
where leading terms may be harder to control. The simplest (interesting) ex-
ample is f = aba2−a2ba+ 1 with a ≺ b. Over F = Q, after the third iteration
of the noncommutative Buchberger algorithm, the set of relations obtained
from the original innocent polynomial is as follows:

ba2 − 2aba+ a2b, a2ba− a3b+ 1, baba− 1
2ab

2a− 2abab+ 3
2a

2b2,

a3b2a− a4b2 − 2ba+ 4ab, a3b3a− a4b3 − 5b2a+ 4bab+ 4ab2,
a4b4a− a5b4 − 5bab2a− 4ab3a+ 2ab2ab+ 16abab2 − 5a2b3,

and it rapidly gets worse after that. Over F = Fp, the behavior is less pre-
dictable, and is not fully understood; see Exercises 2.24–2.26.

2.6 Rewriting systems and Gröbner bases
In this section, we briefly touch the universe of rewriting systems and

compare them with Gröbner bases. For more details, we refer the reader to [8].

2.6.1 Abstract rewriting systems
Definition 2.6.1.1 (Abstract rewriting system). An abstract rewriting sys-
tem (ARS) is a pair (A,→), where A is a set and → is a binary relation,
usually called a rewriting rule, or a reduction relation.

Throughout this section, we denote by (A,→) an arbitrary ARS.
Let us fix some general notation for binary relations. We denote by ∗→ the

reflexive transitive closure of the relation →; we write g ∗→ g′, if and only if
there is a sequence of s ≥ 0 rewritings beginning with g and ending with g′:

g = g0 −→ g1 −→ g2 −→ · · · −→ gs−1 −→ gs = g′. (2.16)
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It will be convenient also to define the inverse relation g′ ← g, which means
the same as g → g′, and its reflexive transitive closure g′ ∗← g.
Definition 2.6.1.2 (Joinability for an ARS). Two elements f, g ∈ A are said
to be joinable, or have a common successor, if there exists h ∈ A such that

f
∗→ h

∗← g.

We use the simpler notation f ↓ g for the joinability relation, so that

f ↓ g ⇐⇒ ∃ h ∈ P, f ∗→ h
∗← g.

Definition 2.6.1.3 (Normal forms for an ARS). An element f ∈ A is said
to be reducible if there exists g ∈ A such that f → g; otherwise it is said to
be irreducible, or a normal form. If f ∗→ g, and g is irreducible, g is said to be
a normal form of f . An ARS is said to be normalizing, if every f ∈ A has at
least one normal form.

An important class of ARS for which the normalizing property holds con-
sists of all terminating ones.
Definition 2.6.1.4 (Termination). An ARS is said to be terminating, if there
is no infinite chain f0 → f1 → f2 → . . ..

The following property, called confluence, formalizes the intuitive principle
“if f and g have a common predecessor, they also have a common successor”.
Definition 2.6.1.5 (Confluence). An ARS is said to be confluent if for all
f, g, h ∈ A, f ∗← h

∗→ g implies f ↓ g. This is best viewed through the following
diagram:

h

∗

��

∗

��
f

∗
��

g

∗
��

r

(2.17)

An ARS is said to be locally confluent, or weakly confluent, if for all
f, g, h ∈ A, f ← h→ g implies f ↓ g.
Theorem 2.6.1.6 (Diamond Lemma, [138, 204]). A terminating ARS is con-
fluent if and only if it is locally confluent.
Definition 2.6.1.7 (Convergence). An ARS is said to be convergent if it is
confluent and terminating.

For a convergent system, normal forms exist and are unique (Exercise
2.28), so convergent systems are analogous to Gröbner bases in the context of
ARS. According to Theorem 2.6.1.6, to check convergence, it is sufficient to
check termination and local confluence; this shows that in the theory of rewrit-
ing systems, the Knuth–Bendix algorithm [150] plays the role of Buchberger’s
algorithm.
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2.6.2 Ordered rewriting systems
Let us now explain how noncommutative polynomials give rise to particular

types of rewriting systems. Let us, as usual, fix a monomial order Ξ on T (X).

Definition 2.6.2.1 (Ordered rewriting system). Let S ⊂ T (X). Suppose
that f is a polynomial which is not reduced with respect to S. Consider one
reduction step in the long division of a polynomial f 6= 0 by S, which replaces f
by f̃ = f − cm1gm2, where g ∈ S is a polynomial for which lm(g) divides
some monomial m ∈ supp(f). The ordered rewriting system associated to S is
(T (X),→S), where f →S g if and only if g = f̃ as above.

It is easy to see that ordered rewriting systems are always terminating
(Exercise 2.29). Local confluence for such a rewriting system is the requirement
that every S-polynomial can be reduced to zero, which connects to the content
of Theorem 2.4.1.5.

In general, we could mimic Definition 2.6.2.1 without any monomial order.
Instead, we could pick, for each g ∈ S, an arbitrary monomial m ∈ supp(g),
call that monomial lm(g), and use it throughout. Of course, if we do that,
we do not have termination for free, but this can be useful otherwise, as the
following example shows.

Example 2.6.2.2. Let X = {x, y, z}, and let

S = {xyz − x3 − y3 − z3} ∈ T (x, y, z).

We somewhat arbitrarily define lm(xyz − x3 − y3 − z3) := xyz. It is clear
that there does not exist a monomial order Ξ for which xyz is the leading
monomial of xyz− x3− y3− z3: indeed, whichever of x, y, z is the largest one
would have its cube bigger than xyz.

Note that while the “honest” leading monomials x3, y3, and z3 have over-
laps with themselves, the term xyz has no overlaps with itself, so “there are
no diamonds to close”, and this rewriting rule is locally confluent.

Let us establish termination. Suppose that a monomial m is divisible by
xyz, so that our rewriting rule can be applied. Note that the result of rewriting
m is a combination of three monomials: m1 (where xyz is replaced by x3),
m2 (where xyz is replaced by y3), and m3 (where xyz is replaced by z3). The
number of occurrences of xyz in m is not smaller than that in m1 and m3
and is bigger than that in m2, and the number of occurrences of y in m is
bigger than that in m1 and m3 and is bigger by two than that in m2. Thus,
the quantity

J(m) = 3#{occurrences of xyz in m}+ #{occurrences of y in m}

can only decrease for m ∈ supp(f) when we apply our rewriting rule, and ter-
mination follows. Thus, our rewriting system is convergent, and even though
xyz cannot be made the leading monomial for any monomial order, monomials
not divisible by xyz form a basis in T (x, y, z)/(xyz − x3 − y3 − z3).
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The last example is due to the second author, who mentioned it to the
authors of [124], where it first appeared. That paper is a very stimulating
article illustrating further applications of rewriting systems to homological
algebra. We encourage a motivated reader to generalize results of that article
to the case of operads, thus improving various results of Chapter 6 in this
book.

2.7 Exercises
Exercise 2.1. Prove the claim made in Example 2.1.2.2.

Exercise 2.2. Prove Proposition 2.3.1.6.

Exercise 2.3. Prove that Algorithm 2.3.2.12 terminates after finitely many
steps.

Exercise 2.4.

(i) Pick a monomial order of T (a, b), and compute the reduced Gröbner
basis for the algebra A = T (a, b)/(a2, ab2 + bab+ b2a).

(ii) Using the reduced Gröbner basis G you computed, compute the Hilbert
series hA(t).

Exercise 2.5. Pick some monomial order of T (a, b, c), and use computer
algebra software to obtain experimental data which would allow you to guess
Gröbner bases for algebras

(i) P := T (a, b, c)/(ac− ca, aba− bc, b2a);

(ii) Q := T (a, b, c)/(ac− ca, aba− bc, b2).

According to Shearer [230], if we assign unconventional weights wt′(a) = 1,
wt′(b) = 1, wt′(c) = 2 (so that these relations become homogeneous), the
Hilbert series hP (t) and hQ(t) are irrational, so it is certain that the Gröbner
bases that you guess would be infinite.

Exercise 2.6. This exercise is motivated by the following problem
that was mentioned by Kevin Buzzard in a discussion of linear al-
gebra questions on MathOverflow as an instance of a really hard
problem in linear algebra (http://mathoverflow.net/questions/15050/
linear-algebra-problems#comment27043_15050):

Let X,Y ∈Mn(R). Suppose that X2 + Y 2 = XY and XY − Y X
is invertible. Prove that n is divisible by 3.
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(i) Using the glex order on T (x, y) for, say, x ≺ y, compute the reduced
Gröbner basis for the principal ideal (x2 − xy + y2).

(ii) Compute the center of the algebra A = T (x, y)/(x2−xy+ y2), and find
the structure of A as a module over its center.

(iii) Classify finite-dimensional complex irreducible A-modules, and solve the
problem stated above.

Exercise 2.7. Pick a monomial order of T (x11, x12, x21, x22), and compute
the reduced Gröbner basis for

(i) the algebra of quantum 2× 2-matrices,

(ii) the quantum group SL2

(see Example 2.1.1.4 for definitions). Verify that the dimensions of homoge-
neous components of these algebras over F(q) are the same as the dimensions
over F for the algebras obtained by setting q = 1 in the defining relations.

Exercise 2.8. Generalize the approach of Section 2.5.2 to the symmetric
group on 4 letters, using a computer algebra system if necessary.

Exercise 2.9. The easiest counterexample to the PBW theorem is con-
structed as follows. Consider the ring A = F2[a, b, c]/(a2, b2, c2), and define
a Lie algebra L which is the quotient of the free Lie algebra over A generated
by x1, x2, x3 modulo the relation ax1 + bx2 + cx3 = 0. Show that the natural
map L→ U(L) is not an isomorphism.

Exercise 2.10. Consider the group of upper triangular matrices with 1s on
the diagonal:

H =


1 a b

0 1 c
0 0 1

 ∣∣∣ a, b, c ∈ F


This group is called the Heisenberg group; it is nilpotent and its real version
arises in the description of 3-dimensional quantum mechanical systems. (The
celebrated Stone–von Neumann Theorem [244, 256], on the uniqueness of the
canonical commutation relations between position and momentum operators,
shows that there is a unique, up to isomorphism, irreducible unitary represen-
tation in which the center of H acts by a given nontrivial character.)

(i) Find the center of H and its nontrivial characters.

(ii) Let h be the Lie algebra of H, called the Heisenberg (Lie) algebra. This
is the 3-dimensional nilpotent Lie algebra with basis {a, b, c} and com-
mutation relations

[a, b] = c, [a, c] = 0, [b, c] = 0.
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Consider the polynomial ring F[x] and these linear operators on it:

A(f) = d

dx
f, B(f) = xf, C(f) = f, f ∈ F[x].

We easily calculate

A(B(f)) = d

dx
(xf) = f + xf ′, B(A(f)) = xf ′, [A,B](f) = C(f).

This is the irreducible representation of h in which the center C acts as
the identity map. The PBW basis of U(h) is { aibjck | i, j, k ≥ 0 }. In
U(L) we have

ba = ab− c, ac = ca, bc = cb.

Determine a formula for (apbqcr)(asbtcu) as a linear combination of basis
monomials.

Exercise 2.11. Assume that F has characteristic 0. Consider the simple Lie
algebra sl2 with basis {e, f, h} where

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

The PBW basis of U(sl2) consists of fphqer for p, q, r ≥ 0, where the genera-
tors satisfy these relations:

eh = he− 2e, hf = fh− 2f, ef = fe+ h.

Using these relations we can express (fphqer)(fshteu) as a linear combination
of basis monomials, but this is a little more difficult than it looks.

(i) Prove the following formulas, where [x, y] = xy − yx in U(sl2):

[h, fs] = −2sfs, [h, eu] = 2ueu.

Derive formulas for moving h to the right past f , and for moving h to
the left past e.

(ii) State and prove formulas for [e, fs] and [f, eu].

(iii) State and prove the formula for [er, fs]. (This formula is extremely useful
for classifying finite-dimensional simple sl2-modules.)

(iv) State and prove the general formula for (fphqer)(fshteu) in U(sl2).

Exercise 2.12. Verify all of the structure constants in the table from Figure
2.2.

Exercise 2.13. Suppose that char(F) 6= 2. Let J = M3(F)+ be the spe-
cial Jordan algebra of all 3 × 3 matrices over F; its structure operation is
a ◦ b = ab + ba. Let I ⊂ T (x1, . . . , x9) be the ideal defining the universal
enveloping algebra: U(J) = T (x1, . . . , x9)/I, where I = (xixj +xjxi+xi ◦xj).
Find a Gröbner basis for I, a monomial basis for U(I), and calculate the
structure constants of U(I).
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Exercise 2.14.

(i) Prove that if J is an n-dimensional Jordan algebra with zero product,
then U(J) is the exterior algebra of an n-dimensional vector space.

(ii) Prove that if J is a finite dimensional Jordan algebra then its universal
enveloping algebra is also finite dimensional.

Exercise 2.15. Let X = {a, b} with a ≺ b, and

g1 = aba− a2b− a, g2 = bab− ab2 − b.

Note that g2 = ρ(σ(g1)) where σ : T (a, b) → T (a, b) is the endomorphism in-
terchanging a and b, and ρ : T (a, b)→ T (a, b) is the anti-endomorphism which
reverses each monomial. The problem of computing the reduced Gröbner basis
of (g1, g2) arose during the computation of the universal enveloping algebra
of a two-dimensional nonassociative triple system based on the trilinear oper-
ation abc− bca; see Elgendy [87].

(i) Compute the first iteration of noncommutative Buchberger algorithm,
both with and without the optimization suggested by Corollary 2.4.3.3.

(ii) Use computer algebra software to compute the first few elements of
the reduced Gröbner basis, guess the general formula for the (infinite)
reduced Gröbner basis, and prove it.

Exercise 2.16 ([207]). Fix an element a ∈ F, and consider the ideal
I = (x2 + yz, x2 + azy) of T (x, y, z).

(i) Show that for a 6= 0 there is no monomial order for T (x, y, z) for which
I admits a quadratic Gröbner basis.

(ii) Show that for a 6= 0, 1 there is no linear change of variables x′, y′, z′
and a monomial order for T (x′, y′, z′) for which I admits a quadratic
Gröbner basis.

Exercise 2.17. Let Mn be the set of all 3n noncommutative monomials
w1 · · ·wn of degree n in the generators a, b, c. For each subset N ⊂ M2 with
|N | = 6, write c(N) for the number of monomials uvw ∈ M3 whose two
subwords uv, vw ∈ M2 belong to N . Prove (using a computer or otherwise)
that if c(N) ≤ 10 then a2, b2, c2 ∈ N .

Exercise 2.18 ([18, Theorem 6.1]). The setting is similar to Exercise 2.17
except that now we have r generators. Let Mn be the set of all rn noncom-
mutative monomials w1 · · ·wn of degree n in the generators x1, · · · , xr. For
each subset N ⊂ M2 with |N | =

(
r+1

2
)
, write c(N) for the number of mono-

mials uvw ∈ M3 whose two subwords uv, vw ∈ M2 belong to N . For any
permutation σ ∈ Sr acting on the indices 1, . . . , r we write

σ(N) = {xσ(i)xσ(j) | xixj ∈ N } ⊂M2.
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(i) Prove that c(σ(N)) = c(N) for all N and all σ.

(ii) Prove that for N0 = {xixj | 1 ≤ i ≤ j ≤ r } we have c(N0) =
(
r+2

3
)
.

(iii) Prove that c(N) =
(
r+2

3
)
if and only if N = σ(N0) for some σ ∈ Sr.

(iv) Prove that for all N we have c(N) ≥
(
r+2

3
)
.

Exercise 2.19 ([247]).

(i) Show that for the choice of parameters (1, 1, γ) in Example 2.5.4.5, that
is for the algebra A(γ) with three generators a, b, c and the defining
relations 

ab+ ba = γc2,

bc+ cb = γa2,

ca+ ac = γb2,

the reduced Gröbner basis for the glex order with a ≺ b ≺ c is finite
(for each γ ∈ F).

(ii) Find how the dimension of the weight n component of the algebra A(γ)
depends on γ.

(iii) Assume that γ 6= 0, 1. Show that the elements a2, b2, and c2 belong to
the center of the algebra A(γ), and are algebraically independent.

(iv) Assume that γ 6= 0, 1. Describe the center of the algebra A(γ).

(v) Use your results to determine whether Conjecture 10.37ii of [5] is true.

Exercise 2.20. Fill in the details for the argument of Example 2.5.5.2.

Exercise 2.21. Prove that the set R from Example 2.5.6.1 is the reduced
Gröbner basis of I with respect to any monomial order satisfying b ≺ a.

Exercise 2.22. Prove Proposition 2.5.6.3.

Exercise 2.23. Verify the claim on the results of iterations of the noncom-
mutative Buchberger algorithm from Example 2.5.6.4.

Exercise 2.24.

(i) Suppose that the ground field F is algebraically closed. Consider an in-
homogeneous polynomial f ∈ T (a, b) for which all monomials in supp(f)
are of weight at most 2. Show that there exists a linear change of vari-
ables for which f becomes the reduced Gröbner basis of the ideal it
generates.

(ii) Use the result you obtained to derive a yet another computation of the
Hilbert series in Example 2.5.1.6.
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Exercise 2.25. Suppose that the ground field F is algebraically closed. Con-
sider an inhomogeneous polynomial f ∈ T (a, b) for which all monomials in
supp(f) are of weight at most 3. Is it true that there always exists a linear
change of variables for which f becomes the reduced Gröbner basis of the
ideal it generates? Naïvely, one can argue that there are four among the eight
weight 3 monomials that have self-overlaps and thus are undesirable as lead-
ing monomials, and nontrivial changes of variables form a three-dimensional
group PGL2(F), so it is likely that we fail in some cases. Is it possible to repair
that argument?

Exercise 2.26.

(i) Prove that for F = Q the ideal (f) of Example 2.5.6.5 is different
from (1).

(ii) Answer the same question for F = Fp, where p = 2, 3, 5, 7, 11, 13, 17, 19.

Exercise 2.27. Show that each terminating ARS is normalizing. Is the con-
verse true?

Exercise 2.28. Prove that for a convergent ARS normal forms exist and are
unique.

Exercise 2.29. Show that ordered rewriting systems are always terminating.

Exercise 2.30.

(i) Fill in the details to justify claims made in Example 2.6.2.2.

(ii) Apply noncommutative Gröbner bases to obtain different normal forms
in Example 2.6.2.2. Compare the normal forms thus obtained.

(iii) What about the rewriting rule xy → x2 + y2? Is it confluent? Terminat-
ing?



Chapter 3
Nonsymmetric Operads

One of the main reasons to study associative algebras is the notion of a mod-
ule over an associative algebra, that is a vector space where an algebra acts
by endomorphisms. Similarly, when talking about some class of algebras, e.g.,
associative algebras, Lie algebras, Jordan algebras, etc., it is useful to con-
sider the collection of all operations with several arguments made of structure
operations on this algebra, and study algebraic structures of that collection.
This leads naturally to various notions of an operad. Sergei Merkulov [196]
came up with a beautiful analogy for that: similar to how the Cheshire Cat
from Alice’s Adventures in Wonderland tends to disappear almost completely
so that the only thing left is the cat’s grin, an operad is a “grin of an algebra”,
that is what remains when we take an algebra, that is a vector space with
structure operations, and remove the vector space.

3.1 Introduction
In this chapter, we will discuss nonsymmetric operads. This type of operads

controls algebraic properties of operations that can be expressed in terms
of substitutions of multilinear maps into one another, completely avoiding
permutations of arguments. For example, the associativity axiom

(a1a2)a3 = a1(a2a3)

belongs to that universe because the arguments on the left and on the right
appear in the same order; erasing those arguments we do not lose any infor-
mation whatsoever. Meanwhile, the Jacobi identity for Lie algebras

[[a1, a2], a3] + [[a2, a3], a1] + [[a3, a1], a2] = 0

is not of that kind. Using the skew-symmetry of the Lie bracket, we can rewrite
the second term as−[a1, [a2, a3]], restoring the status quo, but for the last term
we cannot bring the arguments in the standard order 1, 2, 3, however much
we try. Moreover, it turns out that there are no linear dependencies between
those Lie monomials of any given arity for which all arguments appear in the
standard order; see, e.g., [221]. In this chapter, we will focus on operations
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without special symmetries; further chapters will gradually bring us a way to
handle symmetries.

3.1.1 Nonsymmetric collections
As we said, a model example of an associative algebra is the set of en-

domorphisms of a vector space V where the associative product is given by
composition. The structure of a left module over an associative algebra A on a
vector space V is equivalent to an algebra homomorphism from A to End(V ).
Various notions of an operad arise in a similar way when one does not re-
strict oneself to linear transformations, but considers multilinear maps with
any number of arguments.

Instead of vector spaces, we will use the so-called nonsymmetric collections.
Superficially, a nonsymmetric collection is the same as a nonnegatively graded
vector space. However, an important conceptual leap that we need already at
this stage is that instead of looking at graded spaces as direct sums, it is often
really helpful to think of them as sequences of their components, and never
add elements of different degrees.

Definition 3.1.1.1 (Nonsymmetric collection). A nonsymmetric collection is
a sequence V = {V(n)}n≥0 of vector spaces. Amorphism between two nonsym-
metric collections V and W is a collection of linear maps φn : V(n) → W(n),
n ≥ 0. If each φn is an embedding of a subspace, we call the collection of their
images a subcollection of W, and write V ⊂ W.

Let us define two frequently used somewhat trivial nonsymmetric collec-
tions. In the context of operations, the first one is used to incorporate a single
operation without any arguments, like the unit element in an algebra, and the
second one is used to incorporate a single operation with one argument, like
the identity endomorphism of a vector space.

Definition 3.1.1.2 (Collections F and 1). The nonsymmetric collection F is
defined as follows:

F(k) =
{
F, k = 0,
0, k > 0.

The nonsymmetric collection 1 is defined as follows:

1(k) =
{
F, k = 1,
0, k 6= 1.

3.1.2 Nonsymmetric endomorphism operad
For the purpose of dealing with operads, the most important example of

a nonsymmetric collection is the endomorphism operad of a vector space.
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Example 3.1.2.1. The endomorphism operad of a vector space V is the non-
symmetric collection EndV with EndV (n) := Hom(V ⊗n, V ), n ≥ 0. In partic-
ular, EndV (0) = Hom(F, V ) ∼= V , and EndV (1) = Hom(V, V ) = End(V ).

Similar to how the set of all endomorphisms of a vector space has a binary
product, there are natural operations on EndV defined as follows.

Definition 3.1.2.2 (Nonsymmetric composition of multilinear maps). Sup-
pose that f ∈ EndV (r), g1 ∈ EndV (n1), . . . , gn ∈ EndV (nr). The non-
symmetric composition γ(f ; g1, . . . , gr), or f ◦ (g1, . . . , gr) is an element of
EndV (n1 + · · ·+ nr) defined by the formula

f ◦ (g1, . . . , gr) : x1, . . . , xn1+···+nr 7→
f(g1(xk1+1, . . . , xk1+n1), g2(xk2+1, . . . , xk2+n2) . . . , gr(xkr+1, . . . , xkr+nr )),

where ki = n1 + · · ·+ ni−1 (in particular, k1 = 0).

There are several different ways to summarize algebraic properties of non-
symmetric compositions; two of them are outlined in the next section.

3.2 Nonsymmetric operads
3.2.1 Classical definition of a nonsymmetric operad

The approach that is probably most straightforward is to write down the
associativity conditions of two-level compositions, that is, compositions where
each substituted operation is itself a composition gi ◦ (h1, . . . , hpi): of course,
such a composition can be computed in two different ways, either computing
each gi◦(h(i)

1 , . . . , h
(i)
pi ) individually or first computing f ◦(g1, . . . , gr), and then

computing the composition of that with all the elements h(i)
j . This leads to the

most classical approach to operads, a nonsymmetric version of the definition
of May [192].

Definition 3.2.1.1 (Classical definition of a nonsymmetric operad).
A nonsymmetric operad is a nonsymmetric collection of vector spaces
P = {P(n)}n≥0 equipped with an element id ∈ P(1) and maps

γ(r)
n1,...,nr

: P(r)⊗ P(n1)⊗ · · · ⊗ P(nr)→ P(n1 + · · ·+ nr)

(for which the shorthand notation

f ◦ (g1, . . . , gr) := γ(r)
n1,...,nr

(f ⊗ g1 ⊗ · · · ⊗ gr)

is commonly used), which satisfy the following properties:
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• associativity:

f ◦ (g1 ◦ (h(1)
1 , . . . , h(1)

q1 ), . . . , gr ◦ (h(r)
1 , . . . , h(r)

qr
)) =

(f ◦ (g1, . . . , gr)) ◦ (h(1)
1 , . . . , h(1)

q1 , . . . , h
(r)
1 , . . . , h(r)

qr
).

• unit axiom:

γ(1)
n (id;α) = α, γ

(r)
1,1,...,1(α; id, . . . , id) = α. (3.1)

Similar to the case of associative algebras, we can define ideals in nonsym-
metric operads.

Definition 3.2.1.2. Suppose that P is a nonsymmetric operad. An ideal I
of P is a subcollection I ⊂ P for which the element f ◦ (g1, . . . , gn) belongs
to I if at least one of the elements f, g1, . . . , gn belongs to I.

3.2.2 Definition via partial compositions
An elegant economic way of dealing with nonsymmetric compositions

comes from using the identity map id ∈ EndV (1); it is done as follows.

Definition 3.2.2.1 (Partial composition). Let f ∈ EndV (n), g ∈ EndV (m),
and 1 ≤ i ≤ n. The partial composition of f and g at the i-th slot, or infinites-
imal composition of f and g at the i-th slot is the operation

f ◦i g := f ◦ (id, . . . , id, g, id, . . . , id),

where g is at the i-th argument of f .

Remark 3.2.2.2. Both the term “partial” and the term “infinitesimal” high-
light a very important feature of operads which makes them more complicated
than associative algebras: the composition ◦ in the classical definition needs
one element on the left, but several elements on the right. The word “par-
tial” indicates, literally, that instead of performing all substitutions simulta-
neously, one can perform them step by step, accomplishing the goal partially
at each step. The word “infinitesimal” indicates that those compositions may
be viewed as directional derivatives of the full composition map.

When dealing with multilinear operations it is extremely useful to depict
elements by rooted trees. For example, the partial composition α ◦i β is rep-
resented by the tree

. . .

. . . β i. . .

α
.

whose internal vertices are labelled by α and β.
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Suppose that we use partial compositions to create a single element out of
three elements α ∈ EndV (n), β ∈ EndV (m), γ ∈ EndV (r). This can be done in
two essentially different ways represented by the following three-vertex trees:

. . .
. . . γ . . .

. . . β . . .

α

. . .
. . . γ

. . . β . . . . . .

α

For the first of those trees, we compose the three operations in a sequence,
and this kind of composition satisfies a property that generalizes the associa-
tivity of composition of linear transformations. Basically, the corresponding
composition can be computed in two different ways, and those ways must give
the same result. On the level of formulas, this gives

(α ◦i β) ◦j γ = α ◦i (β ◦j−i+1 γ) for i ≤ j ≤ i+m− 1.

For the second of those trees, we compose two operations in parallel, and this
kind of composition satisfies a property that is somewhat closer to commuta-
tivity; that property is not visible on the level of associative algebras. More
precisely, here two operations are composed in parallel, and there are two dif-
ferent ways to compute that composition depending on a choice of levels of
vertices in trees. These ways must produce the same result:

. . .
. . . γ

. . . β . . . . . .

α

=

. . .

β . . .

. . . . . . γ . . .

α

(3.2)

On the level of formulas, this gives

(α ◦i β) ◦j γ =
{

(α ◦j−m+1 γ) ◦i β, i+m ≤ j ≤ n+m− 1,
(α ◦j γ) ◦i+r−1 β, 1 ≤ j ≤ i− 1

(there are two formulas, the first one corresponds to the picture above, and
the second one corresponds to its mirror reflection).

Abstracting from the concrete endomorphism collection, we arrive at the
following definition. In this definition, we slightly abuse the notation by using
the notation id for an element which, strictly speaking, is not the identity
endomorphism of any vector space. However, this notation is so helpful for
forming the right intuition that it would be a pedagogical mistake to not
use it.

Definition 3.2.2.3 (“Partial” definition of a nonsymmetric operad).
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A nonsymmetric operad is a nonsymmetric collection of vector spaces
P = {P(n)}n≥0 equipped with an element id ∈ P(1) and maps

◦i : P(n)⊗ P(m)→ P(n+m− 1), α⊗ β 7→ α ◦i β

which satisfy the following properties for all α ∈ P(n), β ∈ P(m), γ ∈ P(r):

• sequential axiom:

(α ◦i β) ◦j γ = α ◦i (β ◦j−i+1 γ) for i ≤ j ≤ i+m− 1; (3.3)

• parallel axiom:

(α ◦i β) ◦j γ =
{

(α ◦j−m+1 γ) ◦i β, i+m ≤ j ≤ n+m− 1,
(α ◦j γ) ◦i+r−1 β, 1 ≤ j ≤ i− 1;

(3.4)

• unit axiom:

id ◦1α = α, α ◦i id = α for 1 ≤ i ≤ n. (3.5)

The following result is well known; it is featured in every textbook on
operads. Throughout this book, we will furnish some proofs having in mind
the classical definition of a nonsymmetric operad, and some others with the
partial definition; the reader is advised to not be wary of that.

Proposition 3.2.2.4. The classical and the partial definition of a nonsym-
metric operad are equivalent to each other.

3.3 Free nonsymmetric operads
Similar to the case of associative algebras, a nonsymmetric operad can

be presented via generators and relations, that is, as a quotient of the free
nonsymmetric operad T (M). To define that object, we will first develop a
language for working with trees, and then use that language to define appro-
priate monomials that represent composite operations with many arguments
in the same way as words represent compositions of endomorphisms.

3.3.1 Trees
The following abstract definition is one possible way to formalize the naïve

notion of a rooted tree.

Definition 3.3.1.1 (Rooted tree). A rooted tree τ consists of:
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• a finite set of vertices Vert(τ) represented as a disjoint union

Vert(τ) = Int(τ) t Leaves(τ) t {r},

where elements of the (possibly empty) set Int(τ) are called internal
vertices, elements of the (possibly empty) set Leaves(τ) are called leaves,
and the element r is called the root of τ , and denoted Root(τ), and

• a parent function

Parentτ : Vert(τ) \ {r} → Vert(τ),

for which

|Parent−1
τ (r)| = 1,

Parent−1
τ (l) = ∅ for each l ∈ Leaves(τ).

The only requirement imposed on this function is connectivity: for each
vertex v ∈ Vert(τ)\{r} there is a (unique) positive integer l and vertices
v0 = v, v1, . . . , vl = r, such that vi = Parentτ (vi−1) for all i = 1, . . . , l.
This number l is called the depth of the vertex v, and the sequence vl,
vl−1, . . . , v0 is referred to as the path from root to v.

An endpoint of a tree τ is a vertex v ∈ Vert(τ) for which Parent−1
τ (v) = ∅;

from the above conditions we see that each leaf of τ is an endpoint, but there
may be endpoints that are not leaves.

The only tree τ for which Int(τ) is empty is called the trivial tree.
Two rooted trees are said to be isomorphic if there is a map between their

sets of vertices that respects all the data described above.

Rooted trees are conventionally depicted by diagrams made of points, little
circles, and edges, that is, straight lines connecting points and circles. Each
point represents a leaf or the root, each little circle represents an internal ver-
tex, and each edge between v and v′ directed downward from v to v′ represents
the relation v′ = Parentτ (v). In particular, the root is always at the bottom
of the diagram.

Example 3.3.1.2. The following diagrams represent rooted trees:

,
∣∣∣ , , , , .

The second tree is the trivial tree. The last two trees are isomorphic.
The fourth diagram which we now represent with labels that give names

to all the vertices
v1 v2 v3

v4 v5

v6

v7
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represents a rooted tree τ for which

r = v7,

Leaves(τ) = {v1, v2},
Int(τ) = {v3, v4, v5, v6},

Parent(v1) = Parent(v2) = v4,

Parent(v3) = v5,

Parent(v4) = Parent(v5) = v6,

Parent(v6) = v7.

To represent operations with many arguments in this book, we will mostly
be using planar rooted trees, defined as follows.

Definition 3.3.1.3 (Planar rooted tree). A planar rooted tree τ is a rooted
tree together with a planar structure, i.e., a total order on the preimage
Parent−1

τ (v) for each v ∈ Vert(τ).
Two rooted trees are said to be isomorphic if there is a map between their

sets of vertices that respects all the rooted tree data and their respective
planar structures.

A planar structure of a tree τ induces a total order on the set of its end-
points as follows. Let e and e′ be two different endpoints of τ , and consider the
paths from the root to e and e′. Suppose that the first k vertices of those paths
coincide, and the k+1-st vertices, say vk+1 and v′k+1, are different. Under this
assumption, Parentτ (vk+1) = Parentτ (v′k+1), and hence the planar structure
allows to compare vk+1 and v′k+1. We say that e ≺ e′ if vk+1 ≺ v′k+1.

Throughout this book, we will be drawing planar rooted trees in the plane
in a way that the planar order on Parent−1

τ (v) is determined by ordering the
corresponding edges left-to-right.

Example 3.3.1.4. The trees

, and ,

viewed as planar rooted trees with the left-to-right planar structures are no
longer isomorphic.

3.3.2 Tree monomials and tree polynomials
Let us describe an explicit construction of the free nonsymmetric operad

with a given set of generators; for a formal categorical construction see [180].
Similarly to how free associative algebras are spanned by words, which can also
be viewed as decomposable tensors, free nonsymmetric operads are spanned
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by decorated trees, which are often viewed as “tree-shaped tensors”. Similarly
how individual letters of a word representing a monomial in the free associa-
tive algebra can be thought of as representing some linear transformations,
individual internal vertices of a tree represent multilinear operations; they
should be decorated accordingly.

Definition 3.3.2.1 (Operation alphabet). An operation alphabet is a collec-
tion X = {X (n)}n≥0 of finite sets X (n) indexed by nonnegative integers n.
The number n is referred to as arity of an element x ∈ X (n).

Throughout this chapter, unless otherwise specified, X denotes an arbi-
trary operation alphabet.

Definition 3.3.2.2 (Nonsymmetric tree monomial). A nonsymmetric tree
monomial in X is a pair T = (τ, x), where τ is a planar rooted tree and x is
a labelling of all internal vertices of τ by elements of X ; each vertex v must
have a label xv ∈ X (|Parent−1(v)|).

The tree monomial for which the underlying tree τ is the trivial tree is
called the trivial tree monomial, or the empty tree monomial.

The arity of a tree monomial T , denoted ar(T ), is the number of leaves
of τ , and its weight, denoted wt(T ), is the number of internal vertices of τ .

The set of all tree monomials in X of arity n is denoted TreeX (n). The
collection of all these sets for all n ≥ 0 is denoted TreeX .

Example 3.3.2.3. Suppose that

X (0) = {x, y}, X (1) = {a}, X (2) = {b, c}.

The following are examples of tree monomials in TreeX :

c

b
,

b

b
,

y

c x

b
,

y

c a

b

The first two of them have arity 3 and weight 2, the third one has arity 1 and
weight 4, and the last one has arity 2 and weight 4.

Definition 3.3.2.4. (Nonsymmetric tree polynomial) A nonsymmetric tree
polynomial in X with coefficients in F is a linear combination of nonsymmetric
tree monomials of the same arity. The support of a nonsymmetric tree polyno-
mial f , denoted supp(f), is the set of all nonsymmetric tree monomials that
appear in f with nonzero coefficients.

We denote the vector space of all nonsymmetric tree polynomials of arity n
by T (X )(n); of course we have T (X )(n) = FTreeX (n).
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3.3.3 Grafting trees and the free nonsymmetric operad
In the case of associative algebras, we use the intuitive notion of concate-

nation of words to define products. For operations, the notion that serves
a similar purpose is that of grafting of trees. We will discuss two different
types of graftings, full and partial; these correspond to compositions from
the classical definition of a nonsymmetric operad and partial compositions,
respectively.

Full grafting of planar trees τ1, . . . , τr to a planar tree τ0 corresponds, in
terms of our graphical representation, to joining the open edges corresponding
to the roots of τ1, . . . , τr with the open edges corresponding to leaves of τ0,
in the total planar order.

Definition 3.3.3.1 (Full grafting of planar rooted trees). Let τ0, τ1, . . . , τr
be planar rooted trees, and suppose that τ0 has r leaves. We define a planar
rooted tree τ0 ◦ (τ1, . . . , τr), called the result of full grafting of τ1, . . . , τr to τ0,
to be the planar rooted tree τ for which:

Root(τ) = Root(τ0),

Int(τ) =
r⊔
i=0

Int(τi),

Leaves(τ) =
r⊔
i=1

Leaves(τi).

The parent function and the planar structure on the thus defined set of vertices
are induced by the respective parent functions and planar structures of τi,
0 ≤ i ≤ r, with the following exceptions. For each j = 1, . . . , r, for the only
vertex vj in Parent−1

τj
(Root(τj)), we define

Parentτ (vj) := Parentτ0(`j),

where `j is the j-th leaf of τ0 in the total planar order on leaves induced from
the total planar order of endpoints of τ0. This means that

Parent−1
τ (Parentτ0(`j)) = {vj} t Parent−1

τ0 (Parentτ0(`j)) \ {`j};

the total order needed by the planar structure puts vj in the place of `j .

If all the grafted trees τi except for one are trivial, we end up with the
definition of partial grafting.

Definition 3.3.3.2 (Partial grafting of planar rooted trees). Suppose that
τ1 and τ2 are two rooted planar trees. Let ` ∈ Leaves(τ1). We define a planar
rooted tree τ1 ◦` τ2, called the result of partial grafting of τ2 to τ1 at `, as
follows. We put

Root(τ1 ◦` τ2) = Root(τ1),
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Int(τ1 ◦` τ2) = Int(τ1) t Int(τ2),
Leaves(τ1 ◦` τ2) = Leaves(τ1) t Leaves(τ2) \ {`}.

The parent function and the planar structure on the thus defined set of
vertices are induced by the respective parent functions and planar struc-
tures of τ1 and τ2 with two small exceptions. For the only vertex v in
Parent−1

τ2 (Root(τ2)), we define Parentτ1◦`τ2(v) = Parentτ1(`). This means that
Parent−1

τ1◦`τ2
(Parentτ1(`)) = {v}tParent−1

τ1 (Parentτ1(`)) \ {`}; the total order
needed by the planar structure puts v in the place of `.

Example 3.3.3.3. Let τ1 = and τ2 = . Various partial compo-

sitions of these trees are summarized in the following table:
τ1 ◦1 τ2 τ1 ◦2 τ2 τ2 ◦1 τ1 τ2 ◦2 τ1 τ2 ◦3 τ1

Grafting of trees allows us to give an explicit construction of free nonsym-
metric operads.
Definition 3.3.3.4 (Free nonsymmetric operad). Suppose that we
are given nonsymmetric tree monomials T0 = (τ0, x0) ∈ TreeX (r),
T1 = (τ1, x1) ∈ TreeX (n1), . . . , Tr = (τr, xr) ∈ TreeX (nr). We define the
nonsymmetric composition

T0 ◦ (T1, . . . , Tr)

to be the nonsymmetric tree monomial (τ, x), where

τ = τ0 ◦ (τ1, . . . , τr),

and the labelling x of Int(τ) =
⊔r
i=0 Int(τi) is given by the disjoint union of

labellings xj , 1 ≤ j ≤ r.
These nonsymmetric compositions may be extended by multilinearity to

the collection T (X ) = {T (X )(n)}n≥0 of all nonsymmetric tree polynomials of
all arities, giving operations

γ(r)
n1,...,nr

: T (X )(r)⊗ T (X )(n1)⊗ · · · ⊗ T (nr)→ T (X )(n1 + · · ·+ nr).

Equipped with these operations, T (X ) is the free nonsymmetric operad
generated by X . In addition to the notation T (X ), we will use the nota-
tion T (M), whereM = {M(n)}n≥0 is a collection of vector spaces for which
M(n) = span(X (n)) for all n ≥ 0.

Throughout this chapter, we only consider nonsymmetric tree monomi-
als and polynomials, so we will occasionally drop the word “nonsymmetric”,
hoping that it does not lead to confusion.
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3.3.4 Presentation by generators and relations
The analogue of First Homomorphism Theorem holds for nonsymmetric

operads, and we may utilize it to define presentations of operads. Suppose
that a nonsymmetric operad P is generated by a collection of operations
αi ∈ P(ni). In that case, we can consider the collection X of operations
κi ∈ X (ni), one operation for each generator of P. There is a surjective ho-
momorphism from the free nonsymmetric operad T (X ) onto P sending κi to
αi which is uniquely defined by the universal property of the free operad. By
the First Homomorphism Theorem, that homomorphism is the canonical map
onto the quotient of T (X ) by some ideal I.

Definition 3.3.4.1 (Ideal generated by a subset). Let P be a nonsymmetric
operad, and suppose that S ⊂ P is a subcollection. The ideal of P generated
by S, denoted by (S), is the smallest (by inclusion) ideal of P containing S.

We are now ready to define a presentation of a nonsymmetric operad.

Definition 3.3.4.2 (Presentation of a nonsymmetric operad). Suppose that
the nonsymmetric operad P is a quotient of the free operad T (X ) by some
ideal I, and that the ideal I is generated by the collection S. In this case, we
will say that the operad P is presented by generators X and relations S.

3.4 Normal forms
This section is a detailed account of [78, Sec. 2], which, in turn, adapts

methods of [74, 135] to nonsymmetric operads, including operads with arity
zero generators.

3.4.1 Monomial orders
Let us generalize the definition of a monomial order to the case of non-

symmetric tree monomials.

Definition 3.4.1.1 (Monomial order). A collection of total orders Ξn of
TreeX (n), n ≥ 0, is said to be a monomial order if the following two conditions
are satisfied:

• each Ξn is a well-order;

• each nonsymmetric composition is a strictly increasing function in each
of its arguments; that is if T0, T

′
0 ∈ TreeX (r), T1, T

′
1 ∈ TreeX (n1), . . . ,

Tr, T
′
r ∈ TreeX (nr), then

T0 ◦ (T1, . . . , Tr) ≺ T ′0 ◦ (T1, . . . , Tr) if T0 ≺ T ′0,
T0 ◦ (T1, . . . , Ti, . . . , Tr) ≺ T0 ◦ (T1, . . . , Ti, . . . , Tr) if Ti ≺ T ′i .
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Unless otherwise specified, throughout this chapter, we will give definitions
as well as state and prove all theoretical results for an arbitrary monomial
order Ξ.

We continue with an important construction of monomial orders. We de-
note X :=

⊔
n≥0
X (n). We will first explain how to replace every tree monomial

by a sequence of words in the alphabet X that transform in a controllable
way under composition.

Definition 3.4.1.2 (Path sequence of a nonsymmetric tree monomial). Let
T = (τ, x) be a tree monomial. For each endpoint e of τ in the total order
induced by the planar structure, we record the labels of internal vertices of
the path from the root of τ to e, forming a word in the alphabet X. The
sequence of these words, denoted Path(T ), is called the path sequence of the
tree monomial T .

Example 3.4.1.3. Suppose that

X (0) = {x, y}, X (1) = {a}, X (2) = {b, c}.

Let us consider the tree monomials from Example 3.3.2.3

c

b
,

b

b
,

y

c x

b
,

y

c a

b
.

The corresponding path sequences are, respectively,

(bc, bc, b), (b, bb, bb), (bc, bcy, bx), (bc, bcy, ba).

Note that the two path sequences (bc, bcy, bx) and (bc, bcy, ba) from the
example we just considered look deceptively similar, but if we recall that
the letter x corresponds to an operation of arity zero (that is, constants),
while the letter a corresponds to a unary operation, we instantly see that
the path sequences correspond to tree monomials whose underlying trees are
combinatorially different. This observation is the key to the following result.

Lemma 3.4.1.4. A tree monomial T = (τ, x) is uniquely determined by the
sequence Path(T ): if Path(T1) = Path(T2) = p, then T1 = T2.

Proof. We will prove this statement by induction on the sum of weights of all
words of the path sequence p in question. If that sum is equal to zero, the path
sequence is empty, and it corresponds to the trivial monomial. Assume that
the statement is proved for all path sequences for which the sum of weights
of words is at most k, and consider some path sequence with the sum of
weights k + 1. Let w be the maximal weight of words in p, and let pi be the
first word of weight w, so that wt(pj) < w for j < i. If the word pi ends
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with an element x ∈ X (0), then the i-th endpoint of both T1 and T2 is an
internal vertex labelled by x, so we can chop that letter off the i-th word
of p, obtaining a sequence p′, reconstruct T ′1 = T ′2, and proceed by induction.
Therefore, we may assume that the last letter x of pi belongs to X (k) for
some k > 0. This means that in both T1 and T2 the parent of the leaf i (in
the total planar order) is a vertex v with |Parent−1(i)| = k; moreover, the
condition that i is the first position where the weight w occurs implies that
the leaf i is the minimal element of Parent−1(i) in the planar structure, and
the maximality of w also implies that other elements of Parent−1(i) are leaves
as well. Therefore, we can replace the words pi = · · · = pi+k−1 by a single
word obtained by chopping the last letter off pi, thus obtaining a sequence p′,
reconstruct T ′1 = T ′2, and proceed by induction.

Definition 3.4.1.5 (Path extension). Suppose that Ξ is a monomial order
on X∗. The path extension of Ξ is the degree-lexicographic order on path
sequences that is derived from Ξ. In other words:

• if for two tree monomials T1 = (τ1, x1) and T2 = (τ2, x2) the number
of endpoints of τ1 is less than the number of endpoints of τ2, we put
T1 ≺ T2;

• if τ1 and τ2 have the same numbers of endpoints, we compare the se-
quences Path(T1) and Path(T2) word by word, comparing words using
the order Ξ.

Proposition 3.4.1.6. The path extension of any monomial order Ξ, viewed
as an order of tree monomials, is a monomial order.

Proof. From Lemma 3.4.1.4 it follows immediately that the path extension
is a total order of tree monomials. The fact that it is a well-order is clear
from the same assumption on the order Ξ. Finally, let us prove that each
nonsymmetric composition is strictly increasing in each of its arguments. Let
us note that the endpoints of a tree τ are its leaves and its internal vertices v
with Parent−1(v) = ∅. On the level of sequences, it is easy to distinguish
between the two: words that correspond to non-leaf vertices end with elements
of X (0). With that in mind, let us observe that for tree monomials

T0 = (τ0, x0), T1 = (τ1, x1) , . . . , Tr = (τr, xr),

we obtain the sequence Path(T0 ◦ (T1, . . . , Tr)) as follows:

• first record the words corresponding to endpoints of T0 before its first
leaf,

• then the words obtained by concatenating the word corresponding to
the first leaf of T0 with each of the words of Path(T1),

• then the words corresponding to endpoints of T0 before its second leaf,
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• then the words obtained by concatenating the word corresponding to
the second leaf of T0 with each of the words of Path(T2),

• . . .

• then the words corresponding to endpoints of T0 before its r-th leaf,

• then the words obtained by concatenating the word corresponding to
the r-th leaf of T0 with each of the words of Path(Tr),

• and finally the words corresponding to endpoints of T0 after its r-th leaf.

Since the order Ξ is assumed increasing in each argument for the concatenation
product, the statement follows.

Definition 3.4.1.7 (Graded path lexicographic order). Let us fix some or-
der Ξ of X :=

⊔
n≥0
X (n). The graded path lexicographic order of tree mono-

mials, denoted gpathlex, is the path extension of the glex order induced
by Ξ.

Example 3.4.1.8. Let X2 = {a}. For the gpathlex order, we have

a

a

a

≺
a

a

a

≺
a a

a
≺

a

a

a

≺
a

a

a

.

This follows from comparing the corresponding path sequences

(a, a2, a3, a3) ≺ (a, a3, a3, a2) ≺ (a2, a2, a2, a2) ≺
≺ (a2, a3, a3, a) ≺ (a3, a3, a2, a).

Remark 3.4.1.9. Suppose that X (0) = X (1) = ∅, and that for each n
the set X (n) is finite. Under this assumption, if a total order Ξ of words in
the alphabet X is such that the concatenation product is increasing in each
argument, then the path extension of Ξ is a monomial order even if Ξ is not
a well-order. The reason for that is that under our assumption there are only
finitely many tree monomials with the given number of endpoints, and so the
well-order property of the path extension is obtained for free.

3.4.2 Long division
In the case of associative algebras, it was crucial to have two views of

divisibility of words; one can define divisibility in terms of structure operations
of an algebra, as well as combinatorially, as inclusion of a subword. Both
definitions are immensely useful: the first one is meaningful, while the second
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one allows one to work with divisibility algorithmically. We will now explain
how the same is done for nonsymmetric operads. First of all, the notion of a
subword of a word becomes, in the case of operations, the notion of a subtree
of a given tree.

Definition 3.4.2.1 (Subtree of a planar rooted tree). Let τ be a rooted
tree. Suppose that V ′ ⊂ Int(τ) is a nonempty subset satisfying the following
properties:

• there exists just one vertex v′ ∈ V ′ for which Parentτ (v′) is not in V ′,

• for each vertex v′′ ∈ V ′ there is a (unique) nonnegative integer l and
vertices v0 = v′, v1, . . . , vl = v′′, such that vi = Parentτ (vi−1) for all
i = 1, . . . , l,

• for each vertex v′′ in V ′ the preimage Parent−1
τ (v′) is either contained

in V ′ or is disjoint from V ′.

Each such subset V ′ defines a planar rooted tree τ ′ called a subtree of τ . We
put

Root(τ ′) = Parentτ (v′),
Int(τ ′) = V ′,

Leaves(τ ′) =
( ⋃
v′∈V ′

Parent−1
τ (V ′)

)
\ V ′,

and use the induced parent function and the induced planar structure on the
thus defined set of vertices. If Parentτ (v′) = r, we say that the subtree τ ′ and
the ambient tree τ share the root. If Int(τ ′) is a proper subset of Int(τ), we
say that τ ′ is a proper subtree of τ .

Example 3.4.2.2. In each of the following trees, the vertices connected by

dotted lines form a subtree isomorphic to :

, , .

Definition 3.4.2.3 (Maximal subtree). Let τ be a planar rooted tree, and let
v ∈ Int(τ). Consider the set of all vertices v′ of τ for which the path from v′ to
the root contains r′ := Parent(v). This set of vertices satisfies the conditions of
Definition 3.4.2.1, and therefore defines a subtree τ ′ of τ . We call this subtree
the maximal subtree of τ rooted at r′.

The following definition of divisibility is a combinatorial definition gener-
alizing occurrence of a subword.
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Definition 3.4.2.4 (Divisibility of tree monomials). A tree monomial
T1 = (τ1, x1) is divisible by a (nontrivial) tree monomial T2 = (τ2, x2) if
the tree τ1 contains a subtree τ ′1 isomorphic to the tree τ2, and the labels of
internal vertices of that subtree in the monomial T1 match the labels of τ2 in
the monomial T2.

Example 3.4.2.5. Let X = {a, b}. The monomial

a b

a
∈ T (X )(4)

has two different divisors of weight 2: the “left divisor”
a

a
and the

“right divisor”
b

a
. In comparison, the tree monomial

a

a

a

∈ T (X )(4)

has two divisors which are both occurrences of the monomial
a

a
.

Let us prove that the notion of divisibility we just introduced matches the
notion of divisibility coming from the existing algebraic structure on T (X ).

Proposition 3.4.2.6. Let T1 = (τ1, x1) and T2 = (τ2, x2) be two tree mono-
mials. Then T1 is divisible by T2 if and only if it can be obtained from T2 by
iterated nonsymmetric compositions with elements of T (X ).

Proof. If T1 can be obtained from T2 by iterated nonsymmetric compositions,
the set of all internal vertices of T1 which come from T1 define an appropriate
subtree with matching labels. Suppose that τ1 contains a subtree τ ′1 rooted
at some vertex r′ which is isomorphic to τ2, and that labels of that subtree
match x2.

If T1 = T2, then there is nothing to prove. Let us first demonstrate that it
is enough to consider the case where τ ′1 and τ1 share a root. Otherwise, let us
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consider τ ′′1 , the maximal subtree of τ1 rooted at r′, and the tree monomial
T = (τ, x) obtained from T1 by collapsing τ ′′1 :

Root(τ) = Root(τ1),
Int(τ) = Int(τ1) \ Int(τ ′′1 ),

Leaves(τ) = {Parent−1
τ1 (r′)} t Leaves(τ1) \ Leaves(τ ′′1 )x = x1|Int(τ).

It is clear that T1 = T ◦` T ′, where ` = Parent−1
τ1 (r′), and T ′ = (τ ′′1 , x1|Int(τ ′′)),

and T2 is a divisor of T ′ that shares the root with T ′. Now consider the set
leaves of τ ′1 which we now view as a subtree of τ ′′1 . For each of these leaves which
is not a leaf of τ ′′1 , we can collapse the subtree of τ ′′1 rooted at the parent of
that leaf, as above. This represents T ′ as a nonsymmetric composition of T2
with the tree monomials whose underlying trees were collapsed during this
process.

Definition 3.4.2.7 (Insertion into a tree monomial). Suppose that T1 and T2
are tree monomials, and T1 is divisible by T2. In this case, there is an insertion
operation

�T1,T2 : T (X )(ar(T2))→ T (X )(ar(T1)).
If T = (τ, x) is a tree monomial of the same arity as T2, the insertion operation
replaces the subtree τ ′1 by τ (ensuring that each subtree of τ1 that was grafted
at a certain leaf of τ ′1 gets grafted at the respective leaf of τ), and changing
labels of internal vertices accordingly. Then, this operation is extended by
linearity to all tree polynomials of the same arity.

Remark 3.4.2.8.

• Our notation is not completely precise, since there may be several differ-
ent divisors T2 inside T1. We always assume that the operation �T1,T2

inserts everything at a particular occurrence of T2 inside T1 which is
implicit.

• Proposition 3.4.2.6 shows that in fact the operation �T1,T2 can be ex-
pressed as an iterated nonsymmetric composition; we however believe
that thinking of it as an insertion is a very helpful bit of intuition.

Example 3.4.2.9. Let X = {a, b}. Consider the tree monomial

T =
a

a

a

∈ T (X )(4)

from Example 3.4.2.5. This monomial has two occurrences of
a

a
as a
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divisor; let us denote the one sharing the root with T by T1, and the other
one by T2. We have

�T,T1

 b

a

 =
a b

a
,

�T,T2

 b

a

 =
b

a

a

.

One very useful feature of the insertion operations is that they allow us
to give an explicit description of an ideal generated by a given collection S in
the free operad which is a suitable replacement of the description “the ideal
(S) is the linear span of all elements r1sr2 for all r1, r2 ∈ T (X), s ∈ S” which
we had in the associative case.

Proposition 3.4.2.10. Let S ⊂ T (X ). The ideal (S) generated by S can be
described explicitly as the linear span of all insertions �T1,T2(f), where T1 is
a monomial, T2 is a divisor of T1, and f ∈ S(ar(T2)).

Proof. The ideal (S) is spanned by iterated nonsymmetric compositions where
at least one of the elements involved belongs to S; by multilinearity of compo-
sitions, we may assume that all other elements are monomials, in which case
the corresponding iterated composition is the insertion operation.

The following proposition is clear from the definition. It expresses another
type of associativity exhibited by operads, related to the monadic definition
of an operad, see [180].

Proposition 3.4.2.11. Let

T ∈ TreeX (n), T1, T
′
1 ∈ TreeX (n1), T2 ∈ TreeX (n2),

and suppose that T1 is a divisor of T and T2 is a divisor of T ′1. Then

�T,T1 ◦�T ′1,T2 = ��T,T1 (T ′1),T2 . (3.6)

In particular, if T1 = T ′1, this simplifies to

�T,T1 ◦�T1,T2 = �T,T2 . (3.7)

Let us show that under the insertion operations, the leading monomials
change in a controllable way.
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Proposition 3.4.2.12. Suppose that T1 is a tree monomial, and T2 is a
divisor of T1. Then for each g ∈ T (X )(ar(T2)), we have

lm(�T1,T2(g)) = �T1,T2(lm(g)). (3.8)

Proof. Let us first check that for any nonzero elements

f0 ∈ T (X )(r), f1 ∈ T (X )(n1), . . . , fr ∈ T (X )(nr),

we have

lm(f0 ◦ (f1, . . . , fr)) = lm(f0) ◦ (lm(f1), . . . , lm(fr)).

Since the composition products on T (X ) are multilinear, the element
f0 ◦(f1, . . . , fr) is equal to a linear combination of elements m0 ◦(m1, . . . ,mr),
where mp ∈ supp(fp). It remains to notice that for each mp 6= lm(fp) we have
mp ≺ lm(fp), so by the defining property of monomial orders we have

m0 ◦ (m1, . . . ,mr) ≺ lm(f0) ◦ (lm(f1), . . . , lm(fr)),

unless m0 = lm(f0), m1 = lm(f1), . . . , mr = lm(fr).
Now, the element �T1,T2(g) is obtained from g by an iteration of nonsym-

metric compositions, and the result follows.

Definition 3.4.2.13 (Reduced monomials and polynomials). Let S be a sub-
set of T (X ). A tree monomial T is said to be reduced with respect to S if
T /∈ (lm(S)); in other words, if T is not divisible by any of the leading mono-
mials of elements of S.

In general, a tree polynomial f is said to be reduced with respect to S if
it is equal to a linear combination of tree monomials which are reduced with
respect to S. A subset S ⊂ T (X ) is said to be self-reduced if each element
s ∈ S is monic and reduced with respect to S \ {s}.

Definition 3.4.2.14 (Reduction). Let f, g ∈ T (X ) be two nonzero elements.
We say that f is reducible with respect to g if lm(f) is not reduced with
respect to {g}, or, in plain words, if the leading monomial of f is divisible by
the leading monomial of g, that is,

lm(f) = �T1,T2(lm(g))

for some tree monomials

T1 ∈ TreeX (ar(lm(f))), T2 ∈ TreeX (ar(lm(g))).

In that case, the reduction of f with respect to g, denoted by rg(f), is defined
by the formula

rg(f) = f − lc(f)
lc(g)�T1,T2(g).
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Lemma 3.4.2.15. For all elements f, g ∈ T (X ) such that rg(f) is defined,
we have

rg(f) = 0 or lm(rg(f)) ≺ lm(f).

Proof. Indeed, by construction we have

lt(f) = lt
(

lc(f)
lc(g)�T1,T2(g)

)
.

One can view a reduction as one step of a version of the long division
algorithm. We make it more precise as follows.

Algorithm 3.4.2.16 (Long division for nonsymmetric operads).

Input: An element f ∈ T (X ), and a finite set S ⊂ T (X ).

Output: An element f̃ , reduced with respect to S, for which
lt(f̃) � lt(f) such that f + (S) = f̃ + (S).

• If f = 0, return f .

• Replace S by its linear self-reduction (Proposition 1.2.1.6).

• If D := {s ∈ S : lm(f) is divisible by lm(s)} 6= ∅, take s0 ∈ D with
the least leading monomial (such s0 is unique since S is linearly self-
reduced), and return the result of long division of f ′ := rs(f) by
S.

• Otherwise, lm(f) is reduced with respect to S, so let f̃ be the result
of long division of f ′ := f − lt(f) by S; return lt(f) + f̃ .

Lemma 3.4.2.17. For every f ∈ T (X ), the long division algorithm termi-
nates in a finite number of steps. Its output is an element f̃ reduced with
respect to S, for which lt(f̃) � lt(f) and

f + (S) = f̃ + (S).

Proof. By Lemma 3.4.2.15, the leading monomial of the dividend (the element
that the algorithm is applied to) decreases at each step, so termination follows
from the fact that Ξ is a well-order. This also proves the second claim about
the output. Suppose that for some f the output is not reduced. Let us pick
among such f an element with the smallest leading monomial (again using
the well-order Ξ). If lm(f) is not reduced with respect to S, then the first
step applies the same algorithm to f ′ = rs(f), and by Lemma 3.4.2.15 we
have f ′ = 0 or lm(f ′) ≺ lm(f), so the output of the long division is reduced.
If lm(f) is reduced, then the second step of the algorithm applies the same
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algorithm to f ′ = f − lt(f), so f ′ = 0 or lm(f ′) ≺ lm(f), and the output of
the long division is reduced, a contradiction. Finally, note that each reduction
subtracts an element in (S), which justifies the claim about the coset, and
completes the proof.

Remark 3.4.2.18. We see that in fact there is nothing particularly problem-
atic if S is an infinite self-reduced set: it is clear from the proof of Lemma
3.4.2.17 that for the given f ∈ T (X ) the elements s ∈ S which we use at
various steps of our computation have decreasing leading monomials, and so
there can be only finitely many reductions performed; that is, for each f we
never use more than a finite subset of S. While for purposes of implementation
this is not particularly important, it will be beneficial for theoretical results
where S may be infinite.

We will now establish that the set of elements that are reduced with respect
to I is a suitable candidate for the set of normal forms for the elements of the
quotient T (X )/I. This is an improvement of Lemma 1.2.1.3 which takes into
account the extra structures we have on the underlying vector spaces.

Lemma 3.4.2.19. Suppose that I is an ideal of T (X ). Monomials that are
reduced with respect to I form a basis of the quotient T (X )/I.

Proof. Let us first prove the spanning property. For that, it is enough to show
that the coset f + I of every element f ∈ T (X ) contains an element that
is reduced with respect to I. This is true, since we can take f̃ to be the
result of long division of f with respect to I, which is reduced and satisfies
f̃ + I = f + I.

It remains to prove linear independence. For that, note that if f 6= 0 ∈ I,
then lm(f) ∈ lm(I), so f is not even linearly reduced with respect to I, so I
does not contain nonzero reduced elements.

It is possible to use long division to find, for each finite set, a finite self-
reduced set that generates the same ideal.

Algorithm 3.4.2.20 (Self-reduction for nonsymmetric operads).

Input: A finite subset S ⊂ T (X ).

Output: A finite self-reduced subset S ′ ⊂ T (X ) with (S) = (S ′).

• Replace S by its linear self-reduction.

• If S is self-reduced, return S.

• Let s be the element of S with the maximal leading monomial, and
compute the self-reduction S ′ of S \ {s}.

• Compute s̃, the result of long division of s by S ′.

• Compute the self-reduction of S ′ ∪ {s̃}.
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We leave it as an exercise (Exercise 3.1) for the reader to check that for
each finite S this algorithm terminates after finitely many steps (in which case
it of course outputs a finite self-reduced set).

3.4.3 Gröbner bases
Proposition 3.4.3.1. Let I be an ideal of T (X ). The space of leading terms
lt(I) is an ideal of T (X ).

Proof. By definition, lt(I) is a subspace, so we just have to show that each
nonsymmetric composition of several elements belongs to lt(I) whenever at
least one of the elements belongs to lt(I). Since the operations are multilinear,
it is enough to consider the case of several monomials

T0 ∈ T (X )(r), T1 ∈ T (X )(n1), . . . , Tr ∈ T (X )(nr),

one of which, say, T1, is the leading monomial of some element f1 of I. From
the proof of Proposition 3.4.2.12, in this case we have

lm(T0 ◦ (f1, T2, . . . , Tr)) = T0 ◦ (T1, . . . , Tr),

and therefore T0 ◦ (T1, . . . , Tr) ∈ lt(I).

We are now ready to define a Gröbner basis of an ideal.

Definition 3.4.3.2 (Gröbner basis). Let I be an ideal of T (X ). We say that
G = {G(n) ⊂ I(n)} is a Gröbner basis of I with respect to a given monomial
order Ξ if the set of leading monomials lm(G) := {lm(g) : g ∈ G} generates
the leading term ideal of the ideal I:

lt(I) = (lm(G)).

A Gröbner basis which is a self-reduced subset of T (X ) is said to be reduced.

Lemma 3.4.3.3. A Gröbner basis of an ideal I ⊂ T (X ) generates I.

Proof. Suppose that G is a Gröbner basis of I, and that (G) is a proper subset
of I. (Clearly, (G) ⊂ I since (G) is the smallest ideal containing G.) Let us take
f ∈ I \ (G) with the least possible leading monomial. Since lm(f) ∈ lt(I),
there exists g ∈ G for which lm(f) is divisible by lm(g). Then rg(f) is defined
and belongs to I, and by Lemma 3.4.2.15, we have lm(rg(f)) ≺ lm(f), so
rg(f) ∈ (G) by minimality of f . But this implies f ∈ (G), since rg(f) is
obtained by subtracting an element of (G) from f , which is a contradiction.

Proposition 3.4.3.4. Let I be an ideal of T (X ). Then G ⊂ I is a Gröbner
basis if and only if the cosets of monomials that are reduced with respect to G
form a basis of the quotient T (X )/I.
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Proof. Let us note that the cosets of monomials that are reduced with respect
to G form a basis of the quotient T (X )/I if and only if every coset modulo I
contains a unique element that is reduced with respect to G.

First of all, we remark that if f ∈ T (X ), then f̃ , the result of the long
division of f by G, is reduced, and f̃ + (G) = f + (G) ⊂ f + I, so every coset
contains at least one reduced element whether G is a Gröbner basis or not.

Suppose now that G is a Gröbner basis of I. Suppose that the cosets of
reduced monomials are linearly dependent, or, in other words, that the zero
coset I contains a nonzero reduced element f . In that case, lm(f) ∈ lt(I) is
reduced with respect to G, which is a contradiction.

Suppose that G is not a Gröbner basis. This implies that there exists an
element f ∈ I for which lm(f) is reduced with respect to G. Let f̃ be the result
of the long division of f by G. Clearly, f̃ is a nontrivial linear combination
of reduced monomials, so the cosets of reduced monomials are in this case
linearly dependent.

Corollary 3.4.3.5. Suppose that G is a Gröbner basis of the ideal I ⊂ T (X ).
Then the result of long division of f ∈ T (X ) by G does not depend on either
the choices or the order of the reductions performed.

Proof. Suppose that two different choices of order of reductions yield two
different results. In this case, the coset f + I contains two different elements
that are reduced with respect to G, hence reduced monomials are linearly
dependent, a contradiction.

We summarize Proposition 3.4.3.4 and its corollary as follows.

Theorem 3.4.3.6.

(i) Let I be an ideal of T (X ). A sequence of subsets G ⊂ I is a Gröbner
basis if and only if the normal forms modulo I are precisely the elements
that are reduced with respect to G.

(ii) Suppose that G is a Gröbner basis of the ideal I ⊂ T (X ). Given an
element f ∈ I, its normal form modulo I can be computed using long
division by G. In fact, in this long division the order of reductions can
be chosen arbitrarily.

Proposition 3.4.3.7. Each ideal I ⊂ T (X ) has a unique reduced Gröbner
basis.

Proof. Let us first prove uniqueness. If G is a Gröbner basis, then
lt(I) = (lm(G)); if G, in addition, is reduced, then lm(G) ⊂ lm(I) must
coincide with the set M of all elements T ∈ lm(I) that are not divisible
by other elements of lm(I). (In other words, M is the set of minimal ele-
ments of lm(I)) with respect to the partial order of divisibility.) Indeed, each
T ∈M ⊂ lm(I) must be divisible by a leading term of an element g ∈ G, and
by definition ofM, this can only happen if lm(g) = T , soM⊂ lm(G). Also, if
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g ∈ lm(G)\M, then lm(g) is divisible by T ′ for some T ′ ∈ lt(I) by definition
ofM, and T ′ is divisible by lt(g′) for some g′ ∈ G by definition of a Gröbner
basis, so since G is reduced, we have g = g′, and lm(g) = T , a contradiction.
Moreover, since G is reduced, then for each T ∈ M = lm(G) there exists a
unique element g ∈ G with lm(g) = T ; for such g we have g = T − h, where
h is reduced with respect to I. Finally, this element h must be equal to the
unique element in the coset T + I that is reduced with respect to I.

Now we will prove existence. As we have just seen, the only feasible can-
didate for G is the set of all elements of the form T − h, where T ∈ M, and
h is the unique element in the coset T + I that is reduced with respect to I.
This set G is self-reduced by construction. Note that every element of lm(I)
is divisible by some element T ∈ M; indeed, the smallest element which is
not divisible by any element ofM is either not divisible by any other element
of lm(I), and hence must be inM, or is divisible by some (smaller) element,
and hence has a divisor fromM; either way we get a contradiction. Therefore,
lt(I) = (M) = (lm(G)), which shows that G is a Gröbner basis.

3.5 Computing Gröbner bases
In this section, we will explain how to compute Gröbner bases for ideals of

T (X ). As in Chapter 2, some ideals have infinite Gröbner bases, so the word
“algorithm” should be taken with a grain of salt.

3.5.1 Diamond lemma
To define S-polynomials for trees, we need to make precise what we mean

by overlaps of trees.

Definition 3.5.1.1 (Overlap of planar trees). An overlap of two planar trees
τ1 and τ2 is the data of a nontrivial rooted tree τ and isomorphisms fi : τ → τ ′i
where τ ′i is a subtree of τi, i = 1, 2, satisfying the following properties:

• at least one of τ ′i shares the root with τi,

• f−1
1 (Int(τ1)) ∪ f−1

2 (Int(τ2)) = Int(τ), but f−1
1 (Int(τ1)) 6= Int(τ) and

f−1
2 (Int(τ2)) 6= Int(τ), and also f−1

1 (Int(τ1)) ∩ f−1
2 (Int(τ2)) 6= ∅ (each

internal vertex of τ is an internal vertex in at least one of τi, not all
internal vertices are internal vertices of just one of them, and at least
one of internal vertices is an internal vertex of both, so the overlap is
nontrivial),

• for each ` ∈ Leaves(τ), at least one of the f1(`) and f2(`) is a leaf in τi,

• at least one of τ ′i is a proper subtree of τi.
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Two planar rooted trees that have an overlap can be merged along it by iden-
tifying the vertices of τ ′1 with the corresponding vertices of τ ′2, and consider
the naturally induced parent function and planar structure. The overlap con-
ditions guarantee that the result of that identification is a planar rooted tree
again.
Example 3.5.1.2. Let us consider the three trees

, ,

from Example 3.4.2.2. Each two of those trees form an overlap (the dashed
edges mark the common parts). Merging the first and the second one (respec-
tively, the first and the third one, the second and the third one) along their
overlap, we obtain, respectively, the trees

, , .

Definition 3.5.1.3 (S-polynomial). Let g1, g2 ∈ T (X ) be two monic polyno-
mials. We say that the leading monomials lm(g1) and lm(g2) form an overlap
if they have a small common multiple, a tree monomial T and its two proper
divisors T1 and T2 for which

lm(g1) = T1, lm(g2) = T2,

and the underlying tree of T is the result of merging of the underlying trees
of T1 and T2 along an overlap. We call the element

ST (g1, g2) := �T,T1(g1)−�T,T2(g2)

an S-polynomial of g1 and g2; the common term cancels, since both g1 and g2
are monic.

Example 3.5.1.4. Let g1 = g2 = − , and suppose we are using

the gpathlex order. Then is the leading monomial; as we know from

Example 3.5.1.2, it has an overlap with itself. The corresponding S-polynomial
is equal to

(
g1 ◦1

)
−

(
◦1 g2

)
= − .
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We will now prove the result which is at the core of most feasible ways to
check that some subset of an ideal is a Gröbner basis.

Definition 3.5.1.5 (Parameter of a representation). Let I = (G) be an ideal
of T (X ). Consider the representation of an element f ∈ I as a combination
of insertions of g1, . . . , gN ∈ G:

f =
N∑
i=1

ci�T̃i,Ti
(gi), (3.9)

where Ti = lm(gi). We call max(T̃i) the parameter of this linear combination.
If f = ST (g1, g2) is the S-polynomial of g1, g2 ∈ G (with all the notation

as above in Definition 3.5.1.3), then it has an obvious representation

f = �T,T1(g1)−�T,T2(g2),

with parameter T . We call a representation of that S-polynomial nontrivial if
its parameter is smaller than T .

Theorem 3.5.1.6 (Diamond lemma). Let G ⊂ T (X ) be self-reduced, and let
I = (G). The following statements are equivalent:

(i) G is a Gröbner basis of I.

(ii) Every S-polynomial ST (g1, g2) has reduced form 0 with respect to G.

(iii) Every S-polynomial ST (g1, g2) admits a nontrivial representation of the
form (3.9).

(iv) Every element f ∈ I admits a representation of the form (3.9) with
parameter lm(f).

Proof. We will prove the chain of implications (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i).
(i) implies (ii): Note that each S-polynomial belongs to I, and each

element of I has reduced form 0 with respect to G for a Gröbner basis.
(ii) implies (iii): If each S-polynomial has reduced form 0 with respect

to G, we record all the steps of long division of ST (g1, g2) by G, and obtain a
representation of the desired form.

(iii) implies (iv): This is the hardest part of the proof. Suppose the
statement (iv) is not true for some f ∈ T (X ). If we drop the assumption
on the parameter of the representation, then the statement is obvious, since
I = (G). In general, in a representation of the form (3.9), lm(f) may be
smaller than max

i
(T̃i) because some leading terms may cancel. Suppose that

for each representation of f of that form we have lm(f) ≺ max
i

(T̃i). Let us
consider the “most economic counterexample”; in other words, we assume:
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• that f does not have a representation of the form (3.9) with
lm(f) = max

i
(T̃i),

• that among the representations of the form (3.9), we consider the one
where the parameter T = max

i
(T̃i) is the least possible;

• that among the representations with the parameter T , the number of i
for which T̃i is equal to T is the least possible.

Without the loss of generality, we have T̃i = T for i = 1, . . . , k, and T̃i ≺ T for
i > k. Clearly, k ≥ 2, in order for the leading monomials of this combination
to cancel each other so that the resulting leading monomial is equal to lm(f).
Clearly, both Tk−1 = lm(gk−1) and Tk = lm(gk) are divisors of T . Let us
examine the relative position of the underlying trees of those divisors. In
general, given two different subtrees of the same tree, one may be a subtree
of the other, they may overlap, or they may be disjoint.

The first of these possibilities is especially easy to handle: since G is as-
sumed self-reduced, this can only happen if gk−1 = gk, and the divisors Tk−1
and Tk coincide. In this case, the two terms ck−1�T,Tk−1(gk−1) + ck�T,Tk

(gk)
can be merged into a single term (ck−1 + ck)�T,Tk−1(gk−1), resulting in a rep-
resentation for f where either the parameter is smaller (that happens if k = 2
and ck−1 + ck = 0) or the parameter is the same, but k is smaller, which is a
contradiction.

Suppose that Tk−1 and Tk overlap inside T . Let us denote by T ′ the corre-
sponding small common multiple; it is still a divisor of T . Let us rewrite the
sum

ck−1�T,Tk−1(gk−1) + ck�T,Tk
(gk)

using Equation (3.7):

ck−1�T,Tk−1(gk−1) + ck�T,Tk
(gk) =

ck−1�T,T ′ ◦�T ′,Tk−1(gk−1) + ck�T,T ′ ◦�T ′,Tk
(gk) =

�T,T ′
(
ck−1�T ′,Tk−1(gk−1) + ck

(
�T ′,Tk−1(gk−1)− ST ′(gk−1, gk)

))
=

�T,T ′
(
(ck−1 + ck)�T ′,Tk−1(gk−1)

)
− ck�T,T ′(ST ′(gk−1, gk)) =

(ck−1 + ck)�T,Tk−1(gk−1)− ck�T,T ′(ST ′(gk−1, gk)) (3.10)

We assumed that every S-polynomial has a nontrivial representation

ST ′(gk−1, gk) =
N ′∑
i=1

c′i�T̃i
′
,T ′

i

(gi),

with max
i

(T̃i
′
) ≺ T ′. Substituting this into (3.10), we obtain

ck−1�T,Tk−1(gk−1) + ck�T,Tk
(gk) =



Nonsymmetric Operads 95

(ck−1 + ck)�T,Tk−1(gk−1)− ck�T,T ′

 N ′∑
i=1

c′i�T̃i
′
,T ′

i

(gi)

 . (3.11)

Replacing the terms

ck−1�T,Tk−1(gk−1) + ck�T,Tk
(gk)

in the minimal counterexample by the right-hand side of (3.11), we obtain a
representation for f where either the parameter is smaller (that happens if
k = 2 and ck−1 +ck = 0) or the parameter is the same, but k is smaller, which
is a contradiction. (To justify that, one should use Equation (3.6) and Propo-
sition 3.4.2.12; we leave it to the reader to fill in the details in Exercise 3.2.)

Suppose that Tk−1 and Tk are disjoint inside T , so that the bilinear oper-
ation

�T,Tk−1,Tk
: T (X )(ar(Tk−1))⊗ T (X )(ar(Tk))→ T (X )(ar(T ))

inserting arbitrary elements in places of T1 and T2 inside T is defined. Note
that

�T,Tk
(gk) = �T,Tk−1,Tk

(lm(gk−1), gk) =
�T,Tk−1,Tk

(gk−1 − g′k−1, gk) = �T,Tk−1,Tk
(gk−1, gk)−�T,Tk−1,Tk

(g′k−1, gk) =
�T,Tk−1,Tk

(gk−1, lm(gk)) + �T,Tk−1,Tk
(gk−1, g

′
k)−�T,Tk−1,Tk

(g′k−1, gk) =
�T,Tk−1(gk−1) + �T,Tk−1,Tk

(gk−1, g
′
k)−�T,Tk−1,Tk

(g′k−1, gk),

where we use the notation gk−1 = lm(gk−1) + g′k−1 and gk = lm(gk) + g′k.
Therefore,

ck−1�T,Tk−1(gk−1) + ck�T,Tk
(gk) =

(ck−1 + ck)�T,Tk−1(gk−1) + ck
(
�T,Tk−1,Tk

(gk−1, g
′
k)−�T,Tk−1,Tk

(g′k−1, gk)
)

where the terms

�T,Tk−1,Tk
(gk−1, g

′
k)−�T,Tk−1,Tk

(g′k−1, gk),

using Equation (3.6) and Proposition 3.4.2.12, can be expanded as a linear
combination of elements �T ′,Ti(gi) with the leading monomial smaller than T .
Therefore, as in the case of an overlap, we can join together two contribu-
tions to the leading monomial T at the cost of increasing the number of
terms �T ′,Ti

(gi) with the smaller leading monomial, so we obtain a repre-
sentation for f where either the parameter is smaller (that happens if k = 2
and ck−1 + ck = 0) or the parameter is the same, but k is smaller. This
contradiction completes the proof of the present implication.

(iv) implies (i): For such a representation of an element f , we have

lm(f) = lm(�T,Ti(gi)) = �T,Ti(lm(gi)),

for some i, so lm(f) is divisible by lm(gi). Since this is assumed true for every
f ∈ I, it follows that G is a Gröbner basis.
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3.5.2 The Buchberger algorithm
Theorem 3.5.1.6 leads naturally to a recipe for computing reduced Gröbner

bases: given a set of generators of an ideal, one has to compute all pairwise
S-polynomials, adjoin all reduced forms of those to the set of generators, and
repeat the same. It is rather a “recipe” than an algorithm since we are not
guaranteed termination, but it is nevertheless very useful.

Algorithm 3.5.2.1 (Buchberger algorithm for nonsymmetric operads).

Input: A finite subset G ⊂ T (X ) generating an ideal I ⊂ T (X ).

Output: If terminates, the output is the reduced Gröbner basis of I.

• Set newSpolynomials← true.

• While newSpolynomials do:

– Sort G by gpathlex order of leading monomials:
G = {g1, . . . , gn}.

– Compute the self-reduction of G.
– Set Spolynomials← ∅.
– Set newSpolynomials← false.
– For g1 ∈ G do for g2 ∈ G do:
∗ If lm(g1) and lm(g2) form an overlap then:

1. Compute the S-polynomial ST (g1, g2).
2. Let t be the result of long division of ST (g1, g2) by G.
3. If t 6= 0 and t /∈ Spolynomials then
∗ Set newSpolynomials← true.
∗ Set Spolynomials← Spolynomials ∪ {t}.

– Set G ← G ∪ Spolynomials.

• Return G.

Proposition 3.5.2.2. If Algorithm 3.5.2.1 terminates then its output is the
reduced Gröbner basis of I.

Proof. Immediate corollary to Theorem 3.5.1.6.

3.5.3 Triangle lemma
Definition 3.5.3.1 (Essential overlap). Let G be a self-reduced subset of
T (X ), and let g1, g2 ∈ G be two elements for which lm(g1) and lm(g2) have
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an overlap. We call this overlap essential if lm(g1) and lm(g2) are the only
two divisors from lm(G) of the tree monomial obtained by merging these
monomials along their overlap.
Proposition 3.5.3.2 (Triangle lemma for nonsymmetric operads). Let G be
a self-reduced subset of T (X ), and let g1, g2 ∈ G be two elements for which
lm(g1) and lm(g2) have an overlap. Suppose that this overlap is not essential,
so that there exists g3 ∈ G for which lm(g3) is another divisor of the tree
monomial T obtained by merging lm(g1) and lm(g2) along their overlap. Then:
• The divisors lm(g1) and lm(g3) of T have an overlap, and the divisors

lm(g3) and lm(g2) of T also have an overlap.

• If the S-polynomials ST ′(g1, g3) and ST ′′(g3, g2) for the corresponding
overlaps admit nontrivial representations of the form (3.9), then the
S-polynomial ST (g1, g2) also admits a nontrivial representation of that
form.

Proof. Note that since G is assumed self-reduced, T3 = lm(g3) cannot be a
divisor of either T1 = lm(g1) or T2 = lm(g2). Therefore, it has an overlap with
both T1 and T2. We use the notation T ′, T ′′ for the results of the corresponding
merging. Note that due to Equation (3.7), we have

ST (g1, g2) = �T,T1(g1)−�T,T2(g2) =
�T,T1(g1)−�T,T3(g3) + �T,T3(g3)−�T,T2(g2) =

�T,T ′(�T ′,T1(g1)−�T ′,T3(g3)) + �T,T ′′(�T ′′,T3(g3)−�T ′′,T2(g2)) =
�T,T ′(ST ′(g1, g3)) + �T,T ′′(ST ′′(g3, g2)).

Note that by Proposition 3.4.2.12, applying �T,T ′ to a nontrivial representa-
tion for the S-polynomial ST ′(g1, g3), we get an element with parameter less
than T , and the same is true if we apply �T,T ′′ to a nontrivial representation
for the S-polynomial ST ′′(g3, g2). This completes the proof.

It turns out that although we are able to prove an analogue of Proposition
2.4.3.2 in the case of nonsymmetric operads, Corollary 2.4.3.3 does not gen-
eralize as easily, as in the case of associative algebras we took something for
granted. If a word m in some alphabet X is a small common multiple of two
words m1 and m2, and m3 is a divisor of m which is not a subword of either
m1 or m2, then the small common multiple of m1 and m3 is a proper subword
of m, and so is the small common multiple of m3 and m2, and this allows
one to prove Corollary 2.4.3.3 by induction on weight of overlaps. In the case
of tree monomials, this is not quite the case, as the following example shows.
Consider the free nonsymmetric operad T (X ) with one binary generator, and
consider the tree monomial

T = .
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Among the divisors of this monomial, consider the following three

T1 = , T2 = , T3 = ,

each sharing the root with the root of T . Note that these are three distinct
overlapping divisors of T , none of them is a divisor of either of the two others,
and for each pair the result of merging them over their overlap is the tree
monomial T . Thus, in the proof of Proposition 3.5.3.2 above, it can easily
happen that T ′ or T ′′ or both of them actually coincide with T , and we cannot
infer a representation for the S-polynomial ST (g1, g2) from representations of
“smaller” S-polynomials. Thus, Corollary 2.4.3.3 becomes the following more
technical result (which is still occasionally useful for computations).

Corollary 3.5.3.3. Let G be a self-reduced set of elements of T (X ). Suppose
that for two elements g1, g2 ∈ G whose leading monomials have an overlap the
following holds:

• there exists g3 ∈ G for which lm(g3) is another divisor of the tree mono-
mial T obtained by merging lm(g1) and lm(g2) along their overlap,

• both the tree monomials T ′ which is the result of merging lm(g1) and
lm(g3) along their overlap and T ′′ which is the result of merging lm(g3)
and lm(g2) along their overlap are proper divisors of T .

Then, while computing the reduced Gröbner basis using Algorithm 3.5.2.1, the
S-polynomial ST (g1, g2) may be ignored.

The reader interested in optimizing the algorithms further is encouraged
to compare the effects observed in this section (somehow illustrating one im-
portant difference between operads and associative algebras) with [75, Sec. 3],
and to try and improve Corollary 3.5.3.3 under some extra assumptions on G
using the notion of an Anick numbering from that paper.

3.6 Examples of Gröbner bases for nonsymmetric oper-
ads

In this section, we discuss three simple examples of computations of Gröb-
ner bases for nonsymmetric operads. We would like to make a simple but very
important remark. If one views nonsymmetric collections as nonnegatively
graded vector spaces, there is no difference between the given nonsymmetric
operad P and the free P-algebra on one generator. (This fails drastically for
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symmetric operads, but in the nonsymmetric case inserting the generator into
all slots of the operation is an isomorphism of graded vector spaces.) However,
a nonsymmetric operad has a much richer structure than the corresponding
free algebra: an operad allows for all possible substitutions (an expert in the
formalism of PI-algebras would say that operad ideals are closer to the so-
called T-ideals in free algebras), and therefore presentations obtained using
operads are often much more economic than presentations attempting to stay
in the universe of algebras. (As a toy model, one can compare the approach
of Example 3.6.2.1 below with the approach to dendriform algebras from [56];
this advantage of the operad approach is noted in [182].)

In many computations, instead of explicitly finding the standard form at
each step, we will merely underline the leading monomial (which is being
reduced).

3.6.1 Associative and q-associative operad
Example 3.6.1.1. The case of the nonsymmetric associative operad, as sim-
ple as it may be, actually is very instructional. The computation that we
reproduce here is absolutely fundamental in many areas of mathematics, from
rather basic algebra to some rather advanced category theory and algebraic
topology. The nonsymmetric associative operad As is the quotient of the free

operad with binary generator by the ideal generated by the element

− . Let us consider the gpathlex order of tree monomials. The

leading term of the relation is , and the only small common multiple

of that element with itself is the tree monomial . The corresponding

S-polynomial is computed in Example 3.5.1.4; it is equal to − ,

and can be reduced to zero by the following chain of reductions:

− −→ − −→ − −→ 0.
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FIGURE 3.1: Stasheff associahedron K2 arising from the Buchberger algo-
rithm.

We conclude that the defining relation of As forms a Gröbner basis, and
that the normal forms are given by “right combs” (right-growing trees, right-
normed products).

Both the computation of the S-polynomial and the process of reducing
it to zero are summarized in Figure 3.1. There, each arrow corresponds to
a single reduction. The top two reductions are two different reductions of
the small common multiple; their difference is the S-polynomial. Instead of
reducing the S-polynomial to zero, one may keep reducing the two reductions
separately, and check whether or not they reduce to the same element. This
is of course equivalent to verifying that the S-polynomial reduces to zero.
The diagram thus obtained has the shape of a pentagon, the second Stasheff
associahedron K2 [180, 241].

Example 3.6.1.2. Let q be an element of the ground field. We consider a
generalization of the nonsymmetric associative operad, the operad Asq which

is the quotient of the free operad with binary generator by the op-

eradic ideal generated by the element − q . Let us consider

the gpathlex order of tree monomials. The leading term of the relation is

, and the only small common multiple of that element with itself is the
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tree monomial . The corresponding S-polynomial is q − q ,

and we have the following chain of reductions:

q − q −→ q2 − q −→

q2 − q2 −→ (q3 − q2) .

Therefore, for q3 = q2 (that is, for q = 0 or q = 1) the defining relation of
the operad Asq forms a Gröbner basis, and for other values of q the element

should be adjoined to the set of relations when forming a Gröbner

basis. We leave it to the reader to check that all further S-polynomials can be
reduced to zero, and to describe the normal forms (Exercise 3.3).

Remark 3.6.1.3. In the particular case q = −1, the operad Asq is called the
antiassociative operad. It is the simplest example of a non-Koszul quadratic
operad. See [186] for more properties of that operad.

3.6.2 The dendriform operad
Example 3.6.2.1. The nonsymmetric dendriform operad Dend defined

in [175] is the quotient of the free operad with two generators < and

> by the ideal generated by the elements

>

<
−

<

>
,
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<

<
−

<

<
−

>

<
,

<

>
+

>

>
−

>

>
.

Let us consider the ordering of the generators given by

< ≺ > ,

and the induced pathdeglex ordering of tree monomials. For this ordering,
the leading terms of the relations are

<

<
,

>

<
,

>

>
,

respectively. There are four small common multiples,

<

<

<

,

>

<

<

,

>

>

<

,

>

>

>

,

and the corresponding S-polynomials are

M1 =

<

<

<

+

>

<

<

−
< <

<
−

< >

<
,

M2 =

<

>

<

−
> <

<
−

> >

<
,
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M3 =

>

>

<

−

<

>

<

−
> <

>
,

M4 =

>

>

>

−

<

>

>

−
> >

>
+

>

<

>

.

Let us demonstrate that M1 can be reduced to zero. We have the following
sequence of reductions:

<

<

<

+

>

<

<

−
< <

<
−

< >

<
−→

<

<

<

+

>

<

<

+

>

>

<

−
< <

<
−

< >

<
−→

<

<

<

+

<

>

<

+

>

<

<

+

>

>

<

−
< <

<
−

< >

<

−→

<

<

<

+

<

>

<

+

>

<

<

+

>

>

<

−
< <

<

−

>

<

<

−

>

>

<

−→

<

<

<

+

<

>

<

+

>

<

<
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+

>

>

<

−

<

<

<

−

<

>

<

−

>

<

<

−

>

>

<

−→

<

<

<

+

<

>

<

−

<

<

<

−

<

>

<

−

>

<

<

−→

<

<

<

−

<

<

<

−

>

<

<

−→ 0.

Let us demonstrate that M2 can be reduced to zero. We have the following
sequence of reductions:

<

>

<

−
> <

<
−

> >

<
−→

<

<

>

−
> <

<

−
> >

<
−→

<

<

>

−
> <

<
−

>

<

>

−→

<

<

>

−

<

<

>

−

>

<

>

−→ 0.

Let us demonstrate that M3 can be reduced to zero. We have the following
sequence of reductions:
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>

>

<

−

<

>

<

−
> <

>
−→

>

>

<

−
< <

>
−

> <

>
−→

>

<

>

−
< <

>

−
> <

>
−→

>

<

>

−

<

>

>

−→ 0.

Finally, let us demonstrate that M4 can be reduced to zero. We have the
following sequence of reductions:

>

>

>

−

<

>

>

−
> >

>
+

>

<

>

−→

>

>

>

−

<

>

>

−
> >

>
+

<

>

>

−→

>

>

>

−
< >

>
+

<

<

>

−
> >

>

+

<

>

>

−→

>

>

>

−
< >

>
+

<

<

>

+

>

<

>
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−
> >

>
+

<

>

>

−→

>

>

>

−
< >

>
+

<

<

>

−
> >

>
+

<

>

>

−→

>

>

>

−
< >

>
−

> >

>

+

<

>

>

−→

>

>

>

−

>

>

>

+

<

>

>

−→ 0.

Therefore, the defining relations of Dend form a Gröbner basis. (This is not
the case for the other ordering of generators, as Exercise 3.4 shows.)

3.7 Normal forms for algebras over nonsymmetric oper-
ads

In general, finding normal forms for algebras of a given type is a difficult
task. For example, if one works with presentations by generators and relations
for algebras with two binary operations each of which is an associative product,
there is no known way to approach Gröbner bases and normal forms along the
lines of Chapter 2, that is by exhibiting a convenient basis of the free algebra,
and imposing a monomial order, that is an order of that basis for which both
products are increasing functions. In this section, we will explain how operad
theory can help to solve these problems.

It turns out that for each nonsymmetric operad P it is possible to work
out normal forms for P-algebras presented by generators and relations. The
way we approach this problem may feel a bit bizarre at first sight: we view it
as a particular case of a much more complex problem, viewing a P-algebra A
as an arity zero component of a certain operad P n A. It turns out that due
to a richer algebraic structure that we use, the latter problem is much easier
to approach algorithmically, as we will see below.
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3.7.1 Extensions and normal forms in algebras
Let P = T (X )/I be a nonsymmetric operad, and let A be an algebra

over P. The following construction is an explicit adaptation for the nonsym-
metric case of the construction of the enveloping operad for the pair (P, A),
see [17] and references therein.

Definition 3.7.1.1 (Extension of an operad by an algebra). The extension
of an operad P by its algebra A, denoted P nA, is the operad

T (X ⊕A)/(I ⊕ IA),

where A is the same vector space as A but viewed as a collection of operations
of arity 0 (for each element a ∈ A, we denote the corresponding element of A
by a), and IA consists of all the relations

µ ◦ (a1, . . . , an)− µ(a1, . . . , an)

for all µ ∈ X (n) and all a1, . . . , an ∈ A.

Remark 3.7.1.2. Once one passes from the algebra A to the collection A,
this construction can be also viewed as an operadic analogue of “split null
extensions” [84]. In the case of commutative associative algebras, split null
extensions are used in the context of normal forms as well, appearing in the
original definition of Gröbner bases for submodules of free modules over poly-
nomial rings [201].

Proposition 3.7.1.3. We have (P nA)(0) ∼= A.

Proof. Using the relations IA, every element from T (X ⊕A)(0) can be shown
equal to an element of A(0) = A. All these elements are linearly independent
since A is a P-algebra, so applying relations IA cannot create further linear
dependencies.

Consequently, it becomes clear how to use Gröbner bases to study algebras
over any nonsymmetric operad: one should form the corresponding extension,
compute the operadic Gröbner basis, and use it to determine normal forms in
arity 0. This results in the following theorem.

Theorem 3.7.1.4. Let P = T (X )/I be a nonsymmetric operad, and let A
be an algebra over P. If G is the reduced Gröbner basis of the operad P n A,
then the normal tree monomials of arity zero form a basis of A.

Proof. This is an immediate corollary of Proposition 3.7.1.3.

3.7.2 Example of normal forms
Let us consider the polynomial ring F[x, y] as an associative algebra

T (x, y)/(xy − yx), and let us study that algebra by viewing it as an alge-
bra over the nonsymmetric operad As. This means that we consider the free
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nonsymmetric operad with two generators x and
y

of arity zero, and a

binary generator . We will study the quotient of this operad by the ideal

generated by the elements

x y
−
y x

,

− .

Let us consider the ordering of the generators given by

x ≺
y
≺ ,

and the corresponding gpathlex order of the tree monomials. In that case,

the leading monomial of
x y

−
y x

is
y x

, and the leading

monomial of − is . These tree monomials have two

small common multiples, the tree monomials

y x

and .

The first small common multiple gives rise to the S-polynomial and its reduc-
tion:

x y

−

x

y −→

y

x −

x

y .

Neither of the monomials appearing in this new element is divisible by the
leading terms of the original relations, and therefore this element must be
adjoined to the reduced Gröbner basis. The second small common multiple
gives rise to an S-polynomial that can be reduced to zero, as we saw previously
in Example 3.6.1.1. The leading monomial of the newly adjoined element is

x

y , which has no small common multiples with itself, and forms just
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one small common multiple

x

y
with the other leading terms. That

small common multiple gives rise to the S-polynomial which is reduced to zero
by a sequence of reductions:

y

x
−

x

y −→

y

x −

x

y −→

y

x −
x

y −→
y

x −
x

y −→ 0.

(the last reduction uses the element adjoined at the previous step). This means
that we found the reduced Gröbner bases. To classify the arity zero normal

forms, we note that a normal monomial cannot be divisible by , and so

the underlying tree is a “right comb”, a tree where a binary vertex can only
be a right child of another binary vertex. Also, a normal form cannot have

divisors
y x

and

x

y , which means that the arity zero generators

used in it, listed from the left to the right, must be several copies of the

generator x , and then several copies of the generator
y
. Overall, this

recovers the usual basis xiyj in F[x, y].
In general, for an associative algebra presented by generators and relations,

this approach recovers the normal forms obtained in Chapter 2 (Exercise 3.13).
For other nonsymmetric operads, it gives a new approach to normal forms.
We shall recall another application in Chapter 6.

3.8 Exercises
Exercise 3.1. Show that for each finite S ⊂ T (X ) Algorithm 3.4.2.20 termi-
nates after finitely many steps.



110 Algebraic Operads: An Algorithmic Companion

Exercise 3.2. Use Equation (3.6) and Proposition 3.4.2.12 to fill in the details
of the proof of Theorem 3.5.1.6.

Exercise 3.3. Compute the remaining S-polynomials for Example 3.6.1.2,
and describe normal forms in the operad Asq.

Exercise 3.4 ([182]). Consider the ordering > ≺ < , and compute

the corresponding reduced Gröbner basis for the operad Dend.

Exercise 3.5. The nonsymmetric diassociative operad Dias (defined in [175])

is the quotient of the free operad with two generators a and ` by

the ideal generated by the five elements

a

a
−

a

a
,
a

a
−

`

a
,
`

a
−

a

`
,

a

`
−

`

`
,
`

`
−

`

`
.

Pick some monomial order, and compute the reduced Gröbner basis for the
defining relations of Dias for that order.

Exercise 3.6. The nonsymmetric operad As〈2〉 of two linearly compatible
associative products (defined in [70]) is the quotient of the free operad with

two generators a and b by the ideal generated by the three elements

a

a
−

a

a
,

b

a
+

a

b
−

b

a
−

a

b
,

b

b
−

b

b
.
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These relations together express the fact that any linear combination of a

and b is associative.

Pick some monomial order, and compute the reduced Gröbner basis for
the defining relations of As〈2〉 for that order.

Exercise 3.7. Define the nonsymmetric operad As〈k〉 of k linearly compat-
ible associative products, and find some monomial order for which you can
compute the reduced Gröbner basis for the defining relations of As〈k〉 for that
order.

Exercise 3.8. The nonsymmetric duplicial operad Dup (defined in [177]) is

the quotient of the free operad with two generators < and > by the

ideal generated by the three elements

<

<
−

<

<
,

>

<
−

<

>
,

>

>
−

>

>
.

Pick some monomial order, and compute the reduced Gröbner basis for the
defining relations of Dup for that order.

Exercise 3.9. The nonsymmetric dipterous operad Dipt (defined in

[178]) is the quotient of the free operad with two generators and

< by the ideal generated by the two elements − and

<

<
− < .

Pick some monomial order, and compute the reduced Gröbner basis for
the defining relations of Dipt for that order.

Exercise 3.10. The nonsymmetric tridendriform operad Tridend (defined in

[179]) is the quotient of the free operad with three generators , < ,
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and > by the ideal generated by the seven elements

− ,
<

<
−

<

<
−

>

<
− < ,

>

>
+

<

>
+ > −

>

>
,

>
− > ,

<
−

>
,

>

<
−

<

>
, < −

<
.

Pick some monomial order, and compute the reduced Gröbner basis for the
defining relations of Tridend for that order.

Exercise 3.11. Consult [2] for the definition of the nonsymmetric operad
of quadri-algebras. Try to guess, based on the example of the dendriform
operad, an optimal monomial order for computing its reduced Gröbner basis.
Check your guess, and compare your results with the investigation for several
different orders undertaken in [182].

Exercise 3.12. Consult [176] for the definition of a certain diagram of operads
called there “the operadic butterfly”, and in particular for the definition of
two operads X+ and X−. Currently, not much is known about those operads.
For instance, it is conjectured in [176] that dimX+(n) = dimX−(n) = 4n−1.
Check this conjecture for small n by computing the reduced Gröbner basis in
low arities, and working out the corresponding normal forms.

Exercise 3.13. Explain how to use the approach of Section 3.7 to recover,
for any associative algebra presented by generators and relations, the normal
forms obtained in Chapter 2.

Exercise 3.14. Use results of Example 3.6.2.1 to attempt a generalization of
Theorem 2.5.3.1 for the dendriform algebras arising as universal enveloping of
pre-Lie and brace algebras [52].

Exercise 3.15. Compare the approach to normal forms for dendriform alge-
bras which follows from general results of Section 3.7 to the approach of the
preprint [152] (released as the final draft of this book was being prepared).



Chapter 4
Twisted Associative Algebras and
Shuffle Algebras

The goal of this chapter is to discuss the algebraic structures that are some-
where in between associative algebras and operads: twisted associative alge-
bras and shuffle algebras. Even though these can in principle be treated in
the more general operadic context, this topic is much easier to digest indepen-
dently, and it serves as a gentle introduction to the philosophy behind shuffle
operads that we will discuss later.

4.1 Introduction
When working with the tensor algebra of a vector space V , we use the

concatenation of tensors to define products of elements. More precisely, for
two decomposable tensors v1⊗· · ·⊗ vk and vk+1⊗· · ·⊗ vn, the concatenation
product operation takes the factors in the first tensor, and puts them next
to the factors of the second tensor, on the left. It is natural to ask what we
would obtain if we would be allowed to do more, for example, put the factors
of the first and the second tensor together but in a different order.

Why is this viewpoint useful at all? First, it can help when tensor algebras
in question have some extra structure. For instance, suppose that the vector
space V of which we take tensor powers is a Lie algebra. In that case, there
is the adjoint action of that Lie algebra on itself, leading to an action on
the tensor algebra T (V ). A natural representation-theoretic question would
be to study the algebra of invariants of that action. Unlike the symmetric
algebra where this question is extremely well understood, at least for, say,
finite-dimensional semisimple Lie algebras, in the case of tensor algebras the
answer is quite complicated, mainly because the algebra in question is too
large. By using extra algebraic structures, one may hope to use fewer elements
to generate the algebra of invariants, which would be a useful extra insight.
Since the adjoint action of a Lie algebra on its tensor powers commutes with
the actions of symmetric group by permutation of factors, it is not too far
fetched to assume that the symmetric group actions would play a certain role
here.

113
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Second, incorporating actions of symmetric groups allows one to view ten-
sor algebras as algebras where the concatenation products satisfy some sort
of obscure commutativity:

(vk+1 ⊗ · · · ⊗ vn)(v1 ⊗ · · · ⊗ vk) = [(v1 ⊗ · · · ⊗ vk)(vk+1 ⊗ · · · ⊗ vn)]σk,n−k,

where σk,n−k denotes the permutation that swaps the two clusters of elements,
putting the integers between 1 and n in the order k+1, . . . , n, 1, . . . , k. Viewing
tensor algebras as algebras that exhibit some sort of commutativity can be
used for purposes of noncommutative geometry [106].

However convincing what we just outlined may have been to motivate an
algebraist to come up with a definition of a twisted associative algebra, in
fact such a definition was first given by topologists.1 One reason for that is
as follows. If we consider the n-sphere Sn as the one-point compactification
of Rn, then the canonical product isomorphism

Rn × Rm ∼= Rn+m, (x1, . . . , xn)× (y1, . . . , ym)→ (x1, . . . , xn, y1, . . . , ym)

induces a homeomorphism

µn,m : Sn ∧ Sm ' Sn+m.

If we consider the action of permutation groups Sn on Rn by permutations of
coordinates, this action compactifies to the action on Sn preserving the base-
point of Sn, and the homeomorphism µn,m is Sn×Sm-equivariant. This leads
one to a realization of importance of symmetric group actions when think-
ing of a universal algebraic formalism for Whitehead products [12], or when
talking about symmetric spectra as a good playground for stable homotopy
theory [137].

4.2 Twisted associative algebras and shuffle algebras
4.2.1 Two definitions of a twisted associative algebra

The most economic definition (which however is not the easiest one for
computations) is the following one.

Definition 4.2.1.1 (Classical definition of a twisted associative algebra).
A twisted associative algebra is a nonnegatively graded associative algebra

1To quote the opening sentence of [12], “Several forces have made me take up again the
notion of homotopy envelopes, where the milling crowd of generalised Hopf invariants may
be reduced to order or at least quieted.”
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A =
⊕

n≥0A(n) for which each graded component A(n) is a right Sn-module,
and each product map

A(n1)⊗A(n2)→ A(n1 + n2)

is a morphism of Sn1 × Sn2-modules (the right-hand side is viewed as an
Sn1 × Sn2-module through the standard embedding Sn1 × Sn2 ⊂ Sn1+n2).

Let us remark that if only the component A(0) is nonzero, then there are
no symmetric group actions to keep track of, so a twisted associative algebra
of that kind is a usual associative algebra. If only the component A(1) is
nonzero, then the product must be zero, since the product of two elements
from A(1) belongs to A(2).

As we mentioned in the previous section, one important nontrivial example
of a shuffle algebra is given by the tensor algebra T (V ).

Example 4.2.1.2. Let us equip each homogeneous component V ⊗n of T (V )
with the right Sn-action in the usual way:

(v1 ⊗ · · · ⊗ vn).τ = vτ(1) ⊗ · · · ⊗ vτ(n).

Then the concatenation of tensors is a morphism of Sn1 ×Sn2-modules, so we
get a twisted associative algebra structure.

Remark 4.2.1.3. At this stage, there are two different ways to make the
tensor algebra a shuffle algebra, by making it concentrated in the zeroth com-
ponent, and by separating the components. Those two are completely different
shuffle algebras; we will mostly be using the latter one in our examples.

Let us try to decipher the definition a little bit further. We will take the
viewpoint that already emerged in Chapter 3: instead of looking at graded
spaces as direct sums, we will think of them as collections of their components.
Defining a structure of a graded associative algebra on a nonnegatively graded
vector space A = ⊕n≥0A(n) is equivalent to defining a collection of maps

µn1,n2 : A(n1)⊗A(n2)→ A(n1 + n2)

satisfying appropriate associativity conditions

µn1+n2,n3 ◦ (µn1,n2 ⊗ id) = µn1,n2+n3 ◦ (id⊗µn2,n3).

The condition that such a map is Sn × Sm-equivariant is equivalent to saying
that the map

A(n1)⊗A(n2)⊗ FSn1+n2 → A(n1 + n2)⊗ FSn1+n2 → A(n1 + n2),

the composite of µn,m ⊗ id and the symmetric group action, factors through
the canonical projection
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(A(n1)⊗A(n2))⊗ FSn1+n2 �

(A(n1)⊗A(n2))⊗F(Sn1×Sn2 ) FSn1+n2
∼=

IndSn1+n2
Sn1×Sn2

(A(n1)⊗A(n2)).

The last line uses the notion of an induced representation; a reader who needs
guidance on that is directed to [97] for details.

This leads to a definition of a twisted associative algebra in the language
of “symmetric collections”.

Definition 4.2.1.4 (Symmetric collection). A symmetric collection is a se-
quence V = {V(n)}n≥0 of vector spaces, where each V(n) is a right FSn-
module.

A morphism between two symmetric collections V and W is a sequence of
linear maps

φn : V(n)→W(n), n ≥ 0,

which commute with the symmetric group actions. If each φn is injective, we
call the collection of their images a subcollection of W.

Two most important operations on symmetric collections are direct sums
and tensor products, which we will now define.

Definition 4.2.1.5 (Operations on symmetric collections). Let V and W be
two symmetric collections. The direct sum V ⊕W is defined by the formula

(V ⊕W)(n) = V(n)⊕W(n).

The tensor product V ⊗W is defined by the formula

(V ⊗W)(n) =
⊕

n1+n2=n
IndSn

Sn1×Sn2
(V(n1)⊗W(n2)).

Note that the two collections F and 1 which we already discussed in the
nonsymmetric case (Definition 3.1.1.2), can be viewed as symmetric collections
in a unique way, since for n = 0 and n = 1 the symmetric group Sn is trivial.

Proposition 4.2.1.6.

• The following formula holds:

(V ⊗W)(n) =
⊕

I1tI2={1,...,n}

V(|I1|)⊗ V(|I2|).

• The tensor product is associative, so that

(U ⊗ V)⊗W ∼= U ⊗ (V ⊗W)

for all symmetric collections U , V, W.
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• We have
V ⊗ F ∼= V ∼= F⊗ V

for all symmetric collections V.

Proof. The cosets (Sn1×Sn2)\Sn1+n2 are known to be represented by (n1, n2)-
shuffles, that is permutations τ for which

τ−1(1) < · · · < τ−1(n1), τ−1(n1 + 1) < · · · < τ−1(n1 + n2).

Now, we have

IndSn1+n2
Sn1×Sn2

(V(n1)⊗W(n2)) ∼=
⊕

τ a (n1,n2)−shuffle

(V(n1)⊗W(n2))⊗ τ,

or in other words

(V ⊗W)(n) =
⊕

I1tI2={1,...,n}

V(|I1|)⊗W(|I2|),

where
I1 = τ−1{1, . . . , n1}, I2 = τ−1{n1 + 1, . . . , n1 + n2}.

The rest of the proof is left as an exercise for the reader (Exercise 4.1).

This result leads to another definition of a twisted associative algebra.

Definition 4.2.1.7 (Monoidal definition of a twisted associative algebra). A
twisted associative algebra is a monoid in the category of symmetric collections
with respect to the tensor product.

We leave it to the reader (Exercise 4.2) to prove that the two definitions
we gave are equivalent, using a simple analysis of our preliminary remarks
above. Another consequence of associativity of the tensor product is that we
can talk about tensor powers of symmetric collections.

Definition 4.2.1.8 (Tensor power of a symmetric collection). Let V be a
symmetric collection. The tensor power V⊗n is the tensor product of n copies
of V. For n = 0, we define V⊗0 := F.

The monoidal definition of a twisted associative algebra also allows us to
give a very concise definition of an ideal in a twisted associative algebra.

Definition 4.2.1.9 (Ideal of a twisted associative algebra). An ideal of a
twisted associative algebra A is a symmetric subcollection I ⊂ A for which
the image of the structure map A ⊗ A → A restricted to I ⊗ A + A ⊗ I is
contained in I.
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4.2.2 Free twisted associative algebras
Similar to the case of associative algebras, a twisted associative algebra

can be presented via generators and relations, that is, as a quotient of the free
twisted associative algebra TΣ(M), which we will now describe, by some ideal.
Unlike the cases of the free associative algebra and the free nonsymmetric op-
erad, we will not discuss free twisted associative algebras in full detail, since we
will see that they are not fully suitable for defining Gröbner bases and proving
an appropriate diamond lemma (which leads to a suitable replacement, free
shuffle algebras, defined in the next section).

Definition 4.2.2.1 (Free twisted associative algebra). The free twisted as-
sociative algebra TΣ(M) generated by a given symmetric collectionM is the
direct sum of all tensor powers ofM, includingM⊗0 := F:

TΣ(M) = F⊕
⊕
k≥1
M⊗k.

Let us make this definition more concrete.

Definition 4.2.2.2 (Partition tensors). Elements of the component
TΣ(M)(n) are linear combinations of partition tensors. Each partition ten-
sor is a pair (π,m), where

• π is an ordered set partition of {1, . . . , n}, {1, . . . , n} =
k⊔
j=1

I(j);

• m is a decomposable tensor m(1)⊗m(2)⊗. . .⊗m(k), with m(j) ∈M(|I(j)|)
for every j = 1, . . . , k.

The product µn1,n2 of two partition tensors (π1,m1) and (π2,m2) is the
partition tensor (π,m), where π = π1 t ın1(π2), m = m1m2. (The map
ın1 : {1, . . . , n2} → {n1 + 1, . . . , n1 + n2} is the bijection adding n1 to all
elements.) This product extends to a unique bilinear product on TΣ(M).

Example 4.2.2.3. Let us consider the free twisted associative algebra gener-
ated by the symmetric collection 1. We note that every subset Ij in Definition
4.2.2.1 has to consist of one element, and therefore allowed ordered partitions
are just permutations (and the tensor part does not carry any additional in-
formation, since the vector space 1(1) is one-dimensional). Therefore, each
component of the free twisted associative algebra generated by 1 has a basis
of permutations, and can thus be identified, as vector spaces, with the group
algebra of the respective symmetric group.

The particular case of the free algebra TΣ(1) which we just discussed is
quite sufficient to illustrate a major problem that arises because of symmetric
group actions.

Proposition 4.2.2.4. It is impossible to define a total ordering of basis ele-
ments of TΣ(1) which would lead to normal forms in quotient shuffle algebras.



Twisted Associative Algebras and Shuffle Algebras 119

Proof. Let us consider the subspace of TΣ(1)(2) spanned by the element

r = 12− 21,

the difference of the two permutations of two elements. We can consider the
ideal generated by this element, which is the span of all elements obtained
from this one by iterations of products and permutations. Such elements can
be easily seen to be all elements of the form

i1i2 · · · ikik+1 · · · in − i1i2 · · · ik+1ik · · · in,

that is differences of permutations that differ from each other by a transposi-
tion of two elements in neighboring places. It follows that the quotient twisted
associative algebra TΣ(1)/(r) has one-dimensional components; in fact, it is
the tensor algebra T (x) viewed as a twisted associative algebra according to
Example 4.2.1.2. On the other hand, suppose that it were possible to have
normal forms for elements of quotient algebras based on leading terms of ide-
als of relations. In this case, the leading term of r would be either 12 or 21. In
both cases, our plan fails, since the ideal generated by either of them (which
of course would be contained by the ideal of leading terms) contains the other
due to being a symmetric subcollection, so a collection of Sn-invariant sub-
spaces. Thus, there would be no normal monomials in the second component
at all, a contradiction.

We will now define a different kind of algebras, the so-called shuffle alge-
bras. This would allow us to resolve the problem on normal forms by com-
pletely ignoring the symmetric group action whenever possible.

4.2.3 Shuffle algebras
To define shuffle algebras, we will use nonsymmetric collections (Definition

3.1.1.1) instead of symmetric ones; for those, there is a direct sum construction
and a version of the tensor product construction that is motivated by the first
formula of Proposition 4.2.1.6.

Definition 4.2.3.1 (Operations on nonsymmetric collections). Let V and W
be two nonsymmetric collections. The direct sum V ⊕ W is defined by the
formula

(V ⊕W)(n) = V(n)⊕W(n).

The shuffle tensor product V �W is defined by the formula

(V �W)(n) :=
⊕

I1tI2={1,...,n}

V(|I1|)⊗W(|I2|),

where the sum is taken over all partitions of {1, . . . , n} into two disjoint subsets
I1 and I2.
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Proposition 4.2.3.2.

• The shuffle tensor product is associative, so that

(U � V) �W ∼= U � (V �W)

for all nonsymmetric collections U , V, W.

• We have
V � F ∼= V ∼= F� V

for all nonsymmetric collections V.

Proof. This is straightforward:

((U � V) �W)(n) =
⊕

I1tI2tI3={1,...,n}

(U(|I1|)⊗ V(|I2|))⊗W(|I3|)

∼=
⊕

I1tI2tI3={1,...,n}

U(|I1|)⊗ (V(|I2|)⊗W(|I3|)) = U � (V �W),

and

(V � F)(n) =
⊕

I1tI2={1,...,n}

V(|I1|)⊗ F(|I2|) = V (n),

(F� V)(n) =
⊕

I1tI2={1,...,n}

F(|I1|)⊗ V(|I2|) = V (n).

This result allows us to define shuffle algebras as monoids, mimicking Def-
inition 4.2.1.7.

Definition 4.2.3.3 (Shuffle algebra). A shuffle algebra is a monoid in the
category of nonsymmetric collections with respect to the shuffle tensor prod-
uct.

More concretely, the datum of a shuffle algebra on a nonsymmetric collec-
tion A is a collection of maps

µI1,I2 : A(n1)⊗A(n2)→ A(n)

for each partition {1, . . . , n} = I1 t I2 with |I1| = n1, |I2| = n2, and a unit
element e ∈ A(0) satisfying the following properties:

- associativity: for each partition

{1, . . . , n} = I1 t I2 t I3 with |I1| = n1, |I2| = n2, |I3| = n3,

the following two maps from A(n1)⊗A(n2)⊗A(n3) to A(n) are equal
to each other:

µI1tI2,I3 ◦ (µI1,I2 ⊗ id) = µI1,I2tI3 ◦ (id⊗µI2,I3),
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- unit axiom: for any n ≥ 0, the following maps from A(n) to A(n) are
equal to each other:

µ∅,{1,...,n}(e⊗ id) = µ{1,...,n},∅(id⊗e) = id .

Remark 4.2.3.4. It is quite common in the literature to use the term “shuffle
algebra” for a very particular commutative associative algebra structure on
the underlying vector space of the tensor algebra T (V ) obtained as a sum of
all individual shuffle products. We do not expect this to lead to a confusion,
but nevertheless feel that this should be mentioned.

Similar to the case of twisted associative algebras, we can use the monoidal
definition of shuffle algebras to define ideals.

Definition 4.2.3.5 (Ideal of a shuffle algebra). An ideal of a shuffle algebra A
is a nonsymmetric subcollection I ⊂ A for which the image of the structure
map A�A → A restricted to I ⊗ A+A⊗ I is contained in I.

Since the shuffle tensor product is associative, we can talk about shuffle
tensor powers of nonsymmetric collections.

Definition 4.2.3.6 (Shuffle tensor power). The shuffle tensor power V�n is
the tensor product of n copies of V. For n = 0, we define V�0 := F.

4.3 Free shuffle algebras
4.3.1 Monomials and polynomials

The following definition of free shuffle algebras is completely analogous to
that of twisted associative algebras.

Definition 4.3.1.1 (Free shuffle algebra). The free shuffle algebra TX(M)
generated by a given nonsymmetric collectionM is the direct sum of all shuffle
tensor powers ofM, includingM⊗0 := F:

TX(M) = F⊕
⊕
k≥1
M�k.

Remark 4.3.1.2. The Cyrillic letter X (pronounced “sha”) is the first letter
in the Russian transliteration “xafl” of the word “shuffle”.

Let us make this definition more explicit by exhibiting a combinatorial
basis of the free shuffle algebra that generalizes the basis of words in the
tensor algebra of a vector space.
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Definition 4.3.1.3 (Shuffle monomial). Let X = {X (n)}n≥0 be an operation
alphabet. A shuffle monomial in X is a pair T = (π,m), where

• π is an ordered partition of {1, . . . , n} into subsets, {1, . . . , n} =
k⊔
j=1

I(j);

• m is a decomposable tensor m(1) ⊗m(2) ⊗ · · · ⊗m(k), with m(j) ∈ X|I(j)|
for every j = 1, . . . , k.

The shuffle monomial for which n = k = 0 is called the empty shuffle mono-
mial.

The arity of a shuffle monomial T as above, denoted ar(T ), is equal to n,
and the weight of such monomial, denoted wt(T ), is equal to k. The set of
all shuffle monomials in X of arity n is denoted XX (n). The collection of all
these sets for all n ≥ 0 is denoted XX .

Remark 4.3.1.4. In Chapter 3 where the notion of an operation alphabet
was introduced, we really dealt with operations in a nonsymmetric operad.
In the context of shuffle algebras, the elements of X (n) are not representing
n-ary operations. Nevertheless, using the same language in this context does
highlight some similarities between different algebraic structures we discuss
throughout the book, so this choice of terminology, even if surprising, is fully
intentional.

Example 4.3.1.5. Let us consider the free shuffle algebra generated by the
nonsymmetric collection 1. Similar to Example 4.2.2.3, we note that every sub-
set Ij in Definition 4.3.1.3 has to consist of one element, and therefore allowed
ordered partitions are just permutations (and the tensor part does not carry
any additional information, since the vector space 1(1) is one-dimensional).
Therefore, each component of the free shuffle algebra generated by 1 has a
basis of permutations, and can thus be identified, as vector spaces, with the
group algebra of the respective symmetric group.

Definition 4.3.1.6 (Shuffle polynomial). Let X = {X (n)}n≥0 be an oper-
ation alphabet. A shuffle polynomial in X with coefficients in F is a linear
combination of shuffle monomials of the same arity. The support of a shuffle
polynomial f , denoted supp(f), is the set of all shuffle monomials that appear
in f with nonzero coefficients.

We denote the vector space of all shuffle polynomials of arity n by
TX(X )(n); of course we have TX(X )(n) = FXX (n).

Definition 4.3.1.7 (Explicit construction of the free shuffle algebra). Sup-
pose that

T1 = (π1,m1) ∈XX (n1), T2 = (π2,m2) ∈XX (n2).

For each partition {1, . . . , n1+n2} = I1tI2 with |I1| = n1, |I2| = n2, we define
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the partition π̃k of Ik, k = 1, 2, using the unique order preserving bijection
Ik ∼= {1, . . . , nk}. The shuffle (I1, I2)-product

µI1,I2(T1, T2) ∈XX (n)

is the shuffle monomial (π,m), where π = π̃1 t π̃2, m = m1m2.
These operations µI1,I2 may be extended to unique bilinear operations

µI1,I2 : TX(X )(n1)⊗ TX(X )(n2)→ TX(X )(n).

Equipped with these operations, TX(X ) is the free shuffle algebra gener-
ated by X . In addition to the notation TX(X ), we will use the notation
TX(M), where M = {M(n)}n≥0 is a collection of vector spaces for which
M(n) = span(X (n)) for all n ≥ 0.

Example 4.3.1.8. Let us consider the free shuffle algebra TX(1) from Exam-
ple 4.3.1.5. The four different shuffle products defined for the shuffle monomial
321 ∈ TX(1)(3) and the shuffle monomial 1 ∈ TX(1)(1), in this order, are:

µ{1,2,3},{4}(321, 1) = 3214,
µ{1,2,4},{3}(321, 1) = 4213,
µ{1,3,4},{2}(321, 1) = 4312,
µ{2,3,4},{1}(321, 1) = 4321.

One of the six different shuffle products of the shuffle monomial 12 ∈ TX(1)(2)
with the shuffle monomial 21 ∈ TX(1)(2) is

µ{1,3},{2,4}(12, 21) = 1342.

We leave it to the reader as an exercise (Exercise 4.3) to compute the remaining
five shuffle products of these elements.

4.3.2 Presentation by generators and relations
The analogue of First Homomorphism Theorem holds for shuffle algebras,

and we may utilise it to define presentations of shuffle algebras. Suppose that
a shuffle algebra A is generated by a collection of elements αi ∈ A(ni). In
that case, we can consider the collection X of operations κi ∈ X (ni), one
operation for each generator of A. There is a surjective homomorphism from
TX(X ) onto A sending κi to αi which is uniquely defined by the universal
property of the free shuffle algebra. By the First Homomorphism Theorem,
that homomorphism is the canonical map onto the quotient of TX(X ) by some
ideal I.

Definition 4.3.2.1 (Ideal generated by a subset). Let A be a shuffle al-
gebra, and suppose that S ⊂ A is a nonsymmetric subcollection. The ideal
of A generated by S, denoted by (S), is the smallest (by inclusion) ideal of A
containing S.
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Definition 4.3.2.2 (Presentation by generators and relations). Suppose that
the shuffle algebra P is a quotient of the free shuffle algebra TX(A) by some
ideal I, and that the ideal I is generated by the collection S. In this case, we
will say that the shuffle algebraA is presented by generators X and relations S.

4.3.3 Twisted associative algebras as shuffle algebras
As we mentioned before, our main reason to deal with shuffle algebras is

that they allow us to solve the problem of finding normal forms in twisted
associative algebras presented by generators and relations. Let us explain why
this is the case.

Definition 4.3.3.1 (Forgetful functor). To each symmetric collection P we
can associate a nonsymmetric collection Pf ; it is the same collection of vector
spaces but without symmetric group actions. As we already mentioned earlier,
there is no real difference between Ff and F, nor between 1f and 1, since the
symmetric groups Sn are trivial for n < 2; thus in those cases forgetting
about the symmetries makes absolutely no difference, and we will suppress
the subscript f . The assignment P 7→ Pf will be sometimes referred to as the
forgetful functor from the category of symmetric collections to the category
of nonsymmetric ones.

It turns out that the shuffle tensor product is precisely the kind of oper-
ation one needs to ignore symmetries of symmetric collections without losing
information about their tensor products. More precisely, “the forgetful functor
is monoidal”, as the following result shows.

Proposition 4.3.3.2. Let V and W be two symmetric collections. Then we
have

(V ⊗W)f ∼= Vf �Wf .

Proof. Let us examine the n-th component for both sides. By the formula for
the tensor product of two symmetric collections,

(V ⊗W)(n) =
⊕

n1+n2=n
IndSn1+n2

Sn1×Sn2
(V(n1)⊗W(n2)).

By Proposition 4.2.1.6, the latter is naturally identified with⊕
I1tI2={1,...,n}

V(|I1|)⊗W(|I2|).

Meanwhile, the formula for the shuffle tensor product gives

(Vf �Wf )(n) :=
⊕

I1tI2={1,...,n}

Vf (|I1|)⊗Wf (|I2|),

which is precisely the former formula without the symmetric group actions.
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The following corollary is, in some sense, the central result of this chapter.
It shows that any twisted associative algebra, when studied as a shuffle algebra,
needs the same number of generators and relations to be defined. Thus, any
approach to normal forms for shuffle algebras leads to normal forms for twisted
associative algebras as well.

Corollary 4.3.3.3. Let M be a symmetric collection. Then we have an iso-
morphism of shuffle algebras

TX(Mf ) ∼= (TΣ(M))f .

Moreover, if I ⊂ TΣ(M) is an ideal, then, under the identification that we
made, If is an ideal of TX(Mf ), and

TX(Mf )/If ∼= (TΣ(M)/I)f .

Proof. All the notions in question, that is free twisted associative algebras,
shuffle algebras, and ideals in those algebras, are defined using tensor products,
so Proposition 4.3.3.2 applies.

Example 4.3.3.4. We consider the free shuffle algebra TΣ(1)f ∼= TX(1) from
Example 4.3.1.5, and the ideal generated by the element r′ = 21 in its second
component TX(1)(2) (this ideal is not an ideal of the form If ). This ideal
is the span of all elements obtained from r′ by iterations of shuffle products
µI1,I2 . Such elements can be easily seen to be all elements of the form

i1i2 · · · ikik+1 · · · in,

with ik > ik+1 for some k. Therefore, all components of the quotient shuffle
algebra are one-dimensional spanned by {1, . . . , n}. As a nonsymmetric col-
lection, this is the same as the tensor algebra T (x) viewed as a shuffle algebra
according to Example 4.2.1.2, and hints that the problem we exhibited in
Proposition 4.2.2.4 is naturally fixed in the context of shuffle algebras.

4.4 Normal forms
4.4.1 Monomial orders

Let us generalize the definition of a monomial order to the case of shuffle
monomials.

Definition 4.4.1.1 (Monomial order). A collection of total orders Ξn of
XX (n), n ≥ 0, is said to be a monomial order if the following two conditions
are satisfied:
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• each Ξn is a well-order;

• each shuffle product is a strictly increasing function in each of its ar-
guments; that is, for all T1, T

′
1 ∈ XX (n1), T2, T

′
2 ∈ XX (n2), and all

partitions {1, . . . , n1 + n2} = I1 t I2, |I1| = n1, |I2| = n2, we have

µI1,I2(T1, T2) ≺ µI1,I2(T ′1, T2) if T1 ≺ T ′1,
µI1,I2(T1, T2) ≺ µI1,I2(T1, T

′
2) if T2 ≺ T ′2.

Unless otherwise specified, throughout this chapter, we will give definitions
as well as state and prove all theoretical results for an arbitrary monomial
order Ξ.

We will now outline one construction of monomial orders in free shuffle al-
gebras. We denote X :=

⊔
n≥0
X (n). For the purpose of the following definition,

let us establish the following convention. We will encode k-element subsets of
{1, . . . , n} by k-tuples of integers, listing elements of a subset in the increasing
order. Once that is done, we can compare those sequences using the graded
lexicographic order, thus obtaining a total order on all finite subsets of the set
of natural numbers, which actually is even a well-order.

Definition 4.4.1.2 (Partition extension of a monomial order). Suppose that
Ξ is a monomial order on X∗. The partition extension of Ξ is defined as

follows. Let T1 = (π1,m1), where π1 is a set partition {1, . . . , n1} =
k1⊔
j=1

I
(j)
1 ,

and m1 = m(1)
1 ⊗ m(2)

1 ⊗ · · · ⊗ m(k1)
1 , and T2 = (π2,m2), where π2 is a set

partition {1, . . . , n2} =
k2⊔
j=1

I
(j)
2 , and m2 = m(1)

2 ⊗ m(2)
2 ⊗ · · · ⊗ m(k2)

2 , be two

shuffle monomials. We say that T1 ≺ T2 if and only if

• n1 < n2, or

• n1 = n2 and k1 < k2, or

• n1 = n2, k1 = k2, and for the first j for which I
(j)
1 6= I

(j)
2 we have

I
(j)
1 ≺ I(j)

2 , or

• n1 = n2, k1 = k2, π1 = π2, and m1 ≺ m2.

Proposition 4.4.1.3. The partition extension of any monomial order Ξ,
viewed as an order of shuffle monomials, is a monomial order.

Proof. Since this order is a superposition of several graded lexicographic orders
and the order Ξ that is assumed to be a total well-order, both the total order
property and the well-order property follow. Finally, each shuffle product µI1,I2
is strictly increasing in each of its arguments because of the way that product is
defined: it uses an order-preserving bijection between Ik and {1, . . . , nk}, and
hence does not alter the result of comparison for partitions. For the comparison
on the level of words, the order is not altered since Ξ is a monomial order.
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Definition 4.4.1.4 (Graded partition lexicographic order). Let us fix some
order Ξ of X :=

⊔
n≥0
X (n). The graded partition lexicographic order of shuffle

monomials, denoted gpartlex, is the partition extension of the glex order
induced by Ξ.

4.4.2 Long division
In the case of both associative algebras and nonsymmetric operads, it

was crucial to have two views of divisibility of monomials, both in terms of
structure operations of an algebra and a combinatorial one. Let us give a
combinatorial definition of divisibility for shuffle monomials.

Definition 4.4.2.1 (Divisibility of shuffle monomials). A shuffle mono-

mial T1 = (π1,m1), where π1 is a partition {1, . . . , n1} =
k1⊔
j=1

I
(j)
1 , and

m1 = m(1)
1 ⊗ m(2)

1 ⊗ · · · ⊗ m(k1)
1 , is divisible by a (nontrivial) shuffle mono-

mial T2 = (π2,m2), where π2 is a partition {1, . . . , n2} =
k2⊔
j=1

I
(j)
2 , and

m2 = m(1)
2 ⊗ m(2)

2 ⊗ · · · ⊗ m(k2)
2 , if there exists an integer p satisfying

1 ≤ p ≤ p+ k2 − 1 ≤ k1 for which a unique order preserving bijection

σ :
p+k1−1⊔
j=p

I
(j)
1
∼= {1, . . . , n2}

induces the partition π2, and

m(p)
1 ⊗m(p+1)

1 ⊗ · · · ⊗m(p+k1−1)
1 = m(1)

2 ⊗m(2)
2 ⊗ · · · ⊗m(k2)

2 .

Example 4.4.2.2. Consider the element 4312 ∈ TX(1)(4). It has two dif-
ferent divisors of weight 3, 321, and 312. The first of them occurs in the
beginning, since the relative order of entries in 431 is the same as in 321, and
the second one occurs in the end. In comparison, the two divisors of length 3
of the monomial 4321 both are occurrences of the monomial 321 as a divisor.

Proposition 4.4.2.3. Let T1 = (τ1, x1) and T2 = (τ2, x2) be two shuffle
monomials. Then T1 is divisible by T2 if and only if it can be obtained from T2
by iterated shuffle products with elements of TX(X ).

Proof. Exercise 4.4.

Definition 4.4.2.4 (Insertion into a shuffle monomial). Suppose that T1
and T2 are shuffle monomials, and T1 is divisible by T2. In this case, there
is an insertion operation

�T1,T2 : TX(X )(ar(S2))→ TX(X )(ar(S1)).
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If T = (π,m) is a shuffle monomial of the same arity n2 as T2, the

insertion operation replaces the part
p+k1−1⊔
j=p

I
(j)
1 of π1 by π̃, the parti-

tion obtained from π by the bijection σ−1, and also replaces the subword
m(p)

1 ⊗m(p+1)
1 ⊗ · · · ⊗m(p+k1−1)

1 of m1 by m. Then, this operation is extended
by linearity to all shuffle polynomials of the same arity.

Remark 4.4.2.5. Our notation is not completely precise, since there may be
several different divisors T2 inside T1. We always assume that the operation
�T1,T2 inserts everything at a particular occurrence of T2 inside T1 which is
implicit.

Example 4.4.2.6. Consider the shuffle monomial T = 4321 ∈ TX(1) from
Example 4.4.2.2. This monomial has two occurrences of 321 as a divisor; let
us denote the one in the beginning by T1, and the one in the end by T2. We
have

�T,T1(213) = 3241 and �T,T2(213) = 4213.

One very useful feature of the insertion operations is that they allow us
to give an explicit description of an ideal generated by a given collection S in
the free shuffle algebra which is a suitable replacement of the description “the
ideal (S) is the linear span of all elements r1sr2 for all r1, r2 ∈ T (X), s ∈ S”
which we had in the associative case. While in the case of shuffle algebras it is
possible to furnish a more elementary description, we stick to the formalism
of insertions because of its general applicability.

Proposition 4.4.2.7. Let S ⊂ TX(X ). The ideal (S) generated by S can be
described explicitly as the linear span of all insertions �T1,T2(f), where T1 is
a monomial, T2 is a divisor of T1, and f ∈ S(ar(T2)).

Proof. The ideal (S) is spanned by iterated shuffle products where at least
one of the elements involved belongs to S; by bilinearity of shuffle products,
we may assume that all other elements are monomials, in which case the
corresponding iterated product is the insertion operation.

The following proposition is clear from the definition. It is an analogue of
“monadic associativity” for operads from Proposition 3.4.2.11.

Proposition 4.4.2.8. Let T ∈ XX (n), T1, T
′
1 ∈ XX (n1), T2 ∈ XX (n2),

and suppose that T1 is a divisor of T and T2 is a divisor of T ′1. Then

�T,T1 ◦�T ′1,T2 = ��T,T1 (T ′1),T2 . (4.1)

In particular, if T1 = T ′1, this simplifies to

�T,T1 ◦�T1,T2 = �T,T2 . (4.2)

Let us show that under the insertion operations, the leading monomials
change in a controllable way.
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Proposition 4.4.2.9. Suppose that T1 is a shuffle monomial, and T2 is a
divisor of T1. Then for each g ∈ TX(X )(ar(T2)), we have

lm(�T1,T2(g)) = �T1,T2(lm(g)). (4.3)

Proof. Let us first check that for any two nonzero elements

f1 ∈ TX(X )(n1), f2 ∈ TX(X )(n2),

and all partitions

{1, . . . , n1 + n2} = I1 t I2, |I1| = n1, |I2| = n2,

we have
lm(µI1,I2(f1, f2)) = µI1,I2(lm(f1), lm(f2)).

Since the product on TX(X ) is bilinear, the element µI1,I2(f1, f2) is equal
to a linear combination of elements µI1,I2(m1,m2), where mp ∈ supp(fp). It
remains to notice that for each mp 6= lm(fp) we have mp ≺ lm(fp), so the
defining property of monomial orders implies that

µI1,I2(m1,m2) ≺ µI1,I2(lm(f1), lm(f2)),

unless m1 = lm(f1), m2 = lm(f2). Now, the element �T1,T2(g) is obtained
from g by an iteration of shuffle products, and the result follows.

Definition 4.4.2.10 (Reduced monomials and polynomials). Let S be a sub-
set of TX(X ). A shuffle monomial T is said to be reduced with respect to S
if T /∈ (lm(S)); in other words, if T is not divisible by any of the leading
monomials of elements of S. In general, a shuffle polynomial f is said to
be reduced with respect to S, if it is equal to a linear combination of shuffle
monomials which are reduced with respect to S. A subset S ⊂ TX(X ) is said
to be self-reduced if each element T ∈ S is monic and reduced with respect
to S \ {T}.

Definition 4.4.2.11 (Reduction). Let f, g ∈ TX(X ) be two nonzero ele-
ments. We say that f is reducible with respect to g if lm(f) is not reduced
with respect to {g}, or, in plain words, if the leading monomial of f is
divisible by the leading monomial of g, lm(f) = �T1,T2(lm(g)) for some
T1 ∈XX (ar(lm(f))), T2 ∈XX (ar(lm(g))). In that case, the reduction of f
with respect to g, denoted by rg(f), is defined by the formula

rg(f) = f − lc(f)
lc(g)�T1,T2(g).

Lemma 4.4.2.12. For all elements f, g ∈ TX(X ) such that rg(f) is defined,
we have

rg(f) = 0 or lm(rg(f)) ≺ lm(f).
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Proof. Same (mutatis mutandis) as the proof of Lemma 3.4.2.15.

One can view a reduction as one step of a version of the long division
algorithm. We make it more precise as follows.

Algorithm 4.4.2.13 (Long division for shuffle algebras).

Input: An element f ∈ TX(X ), and a finite set S ⊂ TX(X ).

Output: An element f̃ , reduced with respect to S, for which
lt(f̃) � lt(f) such that f + (S) = f̃ + (S).

• If f = 0, return f .

• Replace S by its linear self-reduction (Proposition 1.2.1.6).

• If D := {s ∈ S : lm(f) is divisible by lm(s)} 6= ∅, take s0 ∈ D with
the least leading monomial (such s0 is unique since S is linearly self-
reduced), and return the result of long division of f ′ := rs(f) by
S.

• Otherwise, lm(f) is reduced with respect to S, so let f̃ be the result
of long division of f ′ := f − lt(f) by S; return lt(f) + f̃ .

Lemma 4.4.2.14. For every f ∈ TX(X ), the long division algorithm ter-
minates in a finite number of steps. Its output is an element f̃ reduced with
respect to S, for which lt(f̃) � lt(f) and f + (S) = f̃ + (S).

Proof. Same (mutatis mutandis) as the proof of Lemma 3.4.2.17.

Remark 4.4.2.15. We see that in fact there is nothing particularly problem-
atic if S is an infinite self-reduced set: it is clear from the proof of Lemma
4.4.2.14 that for the given f ∈ TX(X ) the elements s ∈ S which we use at
various steps of our computation have decreasing leading monomials, and so
there can be only finitely many reductions performed; that is, for each f we
never use more than a finite subset of S. While for purposes of implementation
this is not particularly important, it will be beneficial for theoretical results
where S may be infinite.

We will now establish that the set of elements that are reduced with respect
to I is a suitable candidate for the set of normal forms for the elements of
the quotient TX(X )/I. This is an improvement of Lemma 1.2.1.3 which takes
into account the extra structures we have on the underlying vector spaces.

Lemma 4.4.2.16. Suppose that I is an ideal of TX(X ). Monomials that are
reduced with respect to I form a basis of the quotient TX(X )/I.

Proof. Same (mutatis mutandis) as the proof of Lemma 3.4.2.19.
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It is possible to use long division to find, for each finite set, a finite self-
reduced set that generates the same ideal.

Algorithm 4.4.2.17 (Self-reduction for shuffle algebras).

Input: A finite subset S ⊂ TX(X ).

Output: A finite self-reduced subset S ′ ⊂ TX(X ) with (S) = (S ′).

• Replace S by its linear self-reduction.

• If S is self-reduced, return S.

• Let s be the element of S with the maximal leading monomial, and
compute the self-reduction S ′ of S \ {s}.

• Compute s̃, the result of long division of s by S ′.

• Compute the self-reduction of S ′ ∪ {s̃}.

We leave it as an exercise (Exercise 4.5) for the reader to check that for
each finite S this algorithm terminates after finitely many steps.

4.4.3 Gröbner bases
In general, there are several different reduced forms one may obtain when

doing reductions with respect to a set S; however, there is a canonical form
with respect to the ideal (S), namely the corresponding normal form. In this
section, we will explain how to fix this discrepancy.

Proposition 4.4.3.1. Let I be an ideal of TX(X ). The space of leading terms
lt(I) is an ideal of TX(X ).

Proof. Same (mutatis mutandis) as the proof of Proposition 3.4.3.1.

We are now ready to define a Gröbner basis of an ideal.

Definition 4.4.3.2 (Gröbner basis). Let I be an ideal of TX(X ). We say that
G = {G(n) ⊂ I(n)} is a Gröbner basis of I with respect to a given monomial
order Ξ if the set of leading monomials lm(G) := {lm(g) : g ∈ G} generates
the leading term ideal of the ideal I:

lt(I) = (lm(G)).

A Gröbner basis which is a self-reduced subset of TX(X ) is said to be reduced.

Lemma 4.4.3.3. A Gröbner basis of an ideal I ⊂ TX(X ) generates I.

Proof. Same (mutatis mutandis) as the proof of Lemma 3.4.3.3.
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Proposition 4.4.3.4. Let I be an ideal of TX(X ). Then G ⊂ I is a Gröbner
basis if and only if the cosets of monomials that are reduced with respect to G
form a basis of the quotient TX(X )/I.

Proof. Same (mutatis mutandis) as the proof of Proposition 3.4.3.4.

Corollary 4.4.3.5. Suppose that G is a Gröbner basis of the ideal I ⊂ TX(X ).
Then the result of long division of f ∈ TX(X ) by G does not depend on either
the choices or the order of the reductions performed.

Proof. Same (mutatis mutandis) as the proof of Corollary 3.4.3.5.

We summarize Proposition 4.4.3.4 and its corollary as follows.

Theorem 4.4.3.6.

(i) Let I be an ideal of TX(X ). A subset G ⊂ I is a Gröbner basis if and
only if the normal forms modulo I are precisely the elements that are
reduced with respect to G.

(ii) Suppose that G is a Gröbner basis of the ideal I ⊂ TX(X ). Given an
element f ∈ I, its normal form modulo I can be computed using long
division by G. In fact, in this long division the order of reductions can
be chosen arbitrarily.

Proposition 4.4.3.7. Each ideal I ⊂ TX(X ) has a unique reduced Gröbner
basis.

Proof. Same (mutatis mutandis) as the proof of Proposition 3.4.3.7.

4.5 Computing Gröbner bases
In this section, we will explain how to compute Gröbner bases for ideals

of TX(X ). As in Chapter 2, some ideals have infinite Gröbner bases, so the
word “algorithm” below should be taken with a grain of salt.

4.5.1 Diamond lemma
Definition 4.5.1.1 (S-polynomial). Let g1, g2 ∈ TX(X ) be two monic
polynomials. We say that the shuffle monomials T1 := lm(g1) and
T2 := lm(g2) form an overlap if there exist nonempty shuffle monomials
T ′1 and T ′2 for which µI1,I2(T1, T

′
1) = µJ1,J2(T ′2, T2), and T2 is not a divisor

of T ′1. In this case, we consider the corresponding small common multiple
T := µI1,I2(T1, T

′
1) = µJ1,J2(T ′2, T2), and call the element

ST (g1, g2) := �T,T1(g1)−�T,T2(g2)
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an S-polynomial of g1 and g2; the common term cancels, since both g1 and g2
are monic.

Example 4.5.1.2. Consider the shuffle monomial 321 ∈ TX(1)(3). This
monomial forms two different overlaps with itself: we have

4321 = µ{2,3,4},{1}(321, 1) = µ{4},{1,2,3}(1, 321)

and
54321 = µ{3,4,5},{1,2}(321, 21) = µ{4,5},{1,2,3}(21, 321).

In this case, there is one small common multiple of weight 4, and one small
common multiple of weight 5. However, the situation might be very different,
as the shuffle monomial 312 ∈ TX(1)(3) demonstrates. This monomial does
not have an overlap of weight 4 with itself: if the permutation abcd is a small
common multiple of weight 4, then b < c < a and c < d < b, so we have b < c
and c < b, a contradiction. At the same time, there are three different small
common multiples of weight 5, namely 51423, 52413, and 53412.

We will now prove the result which is at the core of most feasible ways to
check that some subset of an ideal is a Gröbner basis.

Definition 4.5.1.3 (Parameter of a representation). Let I = (G) be an ideal
of TX(X ). Consider the representation of an element f ∈ I as a combination
of insertions of g1, . . . , gN ∈ G:

f =
N∑
i=1

ci�T̃i,Ti
(gi), (4.4)

where Ti = lm(gi). We call max(T̃i) the parameter of this linear combination.
If f = ST (g1, g2) is the S-polynomial of g1, g2 ∈ G (with all the notation

as above in Definition 4.5.1.1), then it has an obvious representation

f = �T,T1(g1)−�T,T2(g2),

with parameter T . We call a representation of that S-polynomial nontrivial if
its parameter is smaller than T .

Theorem 4.5.1.4 (Diamond lemma). Let G ⊂ TX(X ) be self-reduced, and
let I = (G). The following statements are equivalent:

(i) G is a Gröbner basis of I.

(ii) Every S-polynomial ST (g1, g2) has reduced form 0 with respect to G.

(iii) Every S-polynomial ST (g1, g2) admits a nontrivial representation of the
form (4.4).

(iv) Every element f ∈ I admits a representation of the form (4.4) with
parameter lm(f).

Proof. Same (mutatis mutandis) as the proof of Theorem 3.5.1.6.
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4.5.2 The Buchberger algorithm
Theorem 4.5.1.4 leads naturally to a recipe for computing reduced Gröbner

bases: given a set of generators of an ideal, one has to compute all pairwise
S-polynomials, adjoin all reduced forms of those to the set of generators, and
repeat the same.

Algorithm 4.5.2.1 (Buchberger algorithm for shuffle algebras).

Input: A finite subset G ⊂ TX(X ) generating an ideal I ⊂ TX(X ).

Output: If terminates, the output is the reduced Gröbner basis of I.

• Set newSpolynomials← true.

• While newSpolynomials do:

– Sort G by gpartlex order of leading monomials:
G = {g1, . . . , gn}.

– Compute the self-reduction of G.
– Set Spolynomials← ∅.
– Set newSpolynomials← false.
– For g1 ∈ G do for g2 ∈ G do:
∗ If lm(g1) and lm(g2) form an overlap then:

1. Compute the S-polynomial ST (g1, g2).
2. Let t be the result of long division of ST (g1, g2) by G.
3. If t 6= 0 and t /∈ Spolynomials then
∗ Set newSpolynomials← true.
∗ Set Spolynomials← Spolynomials ∪ {t}.

– Set G ← G ∪ Spolynomials.

• Return G.

Proposition 4.5.2.2. If Algorithm 4.5.2.1 terminates then its output is the
reduced Gröbner basis of I.

Proof. Immediate corollary to Theorem 4.5.1.4.

4.5.3 Triangle lemma
Definition 4.5.3.1 (Essential overlap). Let G be a self-reduced subset of
TX(X ), and let g1, g2 ∈ G be two elements for which lm(g1) and lm(g2) form
an overlap. We call this overlap essential if lm(g1) and lm(g2) are the only
two divisors from lm(G) of the corresponding small common multiple.
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Proposition 4.5.3.2 (Triangle lemma for shuffle algebras). Let G be a self-
reduced subset of TX(X ), and let g1, g2 ∈ G be two elements for which lm(g1)
and lm(g2) form an overlap. Suppose that this overlap is not essential, so that
there exists g3 ∈ G for which lm(g3) is another divisor of the corresponding
small common multiple T . Then:

• The divisors lm(g1) and lm(g3) of T form an overlap, and the divisors
lm(g3) and lm(g2) of T also form an overlap.

• If the S-polynomials ST ′(g1, g3) and ST ′′(g3, g2) for the corresponding
overlaps admit nontrivial representations of the form (4.4), then the
S-polynomial ST (g1, g2) also admits a nontrivial representation of that
form.

Proof. Same (mutatis mutandis) as the proof of Proposition 3.5.3.2.

Remarkably, the technical issues that we observed in the case of nonsym-
metric operads do not arise for shuffle algebras, and Corollary 2.4.3.3 can be
adapted for shuffle algebras in its full generality, giving the following result
that often simplifies computations quite drastically.

Corollary 4.5.3.3. Let G be a self-reduced set of elements of TX(X ).

(i) If each S-polynomial of two elements of G corresponding to an essen-
tial overlap has reduced form 0 with respect to G, then G is the reduced
Gröbner basis of (G).

(ii) While computing the reduced Gröbner basis using Algorithm 4.5.2.1, we
may ignore all non-essential overlaps.

Example 4.5.3.4. Let q ∈ F, and consider the element

Rq = 321 + q 312 + q 231 + q2 213 + q2 132 + q3 123

in TX(1)(3). It turns out that for the gpartlex order the element Rq forms
a Gröbner basis of the ideal it generates (Exercise 4.7).

As we know from Example 4.5.1.2, in principle there are two small common
multiples of the leading term 321 of Rq with itself: 4321 and 54321. However,
the second one is non-essential, so we only have to deal with the first one. This
observation simplifies the Gröbner basis verification most drastically (without
it, one needs to compute and reduce the second S-polynomial, which is an
element of a 120-dimensional space).
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4.6 Examples of shuffle algebras and their applications
4.6.1 Shuffle algebras and patterns in permutations

In the case of associative algebras, monomials that are reduced with re-
spect to a given set are precisely monomials whose divisors do not occur on
the given list of words. (Those would be “obscene” words for real-life applica-
tions.) In the case of shuffle algebras, the notion of divisibility is a bit more
complex. However, it turns out that in the particular case of the free shuffle
algebra TX(1) the notion of divisibility of monomials arises naturally in the
theory of consecutive permutation patterns [88, 149, 243].
Definition 4.6.1.1 (Consecutive patterns in permutations). To every se-
quence s of length k consisting of k distinct numbers, we associate a (unique)
permutation st(s) ∈ Sk called the standardization of s; it satisfies the con-
straints st(s)i < st(s)j if and only if si < sj . For example, st(153) = 132.
In other words, st(s) is the permutation whose relative order of entries is the
same as that of s. We say that a permutation σ ∈ Sn contains the given per-
mutation τ ∈ Sk as a consecutive pattern if there exists i ≤ n − k + 1 for
which

st(σiσi+1 . . . σi+k−1) = τ ;
otherwise we say that σ avoids τ as a consecutive pattern.

The relationship between consecutive patterns in permutations and divis-
ibility of monomials in TX(1) is summarized by the following result.
Theorem 4.6.1.2 ([76]).
(i) A permutation σ ∈ Sn contains the given permutation τ ∈ Sk as a

consecutive pattern if and only if σ, viewed as a shuffle monomial from
TX(1), is divisible by τ .

(ii) For every set P of permutation patterns, let us define the shuffle algebra
AP as the quotient of the algebra TX(1) by the ideal generated by all
patterns from P . Then the cosets of permutations avoiding all patterns
from P form a basis of AP .

Proof. Since the products in TX(1) are essentially defined via concatenations,
it is clear that the ideal generated by P is spanned by permutations containing
patterns from P , so the first part of the theorem is clear. The second part is
an immediate corollary to the first one.

4.6.2 Antisymmetrizer shuffle algebras
Example 4.6.2.1. Let V be a finite-dimensional vector space. Let us consider
the associative algebra

Ak(V ) := T (V )/(Λk(V )),
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that is the algebra whose relations are all antisymmetrized k-fold products
of elements of V . This algebra is called the k-th antisymmetrizer algebra. It
is one of the first examples of k-Koszul algebras [19]. This algebra depends
on V in a functorial way, and by Schur–Weyl duality [97] it corresponds to a
symmetric collection Ak = {Ak(n)}n≥0, so that

Ak(V ) =
⊕
n≥0
Ak(n)⊗FSn

V ⊗n.

It turns out that Ak has a natural structure of a twisted associative algebra;
the kernel of the natural map from TΣ(1) to Ak coming from Schur–Weyl
duality is an ideal, so the twisted associative algebra structure descends to Ak.
Moreover, it is very easy to describe the ideal of relations of Ak precisely: it
is generated by a single element

Rk =
∑
σ∈Sk

(−1)σσ.

To apply our methods, we may consider the corresponding shuffle algebra Afk .
It is a quotient of the free shuffle algebra TX(1) by the ideal generated by
the same element Rk viewed now as an element of TX(1)(k). It is possible to
check that this element forms a Gröbner basis of the corresponding ideal for
the gpartlex order; we leave it as a (not very easy) exercise for the reader
(Exercise 4.9). It turns out that one can convert normal forms for Ak into
normal forms for Ak(V ), thus solving the problem for all vector spaces at
once.

4.6.3 Twisted commutative algebras and shuffle algebras
An important class of twisted associative algebras is given by their com-

mutative versions; those algebras have recently been prominently featured in
stable representation theory [225, 222, 223, 224, 239]. They appear to share
some properties with classical commutative algebras, although their Noethe-
rianity in general remains an important open problem which is only resolved
in particular cases; see, e.g., [203].

Recall from the introduction to this chapter the notation σk,n−k for the
permutation of 1, . . . , n that swaps the clusters 1, . . . , k and k + 1, . . . , n,
putting the integers between 1 and n in the order k + 1, . . . , n, 1, . . . , k.

Definition 4.6.3.1 (Twisted commutative algebra). A twisted commutative
algebra A is a twisted associative algebra for which we have

µ(a2, a1) = µ(a1, a2).σk,n−k

whenever k ≥ 0, a1 ∈ A(k), a2 ∈ A(n− k).

Of course, this notion admits a counterpart in the universe of shuffle alge-
bras.
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Definition 4.6.3.2 (Commutative shuffle algebra). A shuffle algebra A for
which

µI1,I2(a1, a2) = µI2,I1(a2, a1)

whenever {1, . . . , n} = I1 t I2, a1 ∈ A(|I1|), a2 ∈ A(|I2|), is said to be com-
mutative.

The most important example of a twisted commutative algebra is the ten-
sor algebra of a vector space.

Proposition 4.6.3.3. The tensor algebra T (V ) with its shuffle algebra struc-
ture is commutative. In fact, it is free as a commutative shuffle algebra.

Proof. The first statement is trivially true; it is essentially explained in the
introduction to this chapter. The second statement is left as an exercise for
the reader (Exercise 4.10).

We expect that methods explained in this book can be beneficial for dealing
with twisted commutative algebras. They are related to “Gröbner methods”
of [222], but provide a somewhat different angle, where the primary focus
comes from a wider noncommutative setup.

Let us conclude this section by outlining a very promising direction of
research of twisted commutative algebras in the context of representation
theory that has not received enough attention so far.

Definition 4.6.3.4 (Algebra of tensor invariants). Suppose that V = g is
a Lie algebra. Then, since the adjoint g-action on tensor powers commutes
with the action of symmetric groups, the g-invariants in tensor powers form
a symmetric subcollection of T (V ), which moreover is a twisted associative
subalgebra. We call that subalgebra the tensor invariant algebra of g.

As an associative algebra, the tensor invariant algebra is usually quite far
from being finitely generated. However, in a range of examples (explored in
unpublished work of the second author and J. Griffin), it is finitely generated
as a twisted associative algebra, or equivalently as a shuffle algebra. It would
be interesting to obtain an explicit presentation of that algebra by generators
and relations, and we believe that methods of this paper can be used for that
purpose. Some related questions are discussed in Exercise 4.11.

4.7 Exercises
Exercise 4.1. Complete the proof of Proposition 4.2.1.6.

Exercise 4.2. Prove that our two definitions of twisted associative algebras
are indeed equivalent.
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Exercise 4.3. Compute the six different shuffle products of the shuffle mono-
mial 12 ∈ TX(1)(2) with the shuffle monomial 21 ∈ TX(1)(2), completing the
computation started in Example 4.3.1.8.

Exercise 4.4. Prove Proposition 4.4.2.3.

Exercise 4.5. Show that for each finite S ⊂ TX(X ) Algorithm 4.4.2.17 ter-
minates after finitely many steps.

Exercise 4.6. Use Equation (4.1) and Proposition 4.4.2.9 to fill in the details
of the proof of Theorem 4.5.1.4.

Exercise 4.7.

(i) Consider the element

R = 321 + c1 312 + c2 231 + c3 213 + c4 132 + c5 123

in TX(1)(3). Show that the element R forms a Gröbner basis of the ideal
(R) for the gpartlex order if and only if there exists q ∈ F for which
c1 = c2 = q, c3 = c4 = q2, and c5 = q3.

(ii) Try to generalize the result of (i) to the case of an element R ∈ TX(1)(4)
for which lt(R) = 4321, and to the case of any n ≥ 3.

Exercise 4.8. Generalize the approach of Section 4.6.1 to include more gen-
eral free shuffle algebras. As a starting point, consider the free shuffle algebra
with one generator of each arity n ≥ 1. Divisibility of monomials in this alge-
bra leads to a somewhat natural notion of “consecutive patterns in surjective
maps”.

Exercise 4.9.

(i) Prove the claim made in Example 4.6.2.1 that the defining relation

Rk =
∑
σ∈Sk

(−1)σσ.

of the shuffle algebra Afk forms a Gröbner basis of its ideal of relations.

(ii) Consider the algebra

Bk(V ) := T (V )/(Sk(V )),

the quotient of the tensor algebra by the ideal generated by all sym-
metrized k-fold products. Explain why, even though this algebra depends
on V functorially, converting normal forms for the corresponding shuffle
algebra Bfk into normal forms for Bk(V ) is much harder than it was for
Ak(V ) in Example 4.6.2.1.
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Exercise 4.10.

(i) Explain why the quotient of TX(X ) by the ideal generated by
µI1,I2(x1, x2) = µI2,I1(x2, x1) for all x1 ∈ X (|I1|), x2 ∈ X (|I2|) is the
free commutative shuffle algebra generated by X .

(ii) Pick a monomial order of shuffle monomials, and compute the reduced
Gröbner basis for the defining relations of the free commutative shuffle
algebra.

(iii) Show that the tensor algebra of V with its shuffle algebra structure is
the free commutative shuffle algebra generated by the collection 1 ⊗ V
for which

(1⊗ V )(n) =
{
V, n = 1,
0, n 6= 1.

Exercise 4.11. In this exercise, we assume F = Q.

(i) Consider the collection of tensor invariants of the Lie algebra sl2 (Exer-
cise 2.11); this collection has components(

(sl2)⊗n
)sl2 ;

it is a particular case of the general construction of the algebra of tensor
invariants (Definition 4.6.3.4). Prove that as a twisted associative algebra
it is generated by two elements: the Casimir element

K ∈ S2(sl2)sl2 ⊂
(
(sl2)⊗2)sl2

and the invariant 3-form

Ω ∈ Λ3(sl2)sl2 ⊂
(
(sl2)⊗3)sl2 .

(ii) Generalize this result for the case of sl3.

(iii) Generalize this result for the case of sln.

(iv) Find the defining relations of the corresponding twisted associative al-
gebra (at least for sl2; the authors do not know the answer for n > 2).



Chapter 5
Symmetric Operads and Shuffle
Operads

5.1 Introduction
This chapter continues developing methods for handling operations with

several arguments. In Chapter 3, we used nonsymmetric operads, which al-
lowed us to deal with substitutions of operations. In that chapter, we remarked
that the language of nonsymmetric operads is rich enough to express proper-
ties like associativity, where all arguments appear in the same order, but is
insufficient for the properties like the Jacobi identity in Lie algebras. If one
attempts to combine substitutions of operations with permutations of argu-
ments, the natural notion to deal with is that of a symmetric operad.

Symmetric operads were invented by Peter May for purely topological
reasons (to study spectra); see [193, 242] for some historical (and even pre-
historical) background. (It is worth remarking that, though invented and, un-
til 1990s, almost exclusively used by topologists, operads could have been
rediscovered by experts in combinatorics in the context of combinatorial
species [142], as monoids in species with respect to the partitional compo-
sition [94, 141].) Notably, similar to the phenomenon we observed for twisted
associative algebras in Chapter 4, the presence of symmetries makes it more
difficult to have a working formalism of normal forms. The solution to this
problem is similar to the one we exhibited for twisted associative algebras; we
will explain how to ignore the symmetries for most purposes by dealing with
shuffle operads instead of symmetric operads.

Our account of symmetric operads is fairly minimalistic; our goal is to give
just about enough definitions to explain our methods and formulate clearly
all the questions that we are going to address using the methods developed.
A reader who is interested in learning more about algebraic aspects of the
theory of symmetric operads is directed to [180] for a detailed account of the
state-of-art in that theory, and to [187] for extra context and applications of
algebraic operads.

141
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5.2 Symmetric operads and shuffle operads
5.2.1 Two definitions of a symmetric operad

In this section, we outline two definitions of a symmetric operad which are
parallel to the two definitions of a twisted associative algebra from Chapter 4.
One of them views a symmetric operad as a nonsymmetric operad whose
components have symmetric group actions for which the compositions are
reasonably equivariant, the other one defines it as a monoid. The monoidal
definition is the one that turns out to be easy to adapt, obtaining a more
general definition of a shuffle operad, better suited for normal forms.

The following definition is motivated by looking at the endomorphism op-
erad again. It is clear that besides substituting multilinear operations into one
another, we can also permute arguments of an operation; this extra structure is
in some way compatible with the nonsymmetric operad structure, and spelling
out the compatibility explicitly, we arrive at a definition of a symmetric op-
erad. Note that graphically the composition f ◦ (g1, . . . , gr) is represented by
a tree of depth two, that is trees with two levels of internal vertices, the first
level consisting of the only vertex v directly connected to root, and the sec-
ond level being the elements of Parent−1(v). This leads to two different types
of symmetry: the first-level symmetry which arises from permuting elements
of Parent−1(v), and the second-level symmetry which arises from permuting
elements of Parent−1(vi), where vi ∈ Parent−1(v).
Definition 5.2.1.1 (Classical definition of a symmetric operad). A symmetric
operad is a symmetric collection O = {O(n)}n≥0 with a nonsymmetric operad
structure given by a set of maps

γ(r)
n1,...,nr

: O(r)⊗O(n1)⊗ · · · ⊗ O(nr)→ O(n1 + · · ·+ nr)

and an element id ∈ O(1) which satisfy the associativity and the unit axiom
for nonsymmetric operads (Definition 3.2.1.1), and in addition satisfy the
following equivariance axioms:
• first-level symmetry: the map⊕

n1,...,nr

γ(r)
n1,...,nr

: O(r)⊗
(⊕

O(n1)⊗ · · · ⊗ O(nr)
)
→ O(n) (5.1)

factors through the tensor product over FSr (the direct sum is over all
r-tuples (n1, . . . , nr) with n1 + · · ·+nr = n, and the action of Sr on the
direct sum

⊕
n1+···+nr=n

O(n1) ⊗ · · · ⊗ O(nr) is by permuting factors in

tensor products);

• second-level symmetry: the map γ(r)
n1,...,nr is a morphism of Sn1×· · ·×Snr -

modules (here the target of this map is viewed as an Sn1 × · · · × Snr -
module through the obvious embedding Sn1 × · · · × Snr

⊂ Sn1+···+nr
).
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Similarly to the case of twisted associative algebras, it is possible to
rephrase the definition of a symmetric operad in a slightly more conceptual
way, as an associative algebra for a certain product on symmetric collections.

Definition 5.2.1.2 (Symmetric composition product). Let V and W be two
symmetric collections. We define their symmetric composition product V ◦ΣW
as the symmetric collection V ◦ΣW with the components

(V ◦ΣW)(n) =
⊕
r≥0
V(r)⊗FSr

W⊗r(n),

where the action of Sr on the componentsW⊗r(n) of the r-th tensor power of
the collection W (Definition 4.2.1.8) is by permuting factors in tensor prod-
ucts.

Remark 5.2.1.3. Using Definition 4.2.1.5 and basic properties of induced
representations, one can easily prove the formula

W⊗r(n) =
⊕

n1+···+nr=n
IndSn

Sn1×···×Snr
W(n1)⊗ · · · ⊗W(nr).

The following proposition is an analogue of Proposition 4.2.1.6 for the case
of symmetric operads.

Proposition 5.2.1.4.

• The following formula for symmetric composition products holds:

(V ◦ΣW)(n) =
⊕
r≥0
V(r)⊗FSr

(⊕
π

W(|I(1)|)⊗ · · · ⊗W(|I(r)|)
)
,

where π ranges in all set partitions {1, . . . , n} =
⊔r
j=1 I

(j).

• The symmetric composition product is associative, so that

(U ◦Σ V) ◦ΣW ∼= U ◦Σ(V ◦ΣW)

for all symmetric collections U , V, W.

• We have
V ◦Σ 1 ∼= V ∼= 1 ◦Σ V

for all symmetric collections V.

Proof. The first statement follows directly from Proposition 4.2.1.6. The rest
of the proof is left as an exercise for the reader (Exercise 5.1).

This result leads to another definition of a symmetric operad.
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Definition 5.2.1.5 (Monoidal definition of a symmetric operad). A symmet-
ric operad is a monoid in the category of symmetric collections with respect
to the symmetric composition product.

We leave it to the reader (Exercise 5.2) to prove that the two definitions
we gave are equivalent.

Using the monoidal definition of a symmetric operad, we can give a very
concise definition of an ideal.

Definition 5.2.1.6 (Ideal of a symmetric operad). An ideal of a symmetric
operad O is a symmetric subcollection I ⊂ O for which the image of the
structure map O◦ΣO → O restricted to I ◦ΣO +O ◦Σ I is contained in I.

As a consequence of associativity of the composition product, we can define
composition powers of symmetric collections.

Definition 5.2.1.7 (Composition power of a symmetric collection). Let V
be a symmetric collection. The composition power V◦Σ n is the symmetric
composition product of n copies of V. For n = 0, we define V◦Σ 0 := 1.

5.2.2 Free symmetric operads
Similarly to the case of nonsymmetric operads, a symmetric operad can

be presented via generators and relations, that is, as a quotient of the free
symmetric operad TΣ(M). The latter is also defined using decorated trees.
As was the case with twisted associative algebras, we will not discuss free
symmetric operads in full detail, since we will see that they are not fully suit-
able for defining Gröbner bases and proving an appropriate diamond lemma
(which leads to a suitable replacement, free shuffle operads, defined in the
next section).

Unlike the case of twisted associative algebras where the free algebra was
just the sum of tensor powers, taking the sum of composition powers is not
enough to define the free symmetric operad. The reason for that is that the
composition product is highly nonlinear in its second argument, and com-
puting the sum of composition powers would not allow us any natural way
to implement partial compositions. For that reason, we forcefully adjoin the
unit, and then factor out the relations needed for the unit axiom to hold.

Definition 5.2.2.1 (Free symmetric operad). The free symmetric operad
TΣ(M) generated by a given symmetric collection M is the quotient of the
direct sum ⊕

k≥1
(1⊕M)◦Σ k

by the identifications

1 ◦ΣM∼=M∼=M◦Σ 1 and 1 ◦Σ 1 ∼= 1

of Proposition 5.2.1.4.
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Definition 5.2.2.2 (Tree tensors). Let us develop a more concrete way to
represent elements of TΣ(M). Similarly to how the composition f ◦(g1, . . . , gr)
may be represented by trees of depth two, for any symmetric collection Q, el-
ements that span the symmetric collection Q◦Σ k can be viewed as equivalence
classes of tree tensors, that is triples (τ, x, n), where

• τ is a “fully grown rooted tree” (a tree for which all leaves are of the
same depth k) with n leaves;

• x is a labelling of all internal vertices of τ by elements ofM, where each
vertex v must have a label xv ∈ X (|Parent−1(v)|);

• n is a numbering of Leaves(τ) by integers {1, . . . , n}.

(Basically, the label xv of an internal vertex v of depth p ≤ k comes from the
p-th factor Q in Q◦Σ k.)

The equivalence relation on these is generated by two kinds of relations.
First of all, x should be understood as a tensor, linear in each of the la-
bels xv. Second, isomorphisms of trees are related to symmetric group actions:
if v ∈ Vert(τ), and Parent−1(v) = {v1, . . . , vk}, then for each σ ∈ Sk we can
obtain another rooted tree τσ by changing, for each i = 1, . . . , k and each
u ∈ Parent−1(vi), the value of Parent(u) to σ−1(i), and we can obtain an-
other labelling xσ by (only) changing the value xv to xv.σ. By definition, we
say that (τ, x, n) ≡ (τσ, xσ, n).

In our particular case, we have Q = 1⊕M, and the identifications

1 ◦ΣM∼=M∼=M◦Σ 1 and 1 ◦Σ 1 ∼= 1

merely allow to ignore the vertices with labels from 1, which just means that
we work with all trees with labels fromM, not only fully grown ones.

To define compositions in the free symmetric operad, we need to tweak a
little bit Definition 3.3.3.1 of full grafting of planar rooted trees so that we
can take leaf labels into account.

Definition 5.2.2.3 (Composition product of tree tensors). Suppose that

T0 = (τ0, x0, n0) ∈ TΣ(M)(r) and Ti = (τi, xi, ni) ∈ TΣ(M)(ni), i = 1, . . . , r,

are tree tensors. We define the nonsymmetric composition product
T0 ◦ (T1, . . . , Tr) to be the tree tensor (τ, x, n), where

Root(τ) = Root(τ0),

Int(τ) =
r⊔
i=0

Int(τi),

Leaves(τ) =
r⊔
i=1

Leaves(τi).



146 Algebraic Operads: An Algorithmic Companion

The parent function and the planar structure on the thus defined set of vertices
are induced by the respective parent functions and planar structures of τi,
0 ≤ i ≤ r, with the following exceptions. For each j = 1, . . . , r, for the only
vertex vj in Parent−1

τj
(Root(τj)), we define

Parentτ (vj) := Parentτ0(`j),

where `j = n−1
0 (j) is the leaf of τ0 numbered by j. This means that

Parent−1
τ (Parentτ0(`j)) = {vj} t Parent−1

τ0 (Parentτ0(`j)) \ {`j};

the total order needed by the planar structure puts vj in the place of `j .
The labelling x of Int(τ) =

⊔r
i=0 Int(τi) is given by the disjoint union of

labellings xj , 1 ≤ j ≤ r.
The numbering n of Leaves(τ) =

⊔r
i=1 Leaves(τi) is given by an appropriate

shift of the numbering nj :

n(`) = n1 + . . .+ nj−1 + nj(`), ` ∈ Leaves(τj).

This operation extends to a unique multilinear operation

γ : TΣ(M)(r)⊗ TΣ(M)(n1)⊗ · · · ⊗ TΣ(M)(nr)→ TΣ(M)(n1 + · · ·+ nr).

Equipped with these operations and with the symmetric group action on the
numberings of leaves, TΣ(M) is the free symmetric operad generated byM.

The following example may make our general description more clear.

Example 5.2.2.4. Let us consider the symmetric collection L for which

L(n) =
{

sign2, n = 2,
0, n 6= 2

(here sign2 is the sign representation of S2). Since L(n) = 0 for n 6= 2, all the
tree tensors we may use are based on binary trees, that is trees τ for which
|Parent−1(v)| = 2 for each v ∈ Int(τ).

There need not be any labels of internal vertices since the vector space L(2)
is one-dimensional; the only equivalence on such tensors we have to implement
is that exchanging two children of an internal vertex results in multiplying the
corresponding term by −1. For example,

1 2
3 = −

2 1
3 =

2 1
3 .

In particular, this means that we now have a proper vocabulary to represent
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the Jacobi identity in Lie algebras: it is the element

J :=

1 2
3 +

2 3
1 +

3 1
2

of the free operad TΣ(L). Furthermore, the quotient TΣ(L)/(J) is the op-
erad Lie; its component Lie(n) consists of all n-ary operations that are canon-
ically defined on any Lie algebra. (This is straighforward: taking the quotient
by an ideal amounts to imposing all algebraic identities between operations
represented by elements of the ideal.)

The particular case of the free algebra TΣ(L) which we just discussed is
quite sufficient to illustrate a major problem that arises because of symmetric
group actions.
Proposition 5.2.2.5. It is impossible to define a total ordering of basis el-
ements of TΣ(L) which would lead to normal forms in quotient symmetric
operads.
Proof. Let us consider the subspace of TΣ(L)(3) spanned by the element

J :=

1 2
3 +

2 3
1 +

3 1
2

that we discussed above, and the ideal (J) generated by this element, which
is the span of all elements obtained from this one by iterations of partial
compositions and permutations. As we just mentioned above, the quotient
operad is the operad Lie of Lie algebras. Suppose that it were possible to
have normal forms for elements of quotient operads based on leading terms
of ideals of relations. In this case, the leading term of J would be one of the
three elements

1 2
3 ,

2 3
1 , or

3 1
2 .

In each of the cases, our plan fails, since the ideal generated by any one of these
(which of course would be contained by the ideal of leading terms) contains
both others due to being a symmetric subcollection, so a collection of Sn-
invariant subspaces. Moreover, all the basis elements of arity 3 belong to the
same orbit of S3, so there would be no normal monomials in the arity three
component at all, a contradiction. (Of course, Lie(3) is two-dimensional, since
the Jacobi identity is just one linear dependency between the three elements
above.)
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The way we are going to resolve this problem is similar to the one from
Chapter 4: we will define a different kind of operads, the so-called shuffle op-
erads. This will allow us to work out normal forms by completely ignoring the
symmetric group action whenever possible. Before doing that, let us present
one more example of a symmetric operad.

Example 5.2.2.6. Consider the symmetric collection U for which

U(n) =
{
FS2, n = 2,
0, n 6= 2.

Since U(n) = 0 for n 6= 2, all the tree tensors we may use are based on binary
trees, similarly to Example 5.2.2.4. Although U(2) is two-dimensional, a con-
ventional way to avoid labelling internal vertices in this particular case is to
consider planar trees; in this case there are two different orders on Parent−1(v)
for each v ∈ Int(v), and a two-dimensional space of labels, so one can use a
planar structure instead of a labelling. (This also leads to an important obser-
vation that every operad generated by a single binary operation may be viewed
as a quotient of TΣ(U).) For instance, the component TΣ(U)(2) ∼= U(2) = FS2
this way acquires a basis consisting of the two elements

1 2
and

2 1
.

The best known operad with one binary generator is the symmetric associative
operad Ass. When viewed as a quotient of TΣ(U), its ideal of defining relations
is generated by the element

A :=

1 2
3 −

2 3
1 ;

note that in the case of symmetric operads, generating an ideal by an element
amounts to finding the smallest symmetric subcollection containing this ele-
ment and closed under compositions; in particular, the orbit of the symmetric
group on A must be included in (A).

Remark 5.2.2.7. Throughout this chapter, we mainly use examples of op-
erads generated by binary operations. In that particular case, the number of
internal vertices and the number of leaves in the underlying tree of every tree
tensor are related: the latter always exceeds the former by one. For general
trees, there is no obvious relationship between the two.
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5.2.3 Shuffle operads
In this section, we spell out the definition of a shuffle operad, originally

defined in [74]. To define shuffle operads, we will use nonsymmetric collections
(Definition 3.1.1.1) instead of symmetric ones; for those, there is a version
of the composition product construction which will prove very useful. That
product is only meaningful under a certain restriction, for so-called reduced
collections.

Definition 5.2.3.1 (Reduced collection). A (symmetric or nonsymmetric)
collection V is said to be reduced if V(0) = 0.

We are now ready to define the shuffle composition product.

Definition 5.2.3.2 (Shuffle composition product). The shuffle composition
product V ◦XW of two reduced nonsymmetric collections V and W is defined
by the formula

(V ◦XW)(n) =
⊕
r≥1
V(r)⊗

⊕
π

W(|I(1)|)⊗ · · · ⊗W(|I(r)|),

where π ranges in all set partitions {1, . . . , n} =
⊔r
j=1 I

(j) for which all parts
I(j) are nonempty and min(I1) < · · · < min(Ir).

Proposition 5.2.3.3.

• The shuffle composition product is associative, so that

(U ◦X V) ◦XW ∼= U ◦X(V ◦XW)

for all reduced nonsymmetric collections U , V, W.

• We have V ◦X 1 ∼= V ∼= 1 ◦X V for all reduced nonsymmetric collections
V.

Proof. Exercise 5.3.

This result allows us to define shuffle operads as monoids, mimicking Def-
inition 5.2.1.5.

Definition 5.2.3.4 (Shuffle operad). A shuffle operad is a monoid in the
category of reduced nonsymmetric collections with respect to the shuffle com-
position product.

More concretely, the datum of a shuffle operad on a reduced nonsymmetric
collection O is a collection of maps

γπ : O(r)⊗O(n1)⊗ · · · ⊗ O(nr)→ O(n)

for each partition π of {1, . . . , n} of the form
r⊔
j=1

I(j) with |I(j)| = nj , and

min(I(1)) < · · · < min(I(r)), and an identity element id ∈ O(1) satisfying the
following properties:
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• associativity:

γπ(f ; γπ1(g1;h(1)
1 , . . . , h(1)

q1 ), . . . , γπr
(gr;h(r)

1 , . . . , h(r)
qr

)) =
= γπ̃(γπ(f ; g1, . . . , gr);h1, . . . , hq), (5.2)

where for each j = 1, . . . , r, πj is a partition of the individual part I(j)

of π into qj parts, π̃ is the partition of {1, . . . , n} obtained by putting
together the individual parts of all πj and ordering them globally ac-
cording to the minimal elements in those parts, q = q1 + · · · + qr, and
(h1, . . . , hq) is a reordering of (h(1)

1 , . . . , h
(1)
q1 , . . . , h

(r)
1 , . . . , h

(r)
qr ) according

to the reordering of all the individual parts of all πj that we imposed.

• unit axiom:

γ{1,...,n}(id;α) = α, γ{1},...,{n}(α; id, . . . , id) = α. (5.3)

As usual, we can utilize the monoidal definition of shuffle operads to define
ideals.
Definition 5.2.3.5 (Ideal of a shuffle operad). Suppose that O is a shuffle
operad. An ideal I of O is a nonsymmetric subcollection I ⊂ O for which the
images of structure maps restricted to both I ◦XO and O◦X I are contained
in I.

As a consequence of associativity of the shuffle composition product, we
can define shuffle composition powers of reduced nonsymmetric collections.
Definition 5.2.3.6 (Composition power of a nonsymmetric collection). Let
V be a reduced nonsymmetric collection. The composition power V◦X n is the
shuffle composition product of n copies of V. For n = 0, we define V◦X 0 := 1.

5.3 Free shuffle operads
5.3.1 Tree monomials and tree polynomials

One can define free shuffle operads analogously to free symmetric operads.
Definition 5.3.1.1 (Free shuffle operad). The free shuffle operad TΣ(M)
generated by a given reduced nonsymmetric collection M is the quotient of
the direct sum ⊕

k≥1
(1⊕M)◦X k

by the identifications

1 ◦XM∼=M∼=M◦X 1 and 1 ◦X 1 ∼= 1

of Proposition 5.2.3.3.
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Let us describe an explicit construction of the free shuffle operad with a
given set of generators.
Definition 5.3.1.2 (Shuffle tree monomial). Let X = {X (n)}n≥1 be
a reduced operation alphabet. A shuffle tree monomial in X is a triple
T = (τ, x, n), where
• τ is a planar rooted tree all of whose endpoints are leaves;

• x is a labelling of all internal vertices of τ by elements of X ; each vertex
v must have a label xv ∈ X (|Parent−1(v)|);

• n is a numbering of leaves of τ by integers 1, . . . , |Leaves(τ)| satisfying
the following local increasing condition stated as follows.
Any numbering n of leaves induces a numbering n∗ of all vertices of τ :
we put n∗(v) to be the number of the smallest leaf of the subtree of τ
with the root v. The local increasing condition for n states that for each
vertex u, the ordering of the set Parent−1(u) according to the numbering
n∗ of its elements is precisely the ordering given by the planar structure
of τ .

The tree monomial for which the underlying tree τ is the trivial tree is called
the trivial tree monomial, or the empty tree monomial.

The arity of a shuffle tree monomial T , denoted ar(T ), is the number of
leaves of τ , and its weight, denoted wt(T ), is the number of internal vertices
of τ .

The set of all shuffle tree monomials in X of arity n is denoted XTreeX (n).
The collection of all these sets for all n ≥ 1 is denoted XTreeX .

In simple words, shuffle tree monomials are planar tree monomials for
which each internal vertex has at least one input edge, all leaves are numbered,
and for each internal vertex, the minimal leaves of the subtrees grafted at that
vertex increase from the left to the right in the usual graphical representation.
Example 5.3.1.3. Suppose that X (2) = {∗}, and X (n) = ∅ for n 6= 2. In
this case we can suppress the vertex labels of trees since they do not carry
any new information. The following elements form a basis in XTreeX (3):

1 2
3 ,

1 3
2 ,

2 3
1 ,

and the following elements are examples of basis elements in the vector space
XTreeX (4) (which in fact is 15-dimensional):

1 2 3 4

,

1 3 2 4

,

1 4 2 3

.
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Note that for the underlying trees

, , and

we listed all shuffle tree monomials of that shape; the local increasing condition
implies, for instance, that there are two different shuffle tree monomials of the

shape but only one such monomial of the shape .

Definition 5.3.1.4 (Shuffle tree polynomial). Let X = {X (n)}n≥1 be a re-
duced operation alphabet. A shuffle tree polynomial in X with coefficients in F
is a linear combination of shuffle tree monomials of the same arity. The support
of a shuffle tree polynomial f , denoted supp(f), is the set of all nonsymmetric
tree monomials that appear in f with nonzero coefficients.

We denote the vector space of all nonsymmetric tree polynomials of arity n
by TX(X )(n); of course we have TX(X )(n) = FXTreeX (n).

Definition 5.3.1.5 (Explicit construction of the free shuffle operad). Suppose
that

T0 = (τ0, x0, n0) ∈XTreeX (r), Ti = (τi, xi, ni) ∈XTreeX (ni), i = 1, . . . , r.

For each partition π of {1, . . . , n1 + · · ·+ nr} of the form

r⊔
j=1

I(j) with |I(j)| = nj , and min(I(1)) < · · · < min(I(r)),

we define the shuffle composition γπ(T0;T1, . . . , Tr) to be the shuffle tree mono-
mial (τ, x, n), where

Root(τ) = Root(τ0),

Int(τ) =
r⊔
i=0

Int(τi),

Leaves(τ) =
r⊔
i=1

Leaves(τi).

The parent function and the planar structure on the thus defined set of vertices
are induced by the respective parent functions and planar structures of τi,
0 ≤ i ≤ r, with the following exceptions. For each j = 1, . . . , r, for the only
vertex vj in Parent−1

τj
(Root(τj)), we define

Parentτ (vj) := Parentτ0(`j),
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where `j = n−1
0 (j) is the leaf of τ0 numbered by j. This means that

Parent−1
τ (Parentτ0(`j)) = {vj} t Parent−1

τ0 (Parentτ0(`j)) \ {`j};

the total order needed by the planar structure puts vj in the place of `j .
The labelling x of Int(τ) =

⊔r
i=0 Int(τi) is given by the disjoint union of

labellings xj , 1 ≤ j ≤ r, and the numbering n of Leaves(τ) =
⊔r
i=1 Leaves(τi)

is given by numbering the leaves of each τj via the composition of the only
order preserving bijection of σj : {1, . . . , nj} ∼= I(j) with the numbering nj :

n(`) = σj(nj(`)), ` ∈ Leaves(τj).

These shuffle compositions may be extended by multilinearity to the collection
TX(X ) = {TX(X )(n)}n≥1 of all shuffle tree polynomials of all arities, giving
operations

γπ : TX(X )(r)⊗ TX(X )(n1)⊗ · · · ⊗ TX(nr)→ TX(X )(n1 + · · ·+ nr).

Equipped with these operations, TX(X ) is the free shuffle operad gener-
ated by X . In addition to the notation TX(X ), we will use the notation
TX(M), where M = {M(n)}n≥1 is a nonsymmetric collection for which
M(n) = span(X (n)) for all n ≥ 1.

Throughout this chapter, we mainly consider shuffle tree monomials and
polynomials, so we will occasionally drop the word “shuffle”, hoping that it
does not lead to confusion.

Example 5.3.1.6. Let us consider the free shuffle operad TX(X ) from Exam-
ple 5.3.1.3. The following are examples of shuffle compositions in that operad:

γ{1,2},{3}

 1 2
;

1 2
,

1
 =

1 2
3 ,

γ{1,3},{2}

 1 2
;

1 2
,

1
 =

1 3
2 ,

γ{1},{2,3}

 1 2
;

1
,

1 2
 =

2 3
1 ,

γ{1,3},{2,4}

 1 2
;

1 2
,

1 2
 =

1 3 2 4

,
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γ{1},{2,4},{3}


1 3

2 ;
1
,

1 2
,

1

 =

1 3 2 4

.

5.3.2 Presentation by generators and relations
The analogue of First Homomorphism Theorem holds for shuffle operads,

and we may utilize it to define presentations of operads. Suppose that a shuffle
operad P is generated by a collection of operations αi ∈ P(ni). In that case,
we can consider the collection X of operations κi ∈ X (ni), one operation for
each generator of P. There is a surjective homomorphism from TX(X ) onto P
sending κi to αi which is uniquely defined by the universal property of the
free operad. By the First Homomorphism Theorem, that homomorphism is
the canonical map onto the quotient of TX(X ) by some ideal I.

Definition 5.3.2.1 (Ideal generated by a subcollection). Let P be a shuffle
operad, and suppose that S ⊂ P is a subcollection. The ideal of P generated
by S, denoted by (S), is the smallest (by inclusion) ideal of P containing S.

Definition 5.3.2.2 (Presentation by generators and relations). Suppose that
the shuffle operad P is a quotient of the free operad TX(X ) by some ideal I,
and that the ideal I is generated by the collection S. In this case, we will say
that the operad P is presented by generators X and relations S.

5.3.3 Symmetric operads as shuffle operads
As we mentioned before, our main reason to deal with shuffle algebras is

that they allow us to solve the problem of finding normal forms in twisted
associative algebras presented by generators and relations. Let us explain why
this is the case. Similarly to Chapter 4, we will use the forgetful functor that
assigns to each symmetric collection V the same collection of vector spaces
viewed as a nonsymmetric collection (Definition 4.3.3.1).

The following result is analogous to Proposition 4.3.3.2; it confirms that
the shuffle tensor product is precisely the kind of operation one needs to ignore
symmetries of symmetric collections without losing information about their
composition products.

Proposition 5.3.3.1. Let V and W be two reduced symmetric collections.
Then we have

(V ◦ΣW)f ∼= Vf ◦XWf .

Proof. Let us examine the n-th component for both sides. By Proposition
5.2.1.4,

(V ◦ΣW)(n) =
⊕
r≥1
V(r)⊗FSr

⊕
π

W(|J (1)|)⊗ · · · ⊗W(|J (r)|)
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(we can write the direct sum for r ≥ 1 since V is reduced), where π ranges
in all set partitions {1, . . . , n} =

⊔r
j=1 I

(j) (we may assume all I(j) nonempty
since W is reduced). At the same time, by definition of shuffle composition
products,

(Vf ◦XWf )(n) =
⊕
r≥1
Vf (r)⊗

⊕
π

Wf (|I(1)|)⊗ · · · ⊗Wf (|I(r)|),

where π ranges in all set partitions {1, . . . , n} =
⊔r
j=1 I

(j) for which all parts
I(j) are nonempty and min(I1) < · · · < min(Ir). It remains to note that the
direct sum ⊕

J(1)t···tJ(r)={1,...,n},
J(k) 6=∅

W(|J (1)|)⊗ · · · ⊗W(|J (r)|)

is a free left FSr-module: it is a direct sum over all ordered partitions of
{1, . . . , n} into r nonempty parts, and each unordered partition gives rise to
exactly n! different ordered partitions, so the action of FSr on the direct sum
is the regular action. It remains to recall that for any associative F-algebra A,
any left A-module M , and any free right A-module N , we have a vector space
isomorphism

M ⊗A N ∼= M ⊗ U,

where U is any space of free generators of N . In our case, we can take⊕
J(1)t···tJ(r)={1,...,n},J(k) 6=∅,

min(J1)<···<min(Jr)

W(|J (1)|)⊗ · · · ⊗W(|J (r)|)

as the space of generators: for every r-fold tensor product there exists a unique
permutation of factors making it a tensor product where minimal elements of
parts increase as the number of the part increases, and we get precisely the
desired formula once we forget about the symmetric group actions.

Remark 5.3.3.2. Note that the assumption onW being reduced is absolutely
crucial; without that assumption, the direct sum⊕

J(1)t···tJ(r)={1,...,n}

W(|J (1)|)⊗ · · · ⊗W(|J (r)|)

is certainly not a free Sr-module, and the key step of the proof fails.

The following corollary is, in some sense, the central result of this chap-
ter. It shows that any symmetric operad, when studied as a shuffle operad,
needs the same number of generators and relations to be defined. Thus, any
approach to normal forms for shuffle operads leads to normal forms for sym-
metric operads as well.
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Corollary 5.3.3.3. Let M be a symmetric collection. Then we have an iso-
morphism of shuffle operads

TX(Mf ) ∼= (TΣ(M))f .

Moreover, if I ⊂ TΣ(M) is an ideal, then, under the identification that we
made, If is an ideal of TX(Mf ), and

TX(Mf )/If ∼= (TΣ(M)/I)f .

Proof. All the notions in question, that is free symmetric operads, free shuffle
operads, and ideals in those operads, are defined using composition products,
so Proposition 5.3.3.1 applies.

Example 5.3.3.4. Let us consider the free shuffle operad TX(X ) from Ex-
ample 5.3.1.3. Note that it is isomorphic to TΣ(L)f , where L is the symmetric
collection from Example 5.2.2.4: indeed, TΣ(L)f ∼= TX(Lf ), and L(2) is one-
dimensional, so X (2) can be identified with the only basis element of Lf (2).
Consider, in this operad, the ideal generated by the element

J ′ :=

2 3
1

(this ideal is not an ideal of the form If ). This ideal is the span of all ele-
ments obtained from J ′ by iterations of shuffle compositions. Such elements
are precisely all the elements (τ, x, n) for which the tree τ has at least one
“right branch”, that is an internal vertex v which is not the smallest ele-
ment of Parent−1(Parent(v)). This happens because, as we mentioned in Ex-

ample 5.3.1.3, the shuffle tree monomial

2 3
1 is the only shuffle tree

monomial with the underlying tree . Therefore, a basis in the quotient

TX(X ) is formed by all shuffle tree monomials T without right branches. The
underlying trees of such tree monomials are “left combs”

, , , . . . ,

and the only condition on the numbering of leaves required to satisfy the
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local increasing condition is that the leftmost leaf is numbered by 1. Thus, for
each n there are (n − 1)! basis elements; this agrees with the known formula
for the dimension of the n-th component of the operad Lie [180]. Thus, on the
level of nonsymmetric collections we have

TX(X )/(J ′) ∼= Lief ;

this hints that the problem we exhibited in Proposition 5.2.2.5 is naturally
fixed in the context of shuffle operads.

5.3.4 Applying the forgetful functor
Let us follow the example we just discussed with a further discussion of

how to apply the forgetful functor to symmetric operads.
In the case of twisted associative algebras and shuffle algebras, the com-

binatorial constructions of free algebras were the same, so we could just, say,
take an element of TΣ(1), a linear combination of permutations, and view it
as an element of TX(1) without any pre-processing.

In the case of symmetric operads and shuffle operads, the situation is
slightly different. The free shuffle operad has a basis of shuffle tree monomials,
whereas the free symmetric operad has a spanning set of tree tensors, and some
of these are identified with each other by the symmetric group action. The
isomorphism of Proposition 5.3.3.1 chooses representatives of elements, and
this is what we also have to do when regarding a symmetric operad as a shuffle
operad.

Proposition 5.3.4.1. Let M be a reduced symmetric collection, and let X
be a reduced operation alphabet such that for each n ≥ 1 the set X (n) forms a
basis of Mf (n). Then the shuffle tree monomials from TX(X ), which, if the
planar structure is ignored, can be viewed as elements in TΣ(M), form a basis
of TΣ(M).

Proof. This is a mere reformulation of the isomorphism of Proposition 5.3.3.1.

Let us consider two examples.

Example 5.3.4.2. Let us consider the operad Lie as defined in Example
5.2.2.4. As we already discussed in Example 5.3.3.4, we can take the operation
alphabet X for which X (2) consists of one element and X (n) is empty for n 6= 2
as the basis collection for Lf . The Jacobi identity

J :=

1 2
3 +

2 3
1 +

3 1
2



158 Algebraic Operads: An Algorithmic Companion

is an element of the free operad TΣ(L); we would like to view it as an element
of TΣ(L)f ∼= TX(X ). For that, we use the equivalence of tree tensors coming
from the symmetric group actions on the space of generators to rewrite all the
elements involved as combinations of shuffle tree monomials, obtaining the
element

1 2
3 −

2 3
1 −

1 3
2 .

This element generates the ideal of relations defining the operad Lief as a
quotient of TX(X ).

Example 5.3.4.3. Let us consider the symmetric operad Ass as defined in
Example 5.2.2.6. We can take the operation alphabet X for which

X (2) = {a, b} and X (n) = ∅ for n 6= 2

as the basis collection for Uf . We identify X with a basis of Uf , which leads
to identification of bases of TX(X )(2) and TΣ(U)f (2) as follows:

1 2
a ↔

1 2
,

1 2

b ↔
2 1

.

The symmetric group orbit of the defining relation of the operad Ass in
TΣ(U)(3) is

1 2
3 −

2 3
1 ,

2 1
3 −

1 3
2 ,

1 3
2 −

3 2
1 ,

2 3
1 −

3 1
2 ,

3 1
2 −

1 2
3 ,

3 2
1 −

2 1
3 .

To convert these to elements of TΣ(U)f ∼= TX(X ), we use the equivalence
of tree tensors coming from the symmetric group actions on the space of
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generators, obtaining the corresponding elements

1 2
a 3

a
−

2 3
1 a

a
,

1 2

b 3
a

−

1 3
a 2

b
,

1 3
a 2

a
−

2 3

1 b

a
,

2 3
1 a

b
−

1 3

b 2

b

,

1 3

b 2
a

−

1 2
a 3

b
,

1 2

b 3

b

−

2 3

1 b

b

.

These elements generate the ideal of relations defining the operad Assf as a
quotient of TX(X ).

5.4 Normal forms
5.4.1 Monomial orders

The definition of a monomial order can be easily adapted to the case of
shuffle tree monomials.

Definition 5.4.1.1 (Monomial order). A collection of total orders Ξn of
XTreeX (n), n ≥ 1, is said to be a monomial order if the following two con-
ditions are satisfied:

• each Ξn is a well-order;

• each shuffle composition is a strictly increasing function in each of its
arguments; that is if

T0, T
′
0 ∈XTreeX (r), T1, T

′
1 ∈XTreeX (n1), . . . , Tr, T ′r ∈XTreeX (nr),

and π is a partition of {1, . . . , n1 + · · ·+ nr} of the form

r⊔
j=1

I(j) with |I(j)| = nj , and min(I(1)) < · · · < min(I(r)),
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then

γπ(T0;T1, . . . , Tr) ≺ γπ(T ′0;T1, . . . , Tr) if T0 ≺ T ′0,
γπ(T0;T1, . . . , Ti, . . . , Tr) ≺ γπ(T0;T1, . . . , Ti, . . . , Tr) if Ti ≺ T ′i .

Let us now outline an important construction of monomial orders. We
denote X :=

⊔
n≥1
X (n).

We will first explain how to replace every tree monomial by a sequence of
words in the alphabet X that transform in a controllable way under compo-
sition. The path sequences we define are similar to those of Definition 3.4.1.2,
and we somewhat suggestively use the same notation for them.
Definition 5.4.1.2 (Path sequence of a shuffle tree monomial). Let
T = (τ, x, n) be a shuffle tree monomial. For each leaf ` of τ in the total
order induced by the numbering n, we record the labels of internal vertices
of the path from the root of τ to `, forming a word in the alphabet X. The
sequence of these words, denoted Path(T ), is called the path sequence of the
tree monomial T .
Example 5.4.1.3. Suppose that X (2) = {∗}. The path sequences of the tree
monomials

1 2
3 ,

1 3
2 ,

2 3
1

from Example 5.3.1.3 are, respectively,

(∗∗, ∗∗, ∗), (∗∗, ∗, ∗∗), (∗, ∗∗, ∗∗).

Note that however unlike the case of nonsymmetric operads the path sequence
does not determine a monomial uniquely. For instance, each of the tree mono-
mials

1 2 3 4

,

1 3 2 4

,

1 4 2 3

from the same example has the path sequence

(∗∗, ∗∗, ∗∗, ∗∗).

There is a way to fix the issue of non-injectivity of path sequences.
Definition 5.4.1.4 (Leaf permutation of a shuffle tree monomial). Let
T = (τ, x, n) be a shuffle tree monomial. The leaf permutation of T is the
permutation σ(T ) for which σ(T )(j) = n(`j), where `j is the j-th leaf of τ in
the total planar order of leaves (Definition 3.3.1.3).

The path-permutation data of a shuffle tree monomial T is the pair
(Path(T ), σ(T )).



Symmetric Operads and Shuffle Operads 161

Lemma 5.4.1.5. A tree monomial T = (τ, x, n) is uniquely determined by its
path-permutation data.

Proof. Let us rearrange the words in Path(T ) according to the permuta-
tion σ(T )−1; this would list the paths from the root to the leaves according
to the total planar order of leaves. By Lemma 3.4.1.4 we can uniquely recon-
struct a nonsymmetric tree monomial out of that path sequence. It remains to
use σ(T ) to number the leaves of that tree monomial, obtaining the original
shuffle tree monomial.

Definition 5.4.1.6 (Path-permutation extension). Suppose that Ξ is a mono-
mial order on X∗.

The path-permutation extension of Ξ is the degree-lexicographic order on
path-permutation data that is derived from Ξ. More precisely, it is defined as
follows:

• if for two shuffle tree monomials T1 = (τ1, x1, n1) and T2 = (τ2, x2, n2)
the number of leaves of τ1 is less than the number of leaves of τ2, we put
T1 ≺ T2;

• if τ1 and τ2 have the same numbers of leaves, we compare the sequences
Path(T1) and Path(T2) word by word, comparing words using the or-
der Ξ;

• if τ1 and τ2 have the same numbers of leaves, and Path(T1) = Path(T2),
we compare the permutations σ(T1) and σ(T2) using the lexicographic
order.

Proposition 5.4.1.7. The path-permutation extension of any monomial or-
der Ξ, viewed as an order of shuffle tree monomials, is a monomial order.

Proof. From Lemma 5.4.1.5 it follows immediately that the path extension is
a total order of tree monomials. The fact that it is a well-order is clear from
the same assumption on the order Ξ. Finally, let us prove that each shuffle
composition is strictly increasing in each of its arguments.

Let us take some shuffle tree monomials

T0 = (τ0, x0, n0) ∈XTreeX (r), Ti = (τi, xi, ni) ∈XTreeX (ni), i = 1, . . . , r,

and suppose that π is a partition π of {1, . . . , n1 + · · ·+ nr} of the form
r⊔
j=1

I(j) with |I(j)| = nj , and min(I(1)) < · · · < min(I(r)).

The path sequence γπ(T0;T1, . . . , Tr) is computed as follows. First, one com-
putes appropriate concatenations of words of individual path sequences:

• the words obtained by concatenating the word corresponding to the leaf
` of T0 with n0(`) = 1 with each of the words of Path(T1),
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• the words obtained by concatenating the word corresponding to the leaf
` of T0 with n0(`) = 2 with each of the words of Path(T2),

• . . .

• the words obtained by concatenating the word corresponding to the leaf
` of T0 with n0(`) = r with each of the words of Path(Tr).

Then, these words are arranged in the order prescribed by the permutation
σ(γπ(T0;T1, . . . , Tr)), or, equivalently, according to the permutation obtained
by listing the permutations of subsets I(j) induced by the permutations σ(Tj)
in the order of j according to the permutation σ(T0). Replacing one of the
elements Ti by a larger one (of the same arity, for the shuffle composition to be
defined) would either lead to an increase in the path sequence, or an increase in
the permutation for that element (and no other changes); thus, combining the
arguments of Propositions 3.4.1.6 and 4.4.1.3 essentially concludes the proof.
We leave it as an exercise for the reader to fill in the details (Exercise 5.6).

Definition 5.4.1.8 (Graded path-permutation lexicographic order). Let us
fix some order Ξ of X :=

⊔
n≥0
X (n). The graded path-permutation lexicographic

order of tree monomials, denoted gpathpermlex, is the path extension of the
glex order induced by Ξ.

Example 5.4.1.9. Let X (2) = {∗}. For the gpathpermlex order, we have

2 3
1 ≺

1 3
2 ≺

1 2
3

and
1 2 3 4

≺

1 3 2 4

≺

1 4 2 3

.

This follows from comparing the corresponding path-permutation data

((∗, ∗∗, ∗∗), 123) ≺ ((∗∗, ∗, ∗∗), 132) ≺ ((∗∗, ∗∗, ∗), 123)

and

((∗∗, ∗∗, ∗∗, ∗∗), 1234) ≺ ((∗∗, ∗∗, ∗∗, ∗∗), 1324) ≺ ((∗∗, ∗∗, ∗∗, ∗∗), 1423).

Remark 5.4.1.10. Suppose that a reduced operation alphabet X is such that
X (1) = ∅, and that for each n the set X (n) is finite. Under this assumption,
if for a total order Ξ of words in the alphabet X the concatenation product
is increasing in each argument, then the path extension of Ξ is a monomial



Symmetric Operads and Shuffle Operads 163

order even if Ξ is not a well-order. The reason for that is that under our
assumption there are only finitely many tree monomials with the given number
of endpoints, and so the well-order property of the path-permutation extension
is obtained for free.

Example 5.4.1.11. Let X (2) = {∗}. We already saw that for the
gpathpermlex order, we have

2 3
1 ≺

1 3
2 ≺

1 2
3 .

Note that if we alter the definition of the order so that we first compare the
permutation and then the path sequence, then

2 3
1 ≺

1 2
3 ≺

1 3
2 .

Also, using Remark 5.4.1.10 with the order on words which makes shorter
words larger (and compares words of the same length lexicographically), we
get

1 2
3 ≺

1 3
2 ≺

2 3
1 .

In particular, each of the three shuffle tree monomials of arity 3 can be made
a leading monomial by an appropriate change of a monomial order.

5.4.2 Long division
We already discussed in the previous chapters that for the algorithmic as-

pects of dealing with normal forms it is crucial to have two views of divisibility
of monomials, both in terms of structure operations and a combinatorial one.
Let us give a combinatorial definition of divisibility for shuffle tree monomials.
Recall from Definition 5.3.1.2 that for each shuffle tree monomial T = (τ, x, n),
we have an induced numbering n∗ of all vertices of τ such that n∗(v) is the
number of the smallest leaf of the subtree of τ with the root v.

Definition 5.4.2.1 (Divisibility of shuffle tree monomials). A shuffle tree
monomial T1 = (τ1, x1, n1) is divisible by a (nontrivial) shuffle tree mono-
mial T2 = (τ2, x2, n2) if the tree τ1 contains a subtree τ ′1 isomorphic to the
tree τ2, the labels of internal vertices of that subtree in the monomial T1 match
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the labels of τ2 in the monomial T2, and finally the numbering (n1)∗ of leaves
of that subtree matches the numbering n2 (is order-isomorphic to it).

Example 5.4.2.2. Consider the shuffle tree monomials

1 2 3 4

,

1 3 2 4

,

1 4 2 3

.

from Example 5.3.1.3. The monomial

1 2
3 is a divisor of the first one but

not of the two others, due to mismatch in leaf labels. The monomial

1 3
2

is a divisor of the second and the last one. The monomial

2 3
1 is a divisor

of all the three trees.

Proposition 5.4.2.3. Let T1 = (τ1, x1) and T2 = (τ2, x2) be two shuffle tree
monomials. Then T1 is divisible by T2 if and only if it can be obtained from T2
by iterated shuffle products with elements of TX(X ).

Proof. Exercise 5.7.

Definition 5.4.2.4 (Insertion into a shuffle tree monomial). Suppose that T1
and T2 are shuffle tree monomials, and T1 is divisible by T2. In this case, there
is an insertion operation

�T1,T2 : TX(X )(ar(T2))→ TX(X )(ar(T1)).

If T = (τ, x, n) is a shuffle tree monomial of the same arity as T2, the insertion
operation replaces the subtree τ ′1 by τ (ensuring that each subtree of τ1 that
was grafted at a leaf ` of τ ′1 gets grafted at the respective leaf n−1(n2(`)) of τ),
and changing labels of internal vertices accordingly. Then, this operation is
extended by linearity to all shuffle tree polynomials of the same arity.

Example 5.4.2.5. Consider the shuffle tree monomial

T1 =

1 3 2 4
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from Example 5.4.2.2, and its divisor T2 =

1 3
2 . We may insert any

other element with three leaves in place of T2; for instance, we have

�T1,T2


1 3

2

 =

2 4
1

3 ,

�T1,T2


2 3

1

 =

2 4
3

1 .

Remark 5.4.2.6. Our notation is not completely precise, since there may be
several different divisors T2 inside T1. We always assume that the operation
�T1,T2 inserts everything at a particular occurrence of T2 inside T1 which is
implicit.

Example 5.4.2.7. Let us consider the shuffle tree monomial

T =

1 2
3

4 .

It has two different ternary divisors, each of those divisors is the monomial
1 2

3 . Let us denote these divisors T ′ and T ′′, where T ′ shares the root

with T , and T ′′ does not. We have

�T,T ′


2 3

1

 =

1 2 3 4

,
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�T,T ′′


2 3

1

 =

2 3
1

4 .

One very useful feature of the insertion operations is that they allow us
to give an explicit description of an ideal generated by a given collection S in
the free shuffle operad which is a suitable replacement of the description “the
ideal (S) is the linear span of all elements r1sr2 for all r1, r2 ∈ T (X), s ∈ S”
which we had in the associative case.

Proposition 5.4.2.8. Let S ⊂ TX(X ). The ideal (S) generated by S can be
described explicitly as the linear span of all insertions �T1,T2(f), where T1 is
a shuffle tree monomial, T2 is a divisor of T1, and f ∈ S(ar(T2)).

Proof. The ideal (S) is spanned by iterated shuffle compositions where at
least one of the elements involved belongs to S; by multilinearity of shuffle
compositions, we may assume that all other elements are monomials, in which
case the corresponding iterated composition is the insertion operation.

The following proposition is clear from the definition. It is analogous to the
monadic associativity for nonsymmetric operads from Proposition 3.4.2.11.

Proposition 5.4.2.9. Suppose that for the tree monomials

T ∈XTreeX (n), T1, T
′
1 ∈XTreeX (n1), T2 ∈XTreeX (n2),

T1 is a divisor of T and T2 is a divisor of T ′1. Then

�T,T1 ◦�T ′1,T2 = ��T,T1 (T ′1),T2 . (5.4)

In particular, if T1 = T ′1, this simplifies to

�T,T1 ◦�T1,T2 = �T,T2 . (5.5)

Let us show that under the insertion operations, the leading monomials
change in a controllable way.

Proposition 5.4.2.10. Suppose that T1 is a tree monomial, and T2 is a
divisor of T1. Then for each g ∈ TX(X )(ar(T2)), we have

lm(�T1,T2(g)) = �T1,T2(lm(g)). (5.6)

Proof. Let us first check that for any nonzero elements

f0 ∈ TX(X )(r), f1 ∈ TX(X )(n1), . . . , fr ∈ TX(X )(nr),
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and for each partition π of {1, . . . , n1 + · · · + nr} of the form
r⊔
j=1

I(j) with

|I(j)| = nj , and min(I(1)) < · · · < min(I(r)), we have

lm(γπ(f0; f1, . . . , fr)) = γπ(lm(f0); lm(f1), . . . , lm(fr)).

Since the shuffle composition products on TX(X ) are multilinear, the element
γπ(f0; f1, . . . , fr) is equal to a linear combination of elements

γπ(m0;m1, . . . ,mr), where mp ∈ supp(fp).

It remains to notice that for each mp 6= lm(fp) we have mp ≺ lm(fp), so by
the defining property of monomial orders we have

γπ(m0;m1, . . . ,mr) ≺ γπ(lm(f0); lm(f1), . . . , lm(fr)),

unless
m0 = lm(f0),m1 = lm(f1), . . . ,mr = lm(fr).

Now, the element �T1,T2(g) is obtained from g by an iteration of shuffle
compositions, and the result follows.

Definition 5.4.2.11 (Reduced monomials and polynomials). Let S be a sub-
set of TX(X ). A shuffle tree monomial T is said to be reduced with respect
to S if T /∈ (lm(S)); in other words, if T is not divisible by any of the leading
monomials of elements of S.

In general, a shuffle tree polynomial f is said to be reduced with respect
to S, if it is equal to a linear combination of shuffle tree monomials which are
reduced with respect to S.

A subset S ⊂ TX(X ) is said to be self-reduced if each element s ∈ S is
monic and reduced with respect to S \ {s}.

Definition 5.4.2.12 (Reduction). Let f, g ∈ TX(X ) be two nonzero elements.
We say that f is reducible with respect to g if lm(f) is not reduced with respect
to {g}, or, in plain words, if the leading monomial of f is divisible by the
leading monomial of g, lm(f) = �T1,T2(lm(g)) for some

T1 ∈XTreeX (ar(lm(f))), T2 ∈XTreeX (ar(lm(g))).

In that case, the reduction of f with respect to g, denoted by rg(f), is defined
by the formula

rg(f) = f − lc(f)
lc(g)�T1,T2(g).

Lemma 5.4.2.13. For all elements f, g ∈ TX(X ) such that rg(f) is defined,
we have

rg(f) = 0 or lm(rg(f)) ≺ lm(f).

Proof. Same (mutatis mutandis) as the proof of Lemma 3.4.2.15.
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One can view a reduction as one step of a version of the long division
algorithm. We make it more precise as follows.

Algorithm 5.4.2.14 (Long division for shuffle operads).

Input: An element f ∈ TX(X ), and a finite set S ⊂ TX(X ).

Output: An element f̃ , reduced with respect to S, for which
lt(f̃) � lt(f) such that f + (S) = f̃ + (S).

• If f = 0, return f .

• Replace S by its linear self-reduction (Proposition 1.2.1.6).

• If D := {s ∈ S : lm(f) is divisible by lm(s)} 6= ∅, take s0 ∈ D with
the least leading monomial (such s0 is unique since S is linearly self-
reduced), and return the result of long division of f ′ := rs(f) by S.

• Otherwise, lm(f) is reduced with respect to S, so let f̃ be the result
of long division of f ′ := f − lt(f) by S; return lt(f) + f̃ .

Lemma 5.4.2.15. For every f ∈ TX(X ), the long division algorithm ter-
minates in a finite number of steps. Its output is an element f̃ reduced with
respect to S, for which lt(f̃) � lt(f) and

f + (S) = f̃ + (S).

Proof. Same (mutatis mutandis) as the proof of Lemma 3.4.2.17.

Remark 5.4.2.16. We see that in fact there is nothing particularly problem-
atic if S is an infinite self-reduced set: it is clear from the proof of Lemma
5.4.2.15 that for the given f ∈ TX(X ) the elements s ∈ S which we use at
various steps of our computation have decreasing leading monomials, and so
there can be only finitely many reductions performed; that is, for each f we
never use more than a finite subset of S. While for purposes of implementation
this is not particularly important, it will be beneficial for theoretical results
where S may be infinite.

We will now establish that the set of elements that are reduced with respect
to I is a suitable candidate for the set of normal forms for the elements of the
quotient shuffle operad TX(X )/I. This is an improvement of Lemma 1.2.1.3
which takes into account the extra structures we have on the underlying vector
spaces.

Lemma 5.4.2.17. Suppose that I is an ideal of TX(X ). Monomials that are
reduced with respect to I form a basis of the quotient TX(X )/I.

Proof. Same (mutatis mutandis) as the proof of Lemma 3.4.2.19.
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It is possible to use long division to find, for each finite set, a finite self-
reduced set that generates the same ideal.

Algorithm 5.4.2.18 (Self-reduction for shuffle operads).

Input: A finite subset S ⊂ TX(X ).

Output: A finite self-reduced subset S ′ ⊂ TX(X ) with (S) = (S ′).

• Replace S by its linear self-reduction.

• If S is self-reduced, return S.

• Let s be the element of S with the maximal leading monomial, and
compute the self-reduction S ′ of S \ {s}.

• Compute s̃, the result of long division of s by S ′.

• Recursively call the algorithm to compute the self-reduction of
S ′ ∪ {s̃}.

We leave it as an exercise (Exercise 5.8) for the reader to check that for
each finite S this algorithm terminates after finitely many steps.

5.4.3 Gröbner bases
In general, there are several different reduced forms one may obtain when

doing reductions with respect to a set S; however, there is a canonical form
with respect to the ideal (S), namely the corresponding normal form. In this
section, we will explain how to fix this discrepancy.

Proposition 5.4.3.1. Let I be an ideal of TX(X ). The space of leading terms
lt(I) is an ideal of TX(X ).

Proof. Same (mutatis mutandis) as the proof of Proposition 3.4.3.1.

We are now ready to define a Gröbner basis of an ideal.

Definition 5.4.3.2 (Gröbner basis). Let I be an ideal of TX(X ). We say that
G = {G(n) ⊂ I(n)} is a Gröbner basis of I with respect to a given monomial
order Ξ if the set of leading monomials lm(G) := {lm(g) : g ∈ G} generates
the leading term ideal of the ideal I:

lt(I) = (lm(G)).

A Gröbner basis which is a self-reduced subset of TX(X ) is said to be reduced.

Lemma 5.4.3.3. A Gröbner basis of an ideal I ⊂ TX(X ) generates I.

Proof. Same (mutatis mutandis) as the proof of Lemma 3.4.3.3.
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Proposition 5.4.3.4. Let I be an ideal of TX(X ). Then G ⊂ I is a Gröbner
basis if and only if the cosets of monomials that are reduced with respect to G
form a basis of the quotient TX(X )/I.

Proof. Same (mutatis mutandis) as the proof of Proposition 3.4.3.4.

Corollary 5.4.3.5. Suppose that G is a Gröbner basis of the ideal I ⊂ TX(X ).
Then the result of long division of f ∈ TX(X ) by G does not depend on either
the choices or the order of the reductions performed.

Proof. Same (mutatis mutandis) as the proof of Corollary 3.4.3.5.

We summarize Proposition 5.4.3.4 and its corollary as follows.

Theorem 5.4.3.6.

(i) Let I be an ideal of TX(X ). A subset G ⊂ I is a Gröbner basis if and
only if the normal forms modulo I are precisely the elements that are
reduced with respect to G.

(ii) Suppose that G is a Gröbner basis of the ideal I ⊂ TX(X ). Given an
element f ∈ I, its normal form modulo I can be computed using long
division by G. In fact, in this long division the order of reductions can
be chosen arbitrarily.

Proposition 5.4.3.7. Each ideal I ⊂ TX(X ) has a unique reduced Gröbner
basis.

Proof. Same (mutatis mutandis) as the proof of Proposition 3.4.3.7.

5.5 Computing Gröbner bases
In this section, we will explain how to compute Gröbner bases for ideals

of TX(X ). As in Chapter 2, some ideals have infinite Gröbner bases, so the
word “algorithm” below should be taken with a grain of salt.

5.5.1 Diamond lemma
Definition 5.5.1.1 (S-polynomial). Let g1, g2 ∈ TX(X ) be two monic polyno-
mials. We say that the leading monomials lm(g1) and lm(g2) form an overlap
if they have a small common multiple, a tree monomial T and its two proper
divisors T1 and T2 for which lm(g1) = T1, lm(g2) = T2, and the underlying
tree of T is the result of merging of the underlying trees of T1 and T2 along
an overlap. We call the element

ST (g1, g2) := �T,T1(g1)−�T,T2(g2)
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an S-polynomial of g1 and g2; the common term cancels, since both g1 and g2
are monic.

Example 5.5.1.2. Let us consider the shuffle associative operad Assf dis-
cussed in Example 5.3.4.3, and the following two of its six defining relations:

g1 =

1 3
a 2

a
−

2 3

1 b

a
and g2 =

1 3

b 2
a

−

1 2
a 3

b
.

Let us consider, for the purpose of this example, the following ordering: to
compare two shuffle tree monomials T and T ′ of the same arity, we compare
the number of internal vertices labelled by b, then if those numbers are the
same, compare T and T ′ using the order gpathpermlex for b ≺ a. In this case,

the leading monomials of the elements above are

2 3

1 b

a
and

1 3

b 2
a

.

These two shuffle tree monomials have two small common multiples,

T1 =

1 3 2 4

b b

a
and T2 =

1 4 2 3

b b

a
.

The corresponding S-polynomials are

ST1(−g1, g2) = γ{1,3},{2},{4}

−g1,

1 2

b ,
1
,

1


− γ{1},{2,4},{3}

g2,
1
,

1 2

b ,
1


=

2 4

1 b

a 3

b

−

1 3

b 4

a 2
a

and
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ST2(−g1, g2) = γ{1,4},{2},{3}

−g1,

1 2

b ,
1
,

1


− γ{1},{2,3},{4}

g2,
1
,

1 2

b ,
1


=

2 3

1 b

a 4

b

−

1 4

b 3

a 2
a

(we write −g1 in both cases to make the polynomial monic); here γ is the
shuffle composition from Definition 5.3.1.5.

We will now prove the result which is at the core of most feasible ways to
check that some subset of an ideal is a Gröbner basis.

Definition 5.5.1.3 (Parameter of a representation). Let I = (G) be an ideal
of TX(X ). Consider the representation of an element f ∈ I as a combination
of insertions of g1, . . . , gN ∈ G:

f =
N∑
i=1

ci�T̃i,Ti
(gi), (5.7)

where Ti = lm(gi). We call max(T̃i) the parameter of this linear combination.
If f = ST (g1, g2) is the S-polynomial of g1, g2 ∈ G (with all the notation

as above in Definition 5.5.1.1), then it has an obvious representation

f = �T,T1(g1)−�T,T2(g2),

with parameter T . We call a representation of that S-polynomial nontrivial if
its parameter is smaller than T .

Theorem 5.5.1.4 (Diamond lemma). Let G ⊂ TX(X ) be self-reduced, and
let I = (G). The following statements are equivalent:

(i) G is a Gröbner basis of I.

(ii) Every S-polynomial ST (g1, g2) has reduced form 0 with respect to G.

(iii) Every S-polynomial ST (g1, g2) admits a nontrivial representation of the
form (5.7).

(iv) Every element f ∈ I admits a representation of the form (5.7) with
parameter lm(f).

Proof. Same (mutatis mutandis) as the proof of Theorem 3.5.1.6.
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5.5.2 The Buchberger algorithm
Theorem 5.5.1.4 leads naturally to a recipe for computing reduced Gröbner

bases: given a set of generators of an ideal, one has to compute all pairwise
S-polynomials, adjoin all reduced forms of those to the set of generators, and
repeat the same. It is rather a “recipe” than an algorithm since we are not
guaranteed termination, but it is nevertheless very useful.

Algorithm 5.5.2.1 (Buchberger algorithm for shuffle operads).

Input: A finite subset G ⊂ TX(X ) generating an ideal I ⊂ TX(X ).

Output: If terminates, the output is the reduced Gröbner basis of I.

• Set newSpolynomials← true.

• While newSpolynomials do:

– Sort G by gpathpermlex order of leading monomials:
G = {g1, . . . , gn}.

– Compute the self-reduction of G.
– Set Spolynomials← ∅.
– Set newSpolynomials← false.
– For g1 ∈ G do for g2 ∈ G do:
∗ If lm(g1) and lm(g2) form an overlap then:

1. Compute the S-polynomial ST (g1, g2).
2. Let t be the result of long division of ST (g1, g2) by G.
3. If t 6= 0 and t /∈ Spolynomials then
∗ Set newSpolynomials← true.
∗ Set Spolynomials← Spolynomials ∪ {t}.

– Set G ← G ∪ Spolynomials.

• Return G.

Proposition 5.5.2.2. If Algorithm 5.5.2.1 terminates then its output is the
reduced Gröbner basis of I.

Proof. Immediate corollary to Theorem 5.5.1.4.

5.5.3 Triangle lemma
Definition 5.5.3.1 (Essential overlap). Let G be a self-reduced subset of
TX(X ), and let g1, g2 ∈ G be two elements for which lm(g1) and lm(g2) have
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an overlap. We call this overlap essential if lm(g1) and lm(g2) are the only
two divisors from lm(G) of the corresponding small common multiple.

Proposition 5.5.3.2 (Triangle lemma for shuffle operads). Let G be a self-
reduced subset of TX(X ), and let g1, g2 ∈ G be two elements for which lm(g1)
and lm(g2) have an overlap. Suppose that this overlap is not essential, so that
there exists g3 ∈ G for which lm(g3) is another divisor of the corresponding
small common multiple T . Then:

• The divisors lm(g1) and lm(g3) of T have an overlap, and the divisors
lm(g3) and lm(g2) of T also have an overlap.

• If the S-polynomials ST ′(g1, g3) and ST ′′(g3, g2) for the corresponding
overlaps admit nontrivial representations of the form (5.7), then the
S-polynomial ST (g1, g2) also admits a nontrivial representation of that
form.

Proof. Same (mutatis mutandis) as the proof of Proposition 3.5.3.2.

Similarly to the case of nonsymmetric operads, Corollary 2.4.3.3 cannot be
fully generalized to the case of shuffle operads, and only admits the following
partial generalization, analogous to Corollary 3.5.3.3.

Corollary 5.5.3.3. Let G be a self-reduced set of elements of TX(X ). Suppose
that for two elements g1, g2 ∈ G whose leading monomials have an overlap the
following holds:

• there exists g3 ∈ G for which lm(g3) is another divisor of the tree mono-
mial T obtained by merging lm(g1) and lm(g2) along their overlap,

• both the tree monomials T ′ which is the result of merging lm(g1) and
lm(g3) along their overlap and T ′′ which is the result of merging lm(g3)
and lm(g2) along their overlap are proper divisors of T .

Then, while computing the reduced Gröbner basis using Algorithm 5.5.2.1, the
S-polynomial ST (g1, g2) may be ignored.

Similarly to the case of nonsymmetric operads, this can be improved under
some extra assumptions on G using the notion of an Anick ordering from[75,
Sec. 3]; we invite the reader to come up with such improvements.
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5.6 Examples of Gröbner bases for shuffle operads
5.6.1 Shuffle Lie and associative operads
Example 5.6.1.1. Let us consider the example of the shuffle operad Lief
discussed in Example 5.3.4.2. Its ideal of relations is generated by the element

1 2
3 −

2 3
1 −

1 3
2 ,

whose leading monomial, for the gpathpermlex order, is

1 2
3 (Example

5.4.1.9). This monomial has exactly one small common multiple with itself,
the monomial

T :=

1 2
3

4 .

Instead of the usual computation of the S-polynomial and its reduction, let
us compute separately the two different ways to rewrite this monomial as
a linear combination of reduced monomials; this computation, even though
a lot of intrinsic structures can be observed in the terms that arise in it,
involves manipulations with many terms, and mixing them together within
one S-polynomial would be a tougher task for the reader.

For the rewriting using the divisor T1 sharing the root with T , we obtain

1 2
3

4 7−→

1 2
4

3 +

1 2 3 4

7−→

1 4
2

3 +

2 4
1

3 +

3 4
1

2 +

3 4
2

1 7−→



176 Algebraic Operads: An Algorithmic Companion

1 4
3

2 +

3 4
1

2 +

1 3 2 4

+

1 4 2 3

+

2 4
3

1 +

3 4
2

1 .

For the rewriting using the other divisor T2, we obtain:

1 2
3

4 7−→

1 3
2

4 +

2 3
1

4 7−→

1 3
4

2 +

1 3 2 4

+

1 4 2 3

+

2 3
4

1 7−→

1 4
3

2 +

3 4
1

2 +

1 3 2 4

+

1 4 2 3

+

2 4
3

1 +

3 4
2

1 .

(In each of these cases, each arrow represents several rewritings of all non-
reduced monomials in one go.) We see that the results are the same, so the
corresponding S-polynomial can be reduced to zero, and the defining relation
of the operad Lief is the reduced Gröbner basis. A similar computation shows
that in this case for each of the monomials in the defining relation, and any
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choice of order (e.g., the choices from Example 5.4.1.11) making that monomial
the leading monomial, the defining relation of the operad Lief is a Gröbner
basis.
Example 5.6.1.2. Let us consider the shuffle associative operad Assf dis-
cussed in Example 5.3.4.3. Its ideal of relations is generated by the six ele-
ments

1 2
a 3

a
−

2 3
1 a

a
,

1 2

b 3
a

−

1 3
a 2

b
,

1 3
a 2

a
−

2 3

1 b

a
,

2 3
1 a

b
−

1 3

b 2

b

,

1 3

b 2
a

−

1 2
a 3

b
,

1 2

b 3

b

−

2 3

1 b

b

.

As one can infer from Example 5.5.1.2, in this case, depending on the choice
of an order, there may be many S-polynomials involved, and so in order to
compute the reduced Gröbner basis one has to either be extremely diligent
or have access to computer software for computing Gröbner bases for shuffle
operads. At the moment when the second author was looking at this question
for the first time, there was no computer software available, and his diligence
had its limitations, so he came up with the following shortcut. Let us consider
the path-permutation extension of the monomial order on {a, b}∗ which first
compares two words in the reverse order of length, and if the lengths are
equal, compares them lexicographically, assuming a ≺ b (this extension is a
monomial order on XTreeX , see Remark 5.4.1.10). The leading monomials of
the relations for this order are, respectively,

2 3
1 a

a
,

1 2

b 3
a

,

2 3

1 b

a
,

2 3
1 a

b
,

1 3

b 2
a

,

2 3

1 b

b

.
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Let us examine the set of reduced monomials with respect to this set. Since
this set contains all the four shuffle tree monomials with the underlying tree

, a reduced monomial is necessarily a “left comb” (we already encoun-

tered a similar situation in Example 5.3.3.4). By direct inspection of the two
remaining leading terms that we have not accounted for yet, among the 2n−1

ways of labelling the internal vertices of the n-ary left comb by letters a and b,
the ones that lead to non-reduced monomials are those for which there exist
a pair of vertices v, v′ = Parent(v) such that xv = b, xv′ = a. Therefore,
allowed labellings are those for which the labels on the path from the root
to leaf number 1 are b, . . . , b, a, . . . , a (in this order). We conclude that there
are exactly n! = n · (n − 1)! reduced monomials of arity n: first, there are
(n − 1)! ways to number the leaves of the left comb with n leaves (Example
5.3.3.4), second, there are n different ways to label internal vertices of the left
comb with n leaves, as we just established. This means that the number of
normal monomials for Assf is at most n!: in principle, the leading monomials
of the reduced Gröbner basis will contain the six monomials that we already
have, and possibly some other monomials. But the n-th component of Ass is
of dimension n!, since there are n! different ways to compute the associative
product of n elements, one for each permutation in Sn. Therefore, there must
be n! normal monomials, and the defining relations of Assf form its reduced
Gröbner basis for our chosen order.

5.6.2 Symmetric and shuffle operad PreLie
Example 5.6.2.1. Consider the symmetric collection U for which

U(n) =
{
FS2, n = 2,
0, n 6= 2.

The symmetric operad PreLie of (right) pre-Lie algebras (first defined in [100,
255]) is the quotient of TΣ(U) by the ideal generated by the element

1 2
3 −

2 3
1 −

1 3
2 +

3 2
1 .

We can take the operation alphabet X for which X (2) = {a, b} and X (n) is
empty for n 6= 2 as the basis collection for Uf . We identify X with a basis
of Uf , which leads to identification of bases of TX(X )(2) and TΣ(U)f (2) as
follows:

1 2
a ↔

1 2
,

1 2

b ↔
2 1

.
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It is easy to see that the ideal of relations of operad PreLief is generated by
the following elements:

1 2
a 3

a
−

2 3
1 a

a
−

1 3
a 2

a
+

3 2

1 b

a
,

1 2

b 3
a

−

2 3
1 a

b
−

1 3
a 2

b
+

1 3

b 2

b

,

1 3

b 2
a

−

1 2
a 3

b
−

2 3

1 b

b

+

1 2

b 3

b

.

For the gpathpermlex order with
1 2

b ≺
1 2

a , this set of elements

forms a Gröbner basis (Exercise 5.10; another explanation for that will be
given in Example 6.3.3.5).

5.6.3 Symmetric operads as nonsymmetric operads
Every symmetric operad can be regarded as a nonsymmetric operad: we

can not only forget about symmetric group actions, but also restrict ourselves
to compositions

γ{xk1+1,...,xk1+n1},{xk2+1,...,xk2+n2},...,{xkr+1,...,xkr+nr},

where ki = n1 + · · · + ni−1, that is precisely all nonsymmetric compositions
γ

(r)
n1,...,nr from Definition 3.2.1.1. The corresponding nonsymmetric operad may

still carry some information about the original operad, e.g., of its defining
relations, or may go to a different end of the spectrum and end up being a
free nonsymmetric operad on some set of generators. In this paragraph, we
establish a criterion for that latter possibility, and prove that it holds for the
operad Lie.

Definition 5.6.3.1 (Decomposable and prime tree monomials). Let T be a
shuffle tree monomial, v an internal vertex of the underlying tree of T , and
T ′ the maximal subtree of T rooted at v. We say that T is decomposable
at v if the set of leaf labels of T ′ form an interval in the set of leaf labels.
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A tree monomial is said to be prime if there is no vertex v at which it is
decomposable.

Theorem 5.6.3.2. Let P = F(X )/(R) be a shuffle operad for which all
leading terms of its Gröbner basis G are prime tree monomials. Then P is free
as a nonsymmetric operad.

Proof. We leave it as an exercise to the reader (Exercise 5.12) to show that
prime tree monomials that are reduced with respect to G freely generate P as
a nonsymmetric operad; both the spanning property and the linear indepen-
dence follow easily from the definition.

The following result was first proved in [221].

Theorem 5.6.3.3. The operads Lie is free as a nonsymmetric operad.

Proof. Let us consider the modification of gpathpermlex discussed in Exam-
ple 5.4.1.11; we first compare the permutations lexicographically, and in the
case when the permutations are equal, compare the path sequences. It is easy
to check that the defining relation of Lie forms the reduced Gröbner basis of

relations. The leading term

1 3
2 is clearly a prime tree monomial, so

Theorem 5.6.3.2 applies.

5.6.4 The operad PreLie as a Lie-module
Example 5.6.4.1. Let us consider a different presentation of the operad

PreLie, using its symmetric generator
1 2

u =
1 2

a +
1 2

b and

its antisymmetric generator
1 2

v =
1 2

a +
1 2

b . It is easy to

check (Exercise 5.16) that the defining relations of PreLief for this system of
generators are

1 2
v 3

v
−

1 3
v 2

v
−

2 3
1 v

v
= 0,
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1 2
u 3

u
−

2 3
1 u

u
−

2 3
1 v

u
−

1 2
v 3

u
−

2

1 3
v 2

u
+

2 3
1 u

v
+

1 2
u 3

v
+

1 3
v 2

v
,

and

1 3
u 2

u
−

2 3
1 u

u
+

2 3
1 v

u
−

1 3
v 2

u
−

2

1 2
v 3

u
+

2 3
1 u

v
+

1 3
u 2

v
+

1 2
v 3

v
.

Let us consider the following monomial order. We set
1 2

v ≺
1 2

u ,

and modify the gpathpermlex order in a way that we first compare the per-
mutations of leaves using the lexicographic order, and then compare the path
sequences. The set of relations is not linearly self-reduced; after making it lin-
early self-reduced, the leading monomials of relations are the tree monomials

1 3
v 2

v
,

1 3
v 2

u
, and

1 3
u 2

u
.

It is easy to see that both S-polynomials corresponding to common multiples of
these tree monomials have reduced form zero. (Alternatively, a version of the
argument from Example 6.3.3.5 can be used.) This provides a description of
normal forms for elements of PreLie that has an interesting feature. Namely, let
us denote byM the nonsymmetric collection spanned by reduced monomials
for which the internal vertex of the underlying tree that is adjacent to the
root is labelled u. Then the natural map

Lief ◦XM→ PreLief
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is an isomorphism (Exercise 5.15). Since the forgetful functor is monoidal, this
implies that there exists a symmetric subcollection N ⊂ PreLie for which the
natural map

Lie ◦ΣN → PreLie
is an isomorphism. From this, it follows, for instance, that free pre-Lie algebras
are free as Lie algebras [53].

5.7 Exercises
Exercise 5.1. Complete the proof of Proposition 5.2.1.4.

Exercise 5.2. Prove that the two definitions of a symmetric operad (Defini-
tions 5.2.1.1 and 5.2.1.5) are equivalent.

Exercise 5.3. Prove Proposition 5.2.3.3.

Exercise 5.4. Our definitions of symmetric and shuffle operads adapt the
classical definition of a nonsymmetric operad (Definition 3.2.1.1). Determine
the axioms that adapt the partial definition of a nonsymmetric operad (Defi-
nition 3.2.2.3) in each of the cases.

Exercise 5.5. Suppose that X (2) consists of one element ∗, and that X (n)
is empty for n 6= 2. Write down the 15 tree monomials that form a basis in
XTreeX (4).

Exercise 5.6. Fill in the details of the proof of Proposition 5.4.1.7.

Exercise 5.7. Prove Proposition 5.4.2.3. (Hint: modify the proof of Propo-
sition 3.4.2.6.)

Exercise 5.8. Show that for each finite S ⊂ TX(X ) Algorithm 5.4.2.18 ter-
minates after finitely many steps.

Exercise 5.9. Use Equation (5.4) and Proposition 5.4.2.10 to fill in the details
of the proof of Theorem 5.5.1.4.

Exercise 5.10. For the gpathpermlex order with
1 2

b ≺
1 2

a , show

that the defining relations of the operad PreLie (Example 5.6.2.1) forms a
Gröbner basis.

Exercise 5.11. Consider the symmetric collection U for which

U(n) =
{
FS2, n = 2,
0, n 6= 2.



Symmetric Operads and Shuffle Operads 183

The symmetric operad Leib of (right) Leibniz algebras (first defined in [173])
is the quotient of TΣ(U) by the ideal generated by the element

2 3
1 −

1 2
3 +

1 3
2 .

We can take the operation alphabet X for which X (2) = {a, b} and X (n) is
empty for n 6= 2 as the basis collection for Uf . We identify X with a basis
of Uf , which leads to identification of bases of TX(X )(2) and TΣ(U)f (2) as
follows:

1 2
a ↔

1 2
,

1 2

b ↔
2 1

.

(i) Check that the ideal of relations of operad Leibf is generated by the
following elements:

2 3
1 a

a
−

1 2
a 3

a
+

1 3
a 2

a
,

2 3
1 a

b
−

1 2

b 3
a

+

1 3
a 2

b
,

2 3

1 b

b

−

1 2
a 3

b
+

1 3

b 2
a

,

2 3
1 a

a
+

2 3

1 b

a
,

1 2
a 3

b
+

1 2

b 3

b

,
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1 3
a 2

b
+

1 3

b 2

b

.

(ii) Pick an ordering of tree monomials, and compute the reduced Gröbner
basis of Leibf .

Exercise 5.12. Prove Theorem 5.6.3.2.

Exercise 5.13. Modify the proof of Theorem 5.6.3.3 to establish that the
operad PreLie is free as a nonsymmetric operad.

Exercise 5.14. The symmetric operad Lie〈2〉 (first defined in [73]) controls
linearly compatible Lie brackets. It is a symmetric operad with two generators
1 2

a ,
1 2

b for which

2 1
a = −

1 2
a ,

2 1

b = −
1 2

b ,

1 2
a 3

a
+

2 3
a 1

a
+

3 1
a 2

a
= 0,

1 2

b 3

b

+

2 3

b 1

b

+

3 1

b 2

b

= 0,

so these operations are Lie brackets, and

1 2

b 3
a

+

2 3

b 1
a

+

3 1

b 2
a

+

1 2
a 3

b
+

2 3
a 1

b
+

3 1
a 2

b
= 0,
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which implies that
1 2

a +
1 2

b is also a Lie bracket. Modify the proof

of Theorem 5.6.3.3 to establish that the operad Lie〈2〉 is free as a nonsymmetric
operad.

Exercise 5.15. Use the Gröbner basis of the operad PreLief discussed in
Example 5.6.4.1 to justify that the natural map

Lief ◦XM→ PreLief

is an isomorphism.

Exercise 5.16. Verify the claim on the defining relations of the operad
PreLief from Example 5.6.4.1.

Exercise 5.17. Similarly to the way it is done for the operad PreLief in Exam-
ple 5.6.4.1, one can consider the symmetric and antisymmetric generators for
any operad with binary generators; this process is referred to as polarization in
[185]. The most celebrated example is the symmetric associative operad Ass. It
is well known (and probably first was observed in an unpublished manuscript
of Livernet and Loday) that if we introduce, for the symmetric operad Ass,
the new generators [a1, a2] = a1a2 − a2a1 and a1 · a2 = a1a2 + a2a1, then the
corresponding symmetric operad has the following defining relations:

[a1, [a2, a3]] + [a2, [a3, a1]] + [a3, [a1, a2]] = 0,
[a1 · a2, a3] = a1 · [a2, a3] + [a1, a3] · a2,

(a1 · a2) · a3 − a1 · (a2 · a3) = [a2, [a1, a3]].

(i) Describe the shuffle operad obtained from the above presentation after
applying the forgetful functor.

(ii) Find a monomial order for which the shuffle operad from part (i) has a
quadratic Gröbner basis.

(iii) Prove in two different ways (using (ii) or, as an alternative, using Corol-
lary 2.5.3.2) that the map Lie → Ass sending the generator of Lie to
[a1, a2] = a1a2 − a2a1 is an embedding.

(iv) Show that the operation a1 ·a2 = a1a2+a2a1 in every associative algebra
satisfies the multilinear Jordan identity

((a1 · a2) · a3) · a4 + ((a1 · a4) · a3) · a2 + a1 · ((a2 · a4) · a3) =
((a1 · a2) · (a3 · a4)) + ((a1 · a3) · (a2 · a4)) + ((a1 · a4) · (a2 · a3)).

(v) It turns out that the identity of (iv) does not generate the operadic ideal
of the identities satisfied by the operation a1 ·a2 = a1a2 +a2a1; this was
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first discovered by Glennie [110, 111] who established that the lowest
arity in which new identities appear is 8. Try to use operadic Gröbner
bases to find identities in higher arities.

Exercise 5.18. Modify the argument of Example 5.6.4.1 to establish that
there exists a symmetric subcollection N ⊂ Lie〈2〉 for which the natural map

Lie ◦ΣN → Lie〈2〉

is an isomorphism.

Exercise 5.19. The two-step Lie nilpotent associative operad N2 Ass is ob-
tained from the symmetric operad Ass by imposing the relation [[a1, a2], a3]
in its presentation from Exercise 5.17. In other words, this symmetric operad
has a presentation

[[a1, a2], a3] = 0,
[a1 · a2, a3] = a1 · [a2, a3] + [a1, a3] · a2,

(a1 · a2) · a3 − a1 · (a2 · a3) = 0.

Prove that the dimension of the componentN2 Ass(n) is equal to 2n−1 over any
ground field F. (One possible strategy is to use Gröbner bases; it is possible to
find an infinite Gröbner basis that has enough structure to be useful, see [71]
for details. For other approaches to this operad, see [35, 79, 89, 92, 160, 166].)

Exercise 5.20. Consider the symmetric operad Q generated by a skew-
symmetric binary operation a1, a2 7→ [a1, a2] and a symmetric binary op-
eration a1, a2 7→ a1 · a2 subject to the following relations:

[[a1, a2], a3] + [[a1, a3], a2] = 0,
[a1 · a2, a3] = a1 · [a2, a3] + [a1, a3] · a2,

(a1 · a2) · a3 = a1 · (a2 · a3).

Prove that over any field F of characteristic different from two,
dimQ(n) = 2n − n. (Similarly to Exercise 5.19, one possible strategy is to
use Gröbner bases; it is possible to find an infinite Gröbner basis that has
enough structure to be useful, see [71] for details.)



Chapter 6
Operadic Homological Algebra and
Gröbner Bases

Many natural examples of operads are operads whose components are chain
complexes, or at least homologically graded vector spaces. In fact, there are
two conceptually important sources of examples of that sort. Some algebraic
operads, like the celebrated operad of Gerstenhaber algebras [100], are the
homology operads of some operad whose components are topological spaces
(and composition maps are continuous). Some other algebraic operads, like the
operad of L∞-algebras [227], or the operad of A∞-algebras [241], are operads
where classical identities, like the Jacobi identity, or associativity, are relaxed
up to a system of coherent homotopies. This is crucial for the questions on
homotopy categories of algebras over operads, a nonabelian analogue of the
questions on derived categories of modules over algebras that we discussed in
Theorem 2.1.2.3.

In many ways, the title of our book may be most applicable to this par-
ticular chapter, which we regard as a bridge that would assist someone with
only very limited experience with homological and homotopical algebra in
working through the book of Loday and Vallette [180], for which one of the
main motivations is developing a range of methods specifically for operadic
homological and homotopical algebra. A thorough reader will notice that the
number of references to Loday and Vallette increases visibly in this chapter;
the sole reason for this is to highlight important topics that can be made a
bit more accessible by methods presented in our book.

6.1 Introduction
6.1.1 Symmetry isomorphisms and the Koszul sign rule
Definition 6.1.1.1 (Chain complexes and their morphisms). The datum of a
chain complex is a pair (V, d), where V is a sequence of vector spaces {Vi}i∈Z,
and d, referred to as a boundary map, or the differential of V , is a sequence
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of maps di : Vi → Vi−1 satisfying the condition di−1di = 0 for all i, which is
usually abbreviated to d2 = 0.1

Definition 6.1.1.2 (Homological degree of an element). Let V be a chain
complex. For an element v ∈ Vi, we say that the homological degree of v is
equal to i, and write |v| = i.

Definition 6.1.1.3 (Homological degree of a map). Let (V, d) and (V ′, d′)
be chain complexes. A map of homological degree k between V and V ′ is a
sequence of maps fi : Vi → V ′i+k.

Example 6.1.1.4. The differential of a chain complex is a map from that
chain complex to itself of degree −1.

The space of maps of homological degree k from (V, d) to (V ′, d′) is con-
ventionally denoted by Hom(V, V ′)k (the boundary maps are implicit in this
notation). Thus,

Hom(V, V ′)k =
∏
i∈Z

Hom(Vi, V ′i+k).

The following proposition is well known.

Proposition 6.1.1.5. The sequence of maps

δk : Hom(V, V ′)k → Hom(V, V ′)k−1

defined by
(δkf)i(v) = d′i+k(fi(v))− (−1)kfi−1di(v)

makes the sequence Hom(V, V ′)k a chain complex.

Suppose that we consider the collection EndV for a chain complex V ,
rather than a vector space V . As everyone who ever took a basic course in
homological algebra knows, this creates various signs in formulas. What often
remains unexplained in those homological algebra courses is that all those
signs come from one and only one change, the symmetry isomorphisms in
tensor products.

Definition 6.1.1.6 (Koszul sign rule). We adopt the following Koszul sign
rule convention: for two chain complexes V and W , the isomorphism

σV,W : V ⊗W →W ⊗ V

depends on homological degrees of elements as follows:

σV,W (v ⊗ w) = (−1)|v|·|w|w ⊗ v.
1Henri Cartan, upon receiving the degree of Doctor Honoris Causa from the University

of Oxford, said, in particular, “. . . if I could only understand the beautiful consequence
following from the concise proposition d2 = 0.”
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One of the origins of this definition is hidden in various computations in
algebraic topology and differential geometry, where these signs take care of
orientations of simplices when computing simplicial or singular cohomology,
and are in a sense forced by wedge products of differential forms when com-
puting the de Rham cohomology. A reader whose background is closer to vari-
eties of algebras and representation theory would benefit from the observation
that Koszul signs are closely related to the signs that are used when working
with enveloping algebras of Lie superalgebras [11, 197, 199, 202]. Similarly,
a reader whose background comes from geometry may recognize these signs
from the context of superanalysis [16, 159, 171]. However, a conceptual leap
that these readers must undertake is that throughout this chapter multilin-
ear operations sometimes have nonzero degrees as well, and this creates extra
signs that would not generally be visible in the conventional superalgebra and
superanalysis contexts.

Algebraically, this definition means that there are “Koszul signs” in all
formulas one writes down: whenever two objects are exchanged, this exchange
creates a factor−1 if both objects are of odd homological degree. Consequences
of that rule are easy to foresee in the case of formulas like [a1, a2] = a1a2−a2a1;
of course, such a formula must become [a1, a2] = a1a2 − (−1)|a1||a2|a2a1 in
this setting (since we change the order of the arguments a1 and a2). However,
it takes more effort to handle the signs of composite multilinear operations
in a consistent way. (In particular, a sizeable proportion of papers on oper-
ads, at least before the publication of [180], either did not make the signs
explicit enough for concrete computations, or handled them with inaccura-
cies, ranging from minor to drastic; see Remark 6.3.1.8 below.) In order to
have a consistent way to deal with signs, one has to view, for a multilinear
operation ω ∈ EndV (n) and n vectors v1, . . . , vn ∈ V , the result of evaluation
ω(v1, . . . , vn) as the result of computing the evaluation map

EndV (n)⊗ V ⊗n → V, ω ⊗ v1 ⊗ · · · ⊗ vn 7→ ω(v1, . . . , vn).

6.2 First instances of Koszul signs for graded operads
6.2.1 Determinant operad and operadic suspension

Prior to discussing the impact of signs on graded operads in general, let
us consider a very important example of an operad which features in most
formulas needed for operadic Koszul duality.

Definition 6.2.1.1 (Suspension symbol and determinant operad). We con-
sider a formal symbol s of homological degree 1, the suspension variable, and
the desuspension variable, a formal symbol s−1 of homological degree −1. The
vector space Fs will be viewed as a chain complex with zero differential and
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the only nonzero component being the ground field F concentrated in degree 1.
We define the determinant operad as the endomorphism operad of Fs:

S := EndFs .

Later we will also use the operad denoted S−1:
S−1 := EndFs−1 .

We will now consider an example of a computation in the determinant
operad.
Example 6.2.1.2. Since the vector space Fs is one-dimensional, each com-
ponent S(n) = EndFs(n) is one-dimensional; it is spanned by the operation
µn which is uniquely determined by the property µn(s⊗n) = s; this property
shows that |µn| = 1− n. Let us compare the two operations

µ2 ◦1 µ2 and µ2 ◦2 µ2.

We have
(µ2 ◦1 µ2)(s⊗ s⊗ s) = µ2(µ2(s⊗ s), s) = s,

(µ2 ◦2 µ2)(s⊗ s⊗ s) = −µ2(s, µ2(s⊗ s)) = −s.
The minus sign in the second line arises as follows: the evaluation of the
composite map µ2 ◦2 µ2 on s⊗ s⊗ s is the result of applying two evaluation
maps to an element µ2 ⊗ µ2 ⊗ s ⊗ s ⊗ s of EndFs(2) ⊗ EndFs(2) ⊗ (Fs)⊗3.
For that particular composition, we should rewrite that tensor product as
EndFs(2)⊗ Fs⊗ EndFs(2)⊗ (Fs)⊗2, compute the evaluation map on the last
three factors, and then compute the evaluation map again. The rewriting of the
tensor product utilizes one symmetry isomorphism id⊗σEndFs(2),Fs ⊗ id⊗ id,
and since EndFs(2) is concentrated in homological degree −1, a Koszul sign
(−1)(−1)·1 = −1 arises.
Definition 6.2.1.3 (Suspension). For every chain complex V , we define its
suspension sV as Fs⊗ V .
Example 6.2.1.4. As we saw above, in EndFs we have

δ2 ◦1 δ2 + δ2 ◦2 δ2 = 0.
Moreover, we have δ2 ◦1 δ2 = δ3, and more generally δn ◦1 δm = δn+m−1. From
this, it easily follows that the nonsymmetric operad EndFs is generated by one
binary operation µ of degree −1 subject to the relation

µ ◦1 µ+ µ ◦2 µ = 0.
We leave it as an exercise for the reader (Exercise 6.2). Note that for an
operation ν of degree 0, the property ν ◦1ν+ν ◦2ν = 0 is usually referred to as
the antiassociative law [186]; this law does not have specific “nice” properties.
However, as we see now, for an operation of degree−1 this is rather a suspended
associative law; it shows an algebraic property that emerges if we have the
associative property on a vector space V , and then use it to define a binary
operation on the vector space sV .
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6.2.2 Koszul signs in axioms of an operad
The examples we just considered should convince the reader that various

signs tend to arise from applying operations to arguments, and those signs can
be recovered easily from the respective evaluation maps EndV (n)⊗V ⊗n → V .
It is possible to avoid these signs almost completely by writing algebraic iden-
tities without arguments, and only recalling signs arising from evaluations
when absolutely necessary. However, there is one more important source of
signs that remains; this source will feature quite prominently in our compu-
tations of this chapter.

Proposition 6.2.2.1. Suppose that V is a homologically graded chain com-
plex. For all α ∈ EndV (n), β ∈ EndV (m), γ ∈ EndV (r), we have

(α ◦i β) ◦j γ =


α ◦i (β ◦j−i+1 γ), i ≤ j ≤ i+m− 1,

(−1)|β||γ|(α ◦j γ) ◦i+r−1 β, 1 ≤ j ≤ i− 1,
(−1)|β||γ|(α ◦j−m+1 γ) ◦i β, i+m ≤ j ≤ n+m− 1.

The first formula here is identical to the sequential axiom (Equation (3.3)),
while the two other formulas differ from the parallel axioms (Equation (3.4))
by signs.

Proof. The respective evaluation operations require, in addition to rearranging
arguments of operations, swapping β with γ, hence the sign.

These formulas altogether are precisely what one has to use when defining
nonsymmetric operads whose components are homologically graded vector
spaces. This does not affect any results on free operads and normal forms
with the exception of the fact that we always have to pick, among many ways
to draw a tree monomial in the plane, a particular choice where all vertices
have different levels.

Definition 6.2.2.2 (Levelization of a tree). Let τ be a planar tree. A lev-
elization of τ is a total order of internal vertices of τ which extends the partial
order v ≺ v′ if v belongs to the path from the root to v′.

Example 6.2.2.3. For each of the binary trees and , there is

a unique levelization, since the partial order above is already a total order.

Once a choice of a levelization of a planar tree τ is made, a tree monomial
whose underlying tree is τ is defined precisely, and not up to a sign. A “local”
change of the choice of levels (swapping the order of two vertices with the
same parent, see Equation (3.2)) now comes, according to the formulas above,
at a cost of the sign (−1)|β||γ|.
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Example 6.2.2.4. The smallest binary tree for which there is no obvious

choice of levels is ; the two possible choices of levelization correspond

to the following two ways of drawing that tree:

and .

There is another important difference to have in mind. When components
of the given operad are chain complexes, it makes sense to require the differen-
tials to be compatible with the operad structure. This leads to the definition
of a differential graded operad.

Definition 6.2.2.5 (Differential graded operad). A symmetric operad P
whose components are chain complexes is called a differential graded operad
if the differentials of its components are equivariant with respect to the sym-
metric group actions and agree with the operad compositions:

d(α ◦i β) = d(α) ◦i β + (−1)|α|α ◦i d(β).

In the examples that follow, we will use partial compositions, not trees,
to represent monomials in the free operad. There are two main reasons for
that: in both cases, we will deal with operations with many arguments, and,
on the second occasion, infinitely many relations emerge; in such situations,
writing formulas is much easier to handle than drawing pictures, especially
when keeping track of levels is required.

6.2.3 Totally associative operad
Let us start with a toy model where it becomes very clear how signs emerge

when computing Gröbner bases.

Definition 6.2.3.1 (Graded totally associative operad). Let N ≥ 2. The
totally associative N -ary operad in degree d, denoted tAs(N)

d , is the nonsym-
metric operad with one generator µ of arity N and homological degree d, and
relations

µ ◦p µ = µ ◦N µ for all p ≤ N − 1.

We will now apply the Buchberger algorithm to the operad tAs(N)
d using

the gpathlex order. From the common multiple

(µ ◦1 µ) ◦1 µ = µ ◦1 (µ ◦1 µ)
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of the leading monomial µ ◦1 µ with itself, we compute the S-polynomial

(µ ◦N µ) ◦1 µ− µ ◦1 (µ ◦N µ).

We can perform the following chain of reductions (with leading monomials
underlined):

(µ ◦N µ) ◦1 µ− µ ◦1 (µ ◦N µ) =
(µ ◦N µ) ◦1 µ− (µ ◦1 µ) ◦N µ 7−→ (µ ◦N µ) ◦1 µ− (µ ◦N µ) ◦N µ =

(−1)d
2
(µ ◦1 µ) ◦2N−1 µ− (µ ◦N µ) ◦N µ 7−→ (−1)d

2
(µ ◦N µ) ◦2N−1 µ−

(µ ◦N µ) ◦N µ = (−1)d
2
(µ ◦N µ) ◦2N−1 µ− µ ◦N (µ ◦1 µ) 7−→

(−1)d
2
(µ ◦N µ) ◦2N−1 µ− µ ◦N (µ ◦N µ) =

((−1)d
2
− 1)(µ ◦N µ) ◦2N−1 µ.

In this computation, the only time that we used Koszul signs was the parallel
composition axiom

(µ◦N ) ◦1 µ = (−1)d
2
(µ ◦1 µ) ◦2N−1 µ.

We observe that for even d, the corresponding S-polynomial has the reduced
form zero, while for odd d, the monomial (µ ◦N µ) ◦2N−1 µ cannot be reduced
further, and we recover the relation (µ ◦N µ) ◦2N−1 µ = 0 discovered in [186].
We leave it to the reader to complete the computation of the reduced Gröbner
basis, depending on d and N (Exercise 6.3).

6.2.4 Normal forms and higher Koszul duality
In this section, we will explain, following [78], how to use normal forms

for nonsymmetric operads and algebras over nonsymmetric operads to obtain
some results relevant in higher Koszul duality for associative algebras. Let us
recall basics of the N -homogeneous Koszul duality which originates in [19].

Definition 6.2.4.1 (N -homogeneous dual algebra). Let V be a finite-
dimensional space, and let A = T (V )/(R) be an N -homogeneous algebra,
that is an associative algebra with R ⊂ V ⊗N . The N -homogeneous dual alge-
bra A∨ of A is defined by the formula

A∨ := T (V ∗)/(R⊥),

where R⊥ ⊂ (V ∗)⊗N is the annihilator of R under the natural pairing of
vector spaces (V ∗)⊗N ⊗ V ⊗N → F.

At this stage, the reader can recall Definition 2.1.2.1, according to which
for N = 2 the algebra A∨ is denoted by A! and called the Koszul dual algebra
of A. However, in the case N > 2, only some of the homogeneous components
of A∨ are used for purposes of homological and homotopical algebra, that is,
in defining higher analogues of the Koszul complex.
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Definition 6.2.4.2 (N -homogeneous Koszul dual syzygy space). We define
the graded vector space A!, the Koszul dual syzygy space of A, by the formula

A!
m :=

{
A∨m, m ≡ 0, 1 (mod N),
0, otherwise,

where in addition to being of weight m, A∨m is assigned the homological degree
2m
N if m ≡ 0 (mod N) and the homological degree 2(m−1)

N + 1 is m ≡ 1
(mod N).

It turns out that for a general N > 2 there are two meaningful operations
on the Koszul dual syzygy space [126].

Definition 6.2.4.3 (N -homogeneous Koszul dual algebra). The associative
product on A∨ induces operations µ2 and µN on A! as follows. We let

µ2 :


A!
iN ⊗A!

jN
∼= A∨iN ⊗A∨jN → A∨(i+j)N ∼= A!

(i+j)N ,

A!
iN+1 ⊗A!

jN
∼= A∨iN+1 ⊗A∨jN → A∨(i+j)N+1 ∼= A!

(i+j)N+1,

A!
iN ⊗A!

jN+1 ∼= A∨iN ⊗A∨jN+1 → A∨(i+j)N+1 ∼= A!
(i+j)N+1,

µN : A!
k1N+1 ⊗ · · · ⊗A!

kNN+1 ∼= A∨k1N+1 ⊗ · · · ⊗A∨kNN+1

→ A∨(k1+···+kN +1)N ∼= A!
(k1+···+kN +1)N

be derived from the product in A∨, and let these operations be zero for all
other choices of arguments. With these operations, the space A! is called the
Koszul dual algebra of A.

In [78], the full system of identities satisfied by the operations µ2 and µN
independently of the algebra A was determined. Let us explain and prove that
result.

Definition 6.2.4.4 (The operad NA2,N ). The nonsymmetric operad NA2,N
is the quotient of the free nonsymmetric operad generated by a binary oper-
ation µ2 of homological degree 0 and an N -ary operation µN of homological
degree 2−N modulo the ideal generated by the N + 2 elements

µ2 ◦1 µ2 − µ2 ◦2 µ2, (6.1)

µ2 ◦1 µN + (−1)N−1µ2 ◦2 µN +
N∑
i=1

(−1)i−1+NµN ◦i µ2, (6.2)

µN ◦i µN , for i = 1, . . . , N . (6.3)

Let us define an order of the space of generators by putting µN ≺ µ2,
and consider the corresponding gpathlex order. It turns out that the reduced
Gröbner basis of the operad NA2,N is infinite but manageable. To state the
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result, let us introduce the following operations µ(k)
2 ∈ T (µ2, µN )(k+1) defined

inductively:
µ

(0)
2 = id, µ

(k+1)
2 = µ2 ◦2 µ(k)

2 .

In other words, such an operation is a right-normed product made of k copies
of µ2.

Theorem 6.2.4.5. The reduced Gröbner basis of the operad NA2,N is ob-
tained by adjoining to its generators (6.1), (6.2), and (6.3) the elements

Ri,k := µN ◦i (µ(k)
2 ◦k+1 µN )− (−1)N(i−1)(µN ◦N (µ2 ◦2 µN )) ◦i µ(k−1)

2 (6.4)

for each k ≥ 1 and for each i = 1, . . . , N − 1.

Proof. By Theorem 3.5.1.6, it is enough to prove that all S-polynomials coming
from overlaps of leading terms of the listed elements can be reduced to zero.
We will prove it by doing explicit computations in low arities, and outlining
how further computations are modeled on those for low arities.

The leading term µ2 ◦1 µ2 of (6.1) has a nontrivial small common multi-
ple with itself; the resulting S-polynomial can be reduced to zero using just
that relation (see Example 3.6.1.1 where we checked exactly that statement).
The S-polynomial that arises from the small common multiple of the leading
terms µ2 ◦1 µ2 and µ2 ◦1 µN of (6.1) and (6.2), respectively, can as well be
reduced to zero using only those relations and nothing else; this is a result of
a more tedious but very straightforward computation. However, the leading
term µ2 ◦1 µN of the relation (6.2) forms n small common multiples with the
relations µN ◦i µN , and the corresponding S-polynomials cannot be reduced
using only the defining relations of the operad NA2,N ; that is where new
elements of the reduced Gröbner basis start showing up.

For the small common multiple (µ2 ◦1 µN ) ◦1 µN = µ2 ◦1 (µN ◦1 µN ) the
corresponding S-polynomial can be, using the relations µN ◦i µN = 0, reduced
to

(−1)N (µ2 ◦2 µN ) ◦1 µN − (µN ◦1 µ2) ◦1 µN
= (−1)N+N2

(µ2 ◦1 µN ) ◦N+1 µN − µN ◦1 (µ2 ◦1 µN )
→ (−1)N (µN ◦N µ2) ◦N+1 µN − (−1)N (µN ◦1 µ2) ◦2 µN

= (−1)NµN ◦N (µ2 ◦2 µN )− (−1)NµN ◦1 (µ2 ◦2 µN ),

where the first equality comes from the parallel and the sequential composition
properties of nonsymmetric operads, the second one is the computation of the
reduced forms using only the defining relations (6.2) and (6.3), and the last
equality comes from the sequential composition properties; the end result is
proportional to the element R1,1.

For 1 < i ≤ N , the small common multiple

(µ2 ◦1 µN ) ◦i µN = µ2 ◦1 (µN ◦i µN )
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gives rise to the S-polynomial

µN ◦i−1 (µ2 ◦2 µN )− µN ◦i (µ2 ◦1 µN ). (6.5)

If we are only allowed to use the defining relations of the operad, then the
reduced form of this element is

µN ◦i−1 (µ2 ◦2 µN )− (−1)NµN ◦i (µ2 ◦2 µN ). (6.6)

However, this reduced form is precisely Ri−1,1 − (−1)NRi,1, so it can be re-
duced to zero. The S-polynomials corresponding to the small common multi-
ples of the monomial relations µN ◦i µN = 0 and µN ◦j µN = 0 are trivially
zero, so there is nothing to check.

All the S-polynomials corresponding to the small common multiples of the
leading monomials of the defining relations have now been treated. Let us now
study the small common multiples of the leading monomials of the defining
relations with the leading terms of elements (6.4).

All the small common multiples of the leading monomial of the ele-
ments Ri,1 with the monomial relations µN ◦j µN can be easily reduced to
zero without using any new elements. The same is true for the small common
multiple

(µN ◦i (µ2 ◦2 µN )) ◦i µN = (−1)N
2
(µN ◦i ((µ2 ◦1 µN ) ◦N+1 µN ))

of the leading monomial of Ri,1 with the leading monomial of (6.2).
It is also easy to see that no new elements are needed to reduce all the

S-polynomials arising from the small common multiples of the leading mono-
mials of the elements Ri,1 and Rj,1. Indeed, there are two combinatorially
different kinds of small common multiples of that sort. The small common
multiple

(µN ◦i (µ2 ◦2 µN )) ◦j+N (µ2 ◦2 µN ) = (−1)N
2
(µN ◦j (µ2 ◦2 µN )) ◦i (µ2 ◦2 µN )

for 1 ≤ i < j ≤ N − 1 leads to the S-polynomial

(−1)N(i−1)(µN ◦N (µ2 ◦2 µN )) ◦j+N (µ2 ◦2 µN )
− (−1)N+N(j−1)(µN ◦N (µ2 ◦2 µN )) ◦i (µ2 ◦2 µN ),

which can be reduced to zero using the elements Rk,1 for various k. The small
common multiple

(µN ◦i (µ2 ◦2 µN )) ◦i+j (µ2 ◦2 µN ) = µN ◦i (µ2 ◦2 (µN ◦j (µ2 ◦2 µN )))

for 1 ≤ i ≤ j ≤ N − 1 leads to the S-polynomial

(−1)N(i−1)(µN ◦N (µ2 ◦2 µN )) ◦i+j (µ2 ◦2 µN )
− (−1)N(j−1)µN ◦i (µ2 ◦2 (µN ◦N (µ2 ◦2 µN ))),
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where the second term is immediately reduced to

(−1)N(j−1)+N(i−1)+N(i−1)µN ◦N (µ2 ◦2 (µN ◦N (µ2 ◦2 µN ))) =
= (−1)N(j−1)µN ◦N (µ2 ◦2 (µN ◦N (µ2 ◦2 µN ))),

using the relation Ri,1 twice, while the first term is reduced to the same result
through a lengthier sequence of reductions (depending on i+j being less than,
equal to, or greater than N).

The small common multiple (µN ◦i(µ2◦2µN ))◦iµ2 of the leading monomial
of the relation Ri,1 with the leading monomial of the left-hand side of (6.1)
creates an S-polynomial that can be reduced to Ri,2, and hence can be reduced
to zero using our candidate for the reduced Gröbner basis.

The last computation at this stage is that for the S-polynomial coming
from yet another small common multiple of the leading monomials of the
elements Ri,1 and (6.2), that is

µ2 ◦1 (µN ◦i (µ2 ◦2 µN )) = (µ2 ◦1 µN ) ◦i (µ2 ◦2 µN ).

This S-polynomial can be reduced completely using the defining relations of
the operad NA2,N and the elements Ri,1 and Ri,2.

The way the elements Ri,3, etc., arise is similar, and our system of elements
can be shown to be sufficient to reduce to zero all arising S-polynomials.

Corollary 6.2.4.6. Normal monomials for the operad NA2,N can be described
as follows. The identity map id ∈ NA2,N (1) is normal, and for every normal
monomial b, the monomial µ2 ◦2 b is normal and also the monomial

µN ◦ (µ(i1)
2 , µ

(i2)
2 , . . . , µ

(iN−1)
2 , µ2 ◦2 b)

is normal for each choice of nonnegative integers i1, . . . , iN−1. Each normal
monomial is obtained from id by repeated application of these rules.

Let us now pair Theorem 6.2.4.5 with the approach to normal forms in
algebras over nonsymmetric operads from Section 3.7 to study certain NA2,N -
algebras arising in higher Koszul duality for associative algebras.

Proposition 6.2.4.7 ([78]). The Koszul dual algebra of any N -homogeneous
algebra A equipped with the operations µ2 and µN is an NA2,N -algebra.

Theorem 6.2.4.8. For each N -homogeneous algebra A, we have an isomor-
phism of NA2,N -algebras

A! ∼= NA2,N (V ∗)/(µ2(V ∗, V ∗), µN (R⊥)), (6.7)

where µN (R⊥) is viewed as a subspace of µN (V ∗, V ∗, . . . , V ∗).

Proof. Let us first examine the case R = V ⊗N . In this case, the algebra
D := NA2,N (V ∗)/(µ2(V ∗, V ∗)) on the right-hand side of (6.7) is “the biggest
possible”: all the algebras appearing on the right-hand side for various R are
quotients of D.
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Lemma 6.2.4.9. The statement of Theorem 6.2.4.8 is true for R = V ⊗N .

Proof. We will use Theorem 3.7.1.4, and study the corresponding extension
NA2,N n D of the operad NA2,N . If we fix some basis e1, . . . , ek of V ∗, the
relations we need to adjoin to the defining relations ofNA2,N in order to obtain
a presentation of the extension are µ2(ei, ej) = 0. Similarly to what we saw
in Section 3.7.2, the small common multiple of the associativity relation (6.1)
and the new relation µ2(ei, ej) = 0 produces the relation µ2(ei, µ2(ej , id)) = 0.
This extra relation has no small common multiples with the other relations.

Applying Theorem 3.7.1.4, in the view of Theorem 6.2.4.5 and Corol-
lary 6.2.4.6, we immediately conclude that a basis for the algebra D can be
defined inductively as follows. It has elements of two types, which we call even
and odd; all generators e1, . . . , ek are odd basis elements, and we have the
following rules of forming new elements:

• for each odd basis element b, and for all 1 ≤ i1, . . . , iN−1 ≤ k, the
element µN (ei1 , ei2 , . . . , eiN−1 , b) is an even basis element;

• for each even basis element b, and all 1 ≤ j ≤ k, the element µ2(ej , b) is
an odd basis element.

In particular, this algebra has nonzero elements only of weight divisible by N
or congruent to 1 modulo N , and for each such weight there exists exactly
one type of basis element of that weight. Combinatorially, the corresponding
trees are alternating “towers” of operations with all the compositions using
the last slot of operations only. This gives a vector space identification of

D ∼= V ∗ ⊕ µN (V ∗, . . . , V ∗)⊕ (µ2 ◦2 µN )(V ∗, . . . , V ∗)⊕ · · ·

with the Koszul dual algebra

A! = V ∗ ⊕ V ∗⊗N ⊕ V ∗⊗(N+1) ⊕ · · ·

of the algebra A = T (V )/(V ⊗N ). Comparing the operations of D with those
of Definition 6.2.4.3, we see that the corresponding NA2,N -algebras are iso-
morphic.

Let us return to the case of a general set of relations R. In the proof
of Lemma 6.2.4.9 above, for the case of the algebra D corresponding to
R = V ⊗N , we obtained a basis where we alternate the operations µ2 and
µN , computing all compositions at the last slot, and then substitute into the
resulting operation an arbitrary word in e1, . . . , ek. Now, the defining relation
(6.2), together with the vanishing of all the elements (6.4), (6.5), and (6.6)
mean that in our alternating towers, the only operation we plug in at each
level can be freely moved between the slots.

If we now impose the additional relations µN (R⊥) = 0 and use the iden-
tification D ∼= V ∗ ⊕ V ∗⊗N ⊕ V ∗⊗(N+1) ⊕ · · · discussed above, it becomes
clear that the underlying vector space of NA2,N (V ∗)/(µ2(V ∗, V ∗), µN (R⊥))
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is a quotient of A!. However, from Definition 6.2.4.3 and Proposition
6.2.4.7 it is apparent that A! is an NA2,N -algebra in which the relations
µ2(V ∗, V ∗) = 0 and µN (R⊥) = 0 are satisfied, so it is a quotient of
NA2,N (V ∗)/(µ2(V ∗, V ∗), µN (R⊥)), which is the universal algebra in which
these relations are satisfied. Since V is assumed finite-dimensional, the weight
graded components of these algebras are finite-dimensional spaces, and exis-
tence of surjections in both directions is sufficient to conclude that the algebras
are isomorphic. This completes the proof of Theorem 6.2.4.8.

6.3 Koszul duality for operads
We recall the basics of Koszul duality for operads. We deal specifically

with the case of symmetric operads. The cases of nonsymmetric and shuffle
operads are analogous, and just require to replace free symmetric operads by
free nonsymmetric / shuffle operads; we discuss a couple of examples of those
below.

In Section 5.2.2 we recalled an explicit construction, for a symmetric col-
lection V, of the free symmetric operad TΣ(V). It is spanned by tree tensors,
and has appropriate composition products. A notion dual to the notion of an
operad is that of a cooperad; it is essentially a symmetric collection C together
with a coassociative map C → C ◦Σ C (plus a counit satisfying appropriate
conditions). For a symmetric collection V, the cofree conilpotent operad gen-
erated by V, denoted T cΣ(V), has the same underlying collection as T (V), but
different structure, a “decomposition coproduct”.

Let us denote by TΣ(V)(k) the collection of tree tensors of weight k, that
is, tree tensors whose underlying trees have k internal vertices.

6.3.1 Quadratic operads and cooperads
Definition 6.3.1.1 (Quadratic operad and cooperad). Let V be a symmetric
collection, and R ⊂ TΣ(V)(2) be a subcollection. We will call the pair (V,R)
quadratic data. To a choice of quadratic data one can associate the quadratic
operad with generators V and relations R,

P = P(V,R) := TΣ(V)/(R).

In other words, P(V,R) is the largest quotient operad O of TΣ(V) for which
the composite

R ↪→ TΣ(V)(2) ↪→ TΣ(V) � O
is zero. Also, to a choice of quadratic data one can associate the quadratic
cooperad with cogenerators V and corelations R

Q = Q(V,R),



200 Algebraic Operads: An Algorithmic Companion

the largest subcooperad C ⊂ T cΣ(V) for which the composite

Q ↪→ T cΣ(V) � T cΣ(V)(2) � T cΣ(V)(2)/R

is zero.

The most elegant and conceptual way to handle Koszul duality is to have
a duality between operads and cooperads [180].

Definition 6.3.1.2 (Koszul duality between operads and cooperads). Let
(V,R) be a choice of quadratic data. The Koszul duality for operads assigns
to an operad P = P(V,R) its Koszul dual cooperad

P ¡ := Q(sV, s2R),

and to a cooperad Q = Q(V,R) its Koszul dual operad

Q¡ := P(s−1V, s−2R).

However, it is commonly acknowledged that psychologically it is somewhat
harder to work with cooperads than with operads, so we will also present a
definition that only uses operads, by passing to dual vector spaces whenever
working with operads. For that, however, one important notion should be
introduced.

Definition 6.3.1.3 (Hadamard product of symmetric collections). Let V
and W be two symmetric collections. The Hadamard product V ⊗

H
W is the

following symmetric collection:

(V ⊗
H
W)(n) := V(n)⊗W(n),

with the diagonal symmetric group action.

Definition 6.3.1.4 (Operadic suspension). The operadic suspension of a
(symmetric or nonsymmetric) collection of chain complexes L is the Hadamard
tensor product with S:

SL := S ⊗
H
L.

Definition 6.3.1.5. Let P be a quadratic operad. Its Koszul dual operad is
the operad

P ! := (Sc ⊗
H
P ¡)∗.

Here Sc is the determinant cooperad (S−1)∗.

Remark 6.3.1.6. This definition, when applied to associative algebras viewed
as operads with generators of arity 1, gives a definition which is slightly dif-
ferent from Definition 2.1.2.1. We leave it to the reader to examine the two
definitions and identify the differences (Exercise 6.4).
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Proposition 6.3.1.7. For any quadratic operad P = P(V,R) generated by a
reduced symmetric collection V of finite dimension in each arity, we have

P ! ∼= P(s−1S−1 ⊗
H
V∗, s−2R⊥),

where R⊥ is the annihilator of R under the natural pairing

TΣ

(
S−1 ⊗

H
V∗
)(2)

⊗ TΣ(V)(2) → S−1 ⊗
H
TΣ (V∗)(2) ⊗ TΣ(V)(2) → F,

where the first map comes from composing elements from S−1.

Proof. See [180, Prop. 7.2.1].

Remark 6.3.1.8. Note that the arity 2 space of the collection s−1S−1 is
concentrated in degree 0, but in general the arity n space of that collection is
concentrated in homological degree n− 2. An immediate consequence of that
is the following observation that unfortunately escaped some early literature
on Koszul duality [112, 113, 114, 115] (rendering many results obtained in
those papers wrong): for an operad generated by operations of homological
degree zero, the Koszul dual operad is generated by operations of degree zero
only if all the operations are binary. For example, if an operad is generated
by ternary operations of degree 0, its Koszul dual is generated by ternary
operations of degree 1.

It is worth noting that for the purpose of computing Koszul signs it is
just the parity of the homological degree that matters. However, collapsing
all degrees modulo 2 and working with Z/2Z-graded vector spaces is almost
never a good strategy, as it loses more refined information about graded pieces
of a chain complex. For example, doing that may make a chain complex
with finite-dimensional components into a Z/2Z-graded vector space with
infinite-dimensional components without any extra structure; among many
other things, this would make dual spaces and tensor products completely
unmanageable.

As we mentioned above, the same definitions and results may be used in
the case of nonsymmetric operads and shuffle operads.

6.3.2 Examples of Koszul dual operads
Example 6.3.2.1. Consider the q-associative nonsymmetric operad 3.6.1.2.
According to Proposition 6.3.1.7, the pairing

T
(
S−1 ⊗

H
V∗
)(2)

⊗ T (V)(2) → F

differs from the “naive” pairing

T (V∗)(2) ⊗ T (V)(2) → F



202 Algebraic Operads: An Algorithmic Companion

by the signs that come from compositions in S−1. Therefore, if we denote

the generator of Asq and the generator of As!
q by the same symbol , the

pairing in question satisfies〈
,

〉
= −

〈
,

〉
.

In addition, we of course have〈
,

〉
= 0 =

〈
,

〉
.

The usual convention is to put〈
,

〉
= 1,

〈
,

〉
= −1.

In this case, the dual of the defining relation

− q = 0

of Asq is the relation

q − = 0.

In other words, As!
q
∼= Asq−1 (for q 6= 0).

Example 6.3.2.2. Consider the shuffle operad Lief which, as we know from
Example 5.3.4.2, is the operad with just one defining relation

1 2
3 −

2 3
1 −

1 3
2 = 0.

In the shuffle case, in addition to the property highlighted in Example 6.3.2.1,
we also have

〈 1 2
3 ,

1 2
3
〉

= −
〈 3 2

1 ,

3 2
1

〉
,
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as computing the corresponding compositions in the shuffle operad S−1 in-
stantly demonstrates (Exercise 6.5). Therefore, the annihilator of the defining
relation of the operad Lief is spanned by the two elements

1 2
3 −

2 3
1 ,

1 2
3 −

1 3
2 .

It is easy to see that this operad is the operad Comf , where Com is the operad
of associative commutative algebras.

Example 6.3.2.3. Let us consider the operad tAs(N)
d (Definition 6.2.3.1) with

its relations
µ ◦p µ = µ ◦N µ for all p ≤ N − 1.

Note that in the operad S we have

µn ◦i µm = (−1)(i−1)(m−1)µn+m−1;

this is established in the same way as a particular way of this formula is estab-
lished in Example 6.2.1.2. The same signs would come from the compositions
in the operad S−1: the parities of homological degrees in these operads are the
same, so while their basis elements are of different degrees, these operads have
the same structure constants. Therefore, the dual operad of the operad tAs(N)

d

is the operad with one generator ν of degree −d + N − 2, and the following
defining relation:

N∑
i=1

(−1)(i−1)(N−1)ν ◦i ν = 0.

This operad is called the operad of partially associative N -ary algebras in
degree −d+N − 2, and is denoted by pAs(N)

−d+N−2.

6.3.3 The Koszul property of a quadratic operad
Recall that the Koszul complex of a quadratic operad P is the symmetric

collection P ¡ ◦Σ P equipped with a certain differential coming from a “twisting
morphism”

κ : C(sV, s2R) � sV → V ↪→ P(V,R),

see [180, Sec. 7.4] for details.

Definition 6.3.3.1 (Koszul operad). A quadratic operad P is said to be
Koszul if its Koszul complex is acyclic, so that the inclusion

1 ↪→ P ¡ ◦Σ P

induces an isomorphism in the homology.
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The following theorem is currently the most efficient and general way to
prove Koszulness of an operad.

Theorem 6.3.3.2. Let P be a symmetric operad for which the shuffle operad
Pf admits a quadratic Gröbner basis. Then the operad P is Koszul.

Proof. See Proposition 6.4.1.3 and Corollary 6.4.3.2 below.

From our examples 5.6.1.1 and 5.6.1.2 it instantly follows that the symmet-
ric operads Lie and Ass are Koszul. Exercises from Chapter 5 prove Koszulness
of some other operads in the exact same way.

Remark 6.3.3.3. This theorem also holds for nonsymmetric operads: a non-
symmetric operad that admits a quadratic Gröbner basis is Koszul. In partic-
ular, it follows from Example 3.6.1.2 that the operad Asq is Koszul for q = 0, 1;
we will see below in Example 6.3.4.5 that for other values of q that operad is
not Koszul.

Let P = TΣ(V)/(R) be a quadratic operad. Let us choose a basis X of V,
and take the dual basis X∨ in S−1 ⊗

H
V∗, the space of generators of P !. We

identify these bases as sets, pairing each element with its dual. Let us fix
some monomial order of TΣ(X )f , and the opposite (under our identification
of bases) order of TΣ(X∨)f .

Proposition 6.3.3.4 ([70, 135]). Let us denote by B the linearly self-
reduced basis of R ⊂ TΣ(X )f , and by B⊥ the linearly self-reduced basis of
s−2R⊥ ⊂ TΣ(X∨)f .

(i) We have lm(B) t lm(B⊥) = XTree(2)
X .

(ii) The set of tree monomials for which every quadratic divisor belongs to
lm(B) spans the Koszul dual operad P !; the number of such monomials
of arity n gives an upper bound on dimP !(n). This upper bound is sharp
for all n such that TΣ(X )(n)(3) 6= 0 if and only if the operad P ! has a
quadratic Gröbner basis.

(iii) The operad P has a quadratic Gröbner basis if and only if the operad P !

has a quadratic Gröbner basis.

Proof. Statement (i) follows from basic linear algebra and is left as an exercise
(Exercise 6.8).

To prove (ii), note that according to (i), the set of tree monomials for
which every quadratic divisor belongs to lm(B) is precisely the set of tree
monomials that are reduced with respect to B⊥. In general, for a linearly
self-reduced set G of quadratic elements in the free shuffle operad, the cosets
of monomials of weight three that are reduced with respect to G span the
quotient by (G); they are linearly independent if and only if G is a Gröbner
basis (Proposition 5.4.3.4). It is enough to verify the linear independence of
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elements of weight 3, since it would ensure that all S-polynomials that arise
in Algorithm 5.5.2.1 have reduced form zero.

Finally, to prove (iii), the easiest way is to consider the bar complex of P
[180], and the filtration on it induced by the monomial order that we consider.
Using that filtration, it is easy to check that if P has a Gröbner basis, then a
basis of P ! is formed by elements that are reduced with respect to B⊥ [135],
and (ii) applies.

Example 6.3.3.5. Let us consider the operad PreLie of pre-Lie algebras from
Example 5.6.2.1. It is known that its Koszul dual operad PreLie! = Perm is
generated by one operation a1, a2 7→ a1 · a2 which satisfies the relations

(a1 · a2) · a3 = a1 · (a2 · a3),
a1 · (a2 · a3) = a1 · (a3 · a2),

moreover, dim Perm(n) = n: a basis element of Perm is completely determined
by its first factor ai, i = 1, . . . , n. This easily allows to justify the Gröb-
ner basis from Example 5.6.2.1. Indeed, for the gpathpermlex order with
1 2

b ≺
1 2

a , the leading monomials of the defining relations

1 2
a 3

a
−

2 3
1 a

a
−

1 3
a 2

a
+

3 2

1 b

a
,

1 2

b 3
a

−

2 3
1 a

b
−

1 3
a 2

b
+

1 3

b 2

b

,

1 3

b 2
a

−

1 2
a 3

b
−

2 3

1 b

b

+

1 2

b 3

b

are
1 2

a 3
a

,

1 2

b 3
a

, and

1 3

b 2
a

.

The monomials of arity n, for which each divisor is one of these monomials,
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are left combs for which the labels on the path from the root to the leaf
number 1 are either a, a, . . . , a or a, a, . . . , a, b (in this order). In the first case,
the only numbering of leaves that is allowed is 1, 2, . . . , n (in the planar order
of leaves), and in the second case, each numbering 1, k, 2, . . . , k−1, k+1, . . . , n
is allowed. Altogether we have n = 1+(n−1) monomials, which coincides with
dim Perm(n). We conclude that our set of relations forms a Gröbner basis.

6.3.4 The Ginzburg–Kapranov criterion
Let us recall a functional equation due to Ginzburg and Kapranov which

also can be used as a test of whether an operad is Koszul.

Definition 6.3.4.1 (Hilbert series for symmetric collections). Let P be a
reduced symmetric collection whose components have an extra weight grad-
ing, P(n) =

⊕
k≥0 P(n)(k). Suppose that all components P(n)(k) are finite-

dimensional, and P is connected, that is

P(k)(0) =
{
F, k = 1,
0, k 6= 1.

We define the operadic Hilbert–Poincaré series of P by the formula

HPΣ
P (t, x) =

∑
n≥1,s≥0

dimP(n)(k)

n! tnxk.

Proposition 6.3.4.2. Let P and Q be two reduced symmetric collections
equipped with weight gradings for which they are connected. In this case, the
composition P ◦ΣQ has a natural weight grading with respect to which it is
connected, and

HPΣ
P ◦ΣQ(t, x) = HΣ

P (HΣ
Q(t, x), x).

Proof. Exercise 6.6.

The following result appeared for the first time in the seminal paper of
Ginzburg and Kapranov [105]; it generalizes a result for quadratic algebras
that had been known for at least a decade prior to that [10].

Theorem 6.3.4.3 (Ginzburg–Kapranov functional equation). Suppose that
P is a finitely generated quadratic operad whose generating operations are all
of homological degree 0. Consider its natural weight grading by the number of
internal vertices of a tree.

• If P is Koszul, then

HPΣ
P¡(HP

Σ
P (t,−x), x) = t.
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• Suppose that P is generated by operations of the same arity N ≥ 2 and of
homological degree zero. In that case HP(t) = tf(tN−1) for some power
series f ; if P is Koszul, then

HΣ
P¡(H̃Σ

P (t)) = t,

where the “sign modified series” H̃Σ
P (t) is defined by the formula

H̃Σ
P (t) = tf(−tN−1).

Proof. The first part follows from the definition of the Koszul complex, Propo-
sition 6.3.4.2, and the observation that the homological degree in the Koszul
complex comes from the weight grading. The second part follows from the
first part after letting x = 1 and noticing that in case all the generators
are of the same arity N ≥ 2, elements of weight k are precisely elements of
arity 1 + k(N − 1).

The most common use of this result is for proving that some operads are
not Koszul.

Corollary 6.3.4.4 (Ginzburg–Kapranov criterion). Suppose that P is a
finitely generated quadratic operad whose generating operations are all of the
same arity N ≥ 2 and of homological degree 0. Suppose that the composi-
tion inverse of the sign modified series

(
H̃Σ
P

)〈−1〉
(t) has at least one negative

coefficient. Then P is not Koszul.

Proof. If P is Koszul, we have
(
H̃Σ
P

)〈−1〉
(t) = HP¡(t). Thus, this series (the

exponential generating series of dimensions of components P ¡(n)) cannot have
negative coefficients.

The same results hold for nonsymmetric operads if one considers Hilbert
and Hilbert–Poincaré series without factorials in denominators.

Example 6.3.4.5. Consider the q-associative operad Asq for q 6= 0, 1. We
know from Example 3.6.1.2 that

dim Asq(n) =
{

1, n ≤ 3,
0, n ≥ 4.

We have HAsq
(t) = t+ t2 + t3, and therefore(

H̃Asq

)〈−1〉
(t) = (t− t2 + t3)〈−1〉 = t+ t2 + t3 − 4t5 +O(t6).

We conclude that Asq is not Koszul for q 6= 0, 1.
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6.3.5 Filtered distributive laws between quadratic operads
In this section, we discuss filtered distributive laws, a method in Koszul

duality for operads which is somewhere on the way from symmetric to shuffle
operads. It is based on dealing with normal forms with respect to a certain
partial order for tree monomials, and is a minor extension of the rewriting
method of [180, Sec. 8.3]. We will however see that shuffle operads will be
useful for upgrading proofs based on this method to proofs which do not
depend on the characteristic of the ground field.

For two symmetric subcollections U1 and U2 of the same symmetric operad
O, let us denote by J (U1,U2) the subcollection of O spanned by all elements
φ ◦i ψ with φ ∈ U1, ψ ∈ U2.
Definition 6.3.5.1 (Distributing rewriting rule). Let A = F(V)/(R) and
B = F(W)/(S) be two symmetric quadratic operads. The data of two maps
of symmetric collections

s : R → J (W,V)⊕ J (V,W)⊕ J (W,W) (6.8)

and
d : J (W,V)→ J (V,W)⊕ J (W,W) (6.9)

is called a distributing rewriting rule.
Definition 6.3.5.2 (Operads from distributing rewriting rules). Every dis-
tributing rewriting rule gives rise to a quadratic operad E with generators
U = V ⊕W and relations T = Q⊕D ⊕ S, where

Q = {x− s(x) | x ∈ R}, D = {x− d(x) | x ∈ J (W,V)}. (6.10)

Remark 6.3.5.3.
(i) Basically, a distributing rewriting rule amounts to joining generators of
A and B together, keeping the relations of B, deforming relations of A
by adding to them “lower terms” of degree at most 1 in generators of A,
and imposing a rewriting rule transforming J (W,V) into a combination
of terms from J (V,W) and “lower terms” of degree 0 in generators of A.

(ii) Note that using the rewriting rule x 7→ d(x), one can replace s by

s′ : R → J (V,W)⊕ J (W,W). (6.11)

From now on we will denote by s that modified mapping.
Lemma 6.3.5.4. The natural projections of symmetric collections

π1 : V ⊕W � V, π2 : V ⊕W �W

extend to surjections of operads

(π1)∗ : E � A, (π2)∗ : E � B.

The surjection (π2)∗ always splits, while the surjection (π1)∗ may split or not
depending on the ground field F.
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Proof. Only the last statement is not quite obvious. The splitting of (π2)∗
comes from the inclusion of the direct summand W ↪→ V ⊕W. For the case
of (π1)∗, let us consider the symmetric operad Ass over a field of characteris-
tic 3, and its presentation

[a1, [a2, a3]] + [a2, [a3, a1]] + [a3, [a1, a2]] = 0,
[a1 · · · a2, a3] = a1 · [a2, a3] + [a1, a3] · a2,

(a1 ? a2) ? a3 − a1 ? (a2 ? a3) = [a2, [a1, a3]].

from Exercise 5.17. It is clear that this presentation may be viewed as a dis-
tributing rewriting rule between the operads Com and Lie. However, the surjec-
tion Ass(3) � Com(3) does not split: the only subspace of Ass(3) ∼= FS3 where
the trivial representation is realized is

∑
σ∈S3

σ, and this element projects to
zero in Com(3) when the characteristic of F divides 6.

Definition 6.3.5.5 (Split distributing rewriting rule). A distributing rewrit-
ing rule is said to be split if the projection (π1)∗ from Lemma 6.3.5.4 splits.

In characteristic zero every distributing rewriting rule is split. In positive
characteristic it happens, for instance, whenever s = 0, so that the relations
of A remain undeformed.

Lemma 6.3.5.6. For every split distributing rewriting rule, the composite of
natural mappings

FΣ(V) ◦ FΣ(W) ↪→ FΣ(V ⊕W) � FΣ(V ⊕W)/(T )

gives rise to a surjection of symmetric collections

ξ : A◦Σ B � E . (6.12)

Proof. First, using the defining relations T as rewriting rules, every tree tensor
FΣ(V ⊕W) can be rewritten as a combination of elements from the subcol-
lection FΣ(V) ◦ FΣ(W). Next, we consider the filtration of the free operad by
the number of labels from V of a tree tensor. Passing to the graded object
with respect to this filtration turns the set of relations Q into R. Together
with the assumption on splitting of (π1)∗, these two observations guarantee a
surjective map A◦Σ B to E .

Definition 6.3.5.7 (Filtered distributive law). We say that a split distribut-
ing rule is a filtered distributive law between the operads A and B if the
restriction of ξ to weight 3 elements

ξ3 : (A◦Σ B)(3) → E(3) (6.13)

is an isomorphism.
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The following result (generalizing the distributive law criterion for operads
that was first stated in [183]) was proved in [69] using the set operad filtration
method of [147] and in [254] using a filtration on the Koszul complex; however,
both proofs rely on the Künneth formula for symmetric collections and thus
are not available in positive characteristic because in that case the group
algebras FSn are not semisimple.

Theorem 6.3.5.8 (Split filtered distributive law criterion). Assume that the
operads A and B are Koszul, and that they are related by a split distributing
rewriting rule which is a filtered distributive law. Then the corresponding op-
erad E from Definition 6.3.5.2 is Koszul, and the symmetric collections A◦Σ B
and E are isomorphic.

Proof. Let us first note that either of the characteristic zero proofs mentioned
above (set operad filtration; filtration on the Koszul complex) works for shuffle
operads for arbitrary characteristic, since the Künneth formula over a field is
always available. Also, a symmetric operadO is Koszul if and only if the shuffle
operad Of is Koszul, which proves the first statement of the theorem. To prove
the second statement, we observe that on the level of nonsymmetric collections
we have an isomorphism Ef ' Af ◦X Bf ' (A◦Σ B)f , and for symmetric
collections we have a surjection A◦Σ B � E . Since the forgetful functor does
not change the underlying vector spaces, the surjection in question has to be
an isomorphism.

6.4 Models for operads from Gröbner bases
The main application of Koszul duality in homotopical algebra is for con-

structing minimal models of operads. Let us recall the corresponding defini-
tions, and explain how Gröbner bases enter this circle of questions, follow-
ing [75].

6.4.1 Models for operads
The following definition is an extension from [81] of the original definition

from [184]; this extension is needed to accommodate an important case of
operads with nontrivial unary operations.

Definition 6.4.1.1 (Quasi-free operad, model, minimal model). A differential
graded operad is said to be quasi-free if it is free if viewed as an operad whose
components are graded vector spaces (without differential). A model of an
operad O whose components are graded vector spaces is a quasi-free operad
(TΣ(U), d) equipped with a surjective map (TΣ(U), d) � O which induces an
isomorphism on the homology. A quasi-free operad (TΣ(U), d) is minimal if
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its differential is decomposable, that is d(U) ⊂ TΣ(U)(≥2), and its collection of
generators admits a direct sum decomposition U =

⊕
k≥1 U [k] satisfying the

Sullivan triangulation condition

d(U [k+1]) ⊂ TΣ(
k⊕
i=1
U [i]).

The same definitions apply in the case of associative algebras, nonsym-
metric operads, shuffle operads, etc. In particular, the following statement
holds.
Proposition 6.4.1.2. Suppose that (TΣ(U), d) is a model of a symmetric
operad O. Then

(TΣ(U), d)f = (TΣ(U)f , df ) ∼= (TX(Uf ), df )
is a model of the shuffle operad Of .
Proof. It is obvious from Corollary 5.3.3.3.

Models for operads are related to operadic Koszul duality. More precisely,
the following statement is true.
Proposition 6.4.1.3.
(i) If an operad O has a minimal model, that minimal model is unique up

to an isomorphism.

(ii) A symmetric operad O is Koszul if and only if it admits a minimal model
(TΣ(U), d) with a quadratic differential, that is d(U) ⊂ TΣ(U)(2).

(iii) A symmetric operad O is Koszul if and only if the shuffle operad Of
admits a minimal model (TX(U), d) with a quadratic differential, that
is d(U) ⊂ TX(U)(2).

Proof. Statement (i) is Theorem 6.3.4 of [180]. Statement (ii) is closely related
to Theorem 6.6.1 of [180], and we leave it as an exercise for the reader to fill
in the details (Exercise 6.14). Finally, (iii) is a direct consequence of (i), (ii),
and Proposition 6.4.1.2.

Propositions 6.4.1.2 and 6.4.1.3 imply that while applying the forgetful
functor does lose some data, it retains some information about the shape of
the differential of the minimal model of a given operad. In some cases, like
the Koszul duality, retaining that knowledge is completely sufficient. In some
other cases, external information may be used to arrive at a complete answer
(like it is done, independently from [81], for the operad of Batalin–Vilkovisky
algebras in [75]).
Definition 6.4.1.4 (Syzygy degree). In the context of models for operads
and algebras, we will refer to the homological degree in the model as syzygy
degree; an operad itself may have elements of different homological degrees,
in which case there will be more than one homological degree for elements of
the model.
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6.4.2 Resolution for monomial relations
Assume that the shuffle operad O = TX(X )/(G) is generated by an oper-

ation alphabet X , and that G consists of shuffle tree monomials. We will now
explain how to construct a model of O which is often minimal.

Our first step is to construct a quasi-free shuffle operad AX which does
not take into account the relations of O; it is a somewhat universal object for
operads generated by X , various suboperads of AX will be used as resolutions
for various choices of G.

Definition 6.4.2.1 (The inclusion–exclusion operad). Let T be a tree mono-
mial, and let Λ(s1, . . . , sq) be the exterior algebra generated by the symbols
s1, . . . , sq of syzygy degree 1 which are in one-to-one correspondence with di-
visors of T . We denote by AX (T ) the vector space FT ⊗ Λ(s1, . . . , sq). We
will refer to T as the underlying tree monomial for elements of this vector
space. The degree −1 derivations ∂i on the exterior algebra defined by the
rule ∂i(sj) = δij anticommute, and the differential d =

∑q
i=1 ∂i makes AX (T )

into a chain complex isomorphic to the augmented chain complex of a (q−1)-
dimensional simplex ∆q−1. By definition, the chain complex AX (n) is the
direct sum of complexes AX (T ) over all tree monomials T with n leaves.
There is a natural shuffle operad structure on the nonsymmetric collection
AX = {AX (n)}n≥1; the operadic composition composes the trees, and com-
putes the wedge product of symbols labelling their divisors. The shuffle operad
AX equipped with the differential d is called the inclusion–exclusion operad.

Let us emphasize that the symbols sir correspond to divisors, i.e., mark
occurrences of tree monomials in T rather than monomials themselves. In par-
ticular, even though we have s2

i = 0 in the exterior algebra, but a composition
of an element of our operad with itself is never equal to zero.

Example 6.4.2.2. Recall the shuffle tree monomial

T =

1 2
3

4

from Example 5.4.2.7; it has two different ternary divisors, each of those di-

visors is the monomial

1 2
3 . Let us denote these divisors T ′ and T ′′,

where T ′ shares the root with T , and T ′′ does not. Let us also consider the
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shuffle tree monomial T1 =

1 2
3 , and denote its only ternary divisor

by T ′1. The following examples illustrate computations in the operad AX for

X =

 1 2
. The chain complex AX (T ) is

FT ⊗ 1← FT ⊗ T ′ ⊕ FT ⊗ T ′′ ← FT ⊗ T ′ ∧ T ′′,

with the differential

d(T⊗1) = 0, d(T⊗T ′) = d(T⊗T ′′) = T⊗1, d(T⊗T ′∧T ′′) = T⊗T ′′−T⊗T.

We have

(T1 ⊗ T ′1) ◦1
1 2

= T ⊗ T ′,
1 2

◦1 (T1 ⊗ T ′1) = T ⊗ T ′′.

Proposition 6.4.2.3. The dg operad AX is quasi-free.

Proof. Indeed, let us call an element T ⊗ si1 ∧ · · · ∧ siq , q ≥ 0, indecompos-
able, if it cannot be written as a shuffle composition of two elements of the
same type in the operad AX . (This means that each “internal edge”, that is
an edge between the two internal vertices of T , is an internal edge of at least
one of the divisors si1 , . . . , siq .) It is easy to see that A is freely generated
by indecomposable elements; those are elements x ⊗ 1 with x ∈ X , and in-
decomposable monomials T ⊗ si1 ∧ · · · ∧ siq , q ≥ 1. For any other element
α = T ⊗ si1 ∧ · · · ∧ siq , we note that there exists at least one internal edge of
T that is not an internal edge of either of si1 , . . . , siq . Such an edge gives rise
to a factorization of α as a shuffle composition (Exercise 6.15); moreover, the
set of all such edges leads to a unique decomposition of α as a composition of
indecomposable elements.

So far we have not used the relations G of the given operad O. The dg
operad (AX ,G , d) is defined similarly to AX , but with the additional restriction
that every symbol sk corresponds to a divisor of T which is an element of G.
The differential d is the restriction of the differential defined above.

Theorem 6.4.2.4. The shuffle differential graded operad (AX ,G , d) is a model
of the operad O = TX(X )/(G).

Proof. Similarly to the case of the operad AX , the operad AX ,G is freely gen-
erated by its elements m⊗ 1 with m ∈M and all indecomposable monomials
T ⊗ si1 ∧ · · · ∧ siq , q ≥ 1, where each of the divisors sik is in G.

Let us prove that AX ,G provides a model for O. Since the differential d only
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omits wedge factors but does not change the tree monomial, the chain complex
AX ,G is isomorphic to the direct sum of chain complexes AX ,G(T ) spanned by
the elements for which the first tensor factor is the given tree monomial T .
If T is not divisible by any relation, the complex AX ,G(T ) is concentrated in
degree 0 and is spanned by T ⊗1. Thus, to prove the theorem, we should show
that AX ,G(T ) is acyclic whenever T is divisible by some relation gi.

Assume that there are exactly k divisors of T which are relations of O. We
immediately see that the complex AX ,G(T ) is isomorphic to the chain complex
of a simplex ∆k−1 which is acyclic whenever k > 0.

6.4.3 Resolution for general relations
Let us now consider a shuffle operad Õ = TX(X )/(G̃), and let

O = TX(X )/(G) be its “monomial replacement”, that is, G̃ is the reduced
Gröbner basis of relations, and G consists of all leading monomials of G̃. By
Theorem 6.4.2.4 above, (AX ,G , d) is a model of O.

Let φ be the canonical homomorphism from AX ,G to its homology O (it
kills all generators of positive syzygy degree, and on elements of syzygy de-
gree 0 is the canonical projection from TX(X ) to its quotient O). The latter
canonical projection sends a tree monomial T to its coset modulo G; this coset
is zero if T has a divisor from G, and is a basis element of O otherwise. We
define a map π : AX ,G → AX ,G as the composition of φ with the obvious sec-
tion O → AX ,G ; π annihilates all elements of positive syzygy degree and all
tree monomials of syzygy degree 0 which have divisors from G, and is identical
on all other tree monomials. Since (AX ,G , d) is a model of O, there exists a
homotopy map h for which (dh)|ker d = id−π (in fact, below we will specify
a particular choice for such a homotopy map).

Our goal now will be to “deform” the situation described in the previous
paragraph in the following sense. Let φ̃ be the homomorphism from AX ,G to Õ
that kills all generators of positive syzygy degree, and on elements of syzygy
degree 0 is the canonical projection from TX(X ) to its quotient Õ. By Lemma
5.4.2.17, shuffle tree monomials that are reduced with respect to G form a
basis of Õ, and we define a map π̃ : AX ,G → AX ,G as the composition of φ̃
with the corresponding section; π̃ annihilates all elements of positive syzygy
degree, and sends each element of syzygy degree zero to the result of its long
division by G̃, a combination of tree monomials that are reduced with respect
to G.

We will prove the following result, which is essentially nothing but homo-
logical perturbation in the same way as it is used in the case of free resolutions
of trivial modules over augmented associative algebras in [3, 151, 165].

Theorem 6.4.3.1. There exists a “deformed” differential D on AX ,G and a
homotopy

H : kerD → AX ,G
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such that
H(AX ,G , D) ∼= Õ and (DH)|kerD = id−π̃.

Proof. We will construct D and H simultaneously by induction. Let us in-
troduce a partial ordering of basis elements in AX ,G which just compares
the underlying tree monomials. This partial ordering suggests the following
definition: for an element u ∈ AX ,G , its leading term lt(u) is the part of
the expansion of u as a combination of basis elements consisting of the basis
elements T ⊗ si1 ∧ · · · ∧ siq with maximal possible T .

If L is a homogeneous linear operator on AX ,G of some fixed syzygy degree
of homogeneity (like D, H, d, h), we denote by Lk the operator L acting
on elements of syzygy degree k. We will define the operators D and H by
induction: we define the pair (Dk+1, Hk) assuming that all previous pairs are
defined. At each step, we will also be proving that

D(m) = d(lt(m)) + lower terms, H(m) = h(lt(m)) + lower terms,

where the words “lower terms” refers to the partial order we defined above,
meaning a linear combination of basis elements whose underlying tree mono-
mial is smaller than the underlying tree monomial of lt(m).

Basis of induction: k = 0, so we have to define D1 and H0 (note that
D0 = 0 because there are no elements of negative syzygy degree). In general,
to define Dl, we should only consider the case when our element is a generator
of AX ,G , since in a differential graded operad the differential is defined by
images of generators. For l = 1, this means that we should consider the case
where our generator corresponds to a leading monomial T = lm(g) of some
relation g, and is of the form T⊗s where s corresponds to the divisor of T equal
to T itself. Letting D1(T ⊗ s) = g, we see that D1(T ⊗ S) = T + lower terms,
as required. Note that g = �T,s(g), so we can rewrite the above as

D1(T ⊗ s) = �T,s(g). (6.14)

By direct inspection, this also holds when s is an arbitrary divisor of T , not
necessarily the divisor equal to T itself.

To defineH0, we use yet another inductive argument, decreasing the mono-
mials on which we want to define H0. First of all, if a tree monomial T is not
divisible by any of the leading terms of relations, we put H0(T ) = 0. Assume
that T is divisible by some leading terms of relations, and si1 , . . . , sip are
the corresponding divisors. Then on AX ,G(T ) we can use α 7→ si1 ∧ α as a
homotopy for d, so h0(T ) = T ⊗ si1 . We put

H0(T ) = h0(T ) +H0(T −D1h0(T )).

Here the leading term of T − D1h0(T ) is smaller than T (since we already
know that the leading term of D1h0(T ) is d1h0(T ) = T ), so induction on
the leading term applies. Note that by induction the leading term of H0(T )
is h0(T ).
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Suppose that k > 0, that we know the pairs (Dl+1, Hl) for all l < k, and
that in these degrees

D(m) = d(lt(m)) + lower terms, H(m) = h(lt(m)) + lower terms.

To define Dk+1, we should, as above, only consider the case of generators. In
this case, we put

Dk+1(m) = dk+1(m)−Hk−1Dkdk+1(m).

The property Dk+1(m) = dk+1(lt(m)) + lower terms now easily follows
by induction. To define Hk, we proceed in a way very similar to what
we did for the induction basis. Assume that u ∈ kerDk, and that we
know Hk on all elements of kerDk whose leading term is less than lt(u).
Since Dk(u) = dk(lt(u)) + lower terms, we see that u ∈ kerDk implies
lt(u) ∈ ker dk. Then hk(lt(u)) is defined, and we put

Hk(u) = hk(lt(u)) +Hk(u−Dk+1hk(lt(u))).

Here u−Dk+1hk(lt(u)) ∈ kerDk and its leading term is smaller than lt(u),
so induction on the leading term applies (and it is easy to check that by
induction Hk+1(m) = hk+1(lt(m)) + lower terms).

Let us check that the mappings D and H defined by these formulas satisfy,
for each k > 0, DkDk+1 = 0 and (Dk+1Hk)|kerDk

= id−π̃. A computation
checking that is somewhat similar to the way D and H were constructed.
Let us prove both statements simultaneously by induction. If k = 0, the
first statement is obvious. Let us prove the second one and establish that
D1H0(T ) = (id−π̃)(T ) for each tree monomial T . Slightly rephrasing that,
we will prove that for each tree monomial T we have D1H0(T ) = T − T

where T is the result of long division of T by G̃. We will prove this statement
by induction on T . If T is not divisible by any leading terms of relations,
we have H0(T ) = 0 = T − T . Let T have divisors si1 , . . . , sip . We have
H0(T ) = h0(T ) +H0(T −D1h0(T )), so

D1H0(T ) = D1h0(T ) +D1H0(T −D1h0(T )).

By induction, we may assume that

D1H0(T −D1h0(T )) = T −D1h0(T )− (T −D1h0(T )).

Also,
D1h0(T ) = D1(T ⊗ si1) = �T,si1

(g) = T − rg(T ),

due to Equation (6.14).
Combining the three previous equations, we obtain,

D1H0(T ) = T − rg(T ) +
(

(T −D1h0(T ))− (T −D1h0(T ))
)

=
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= T − rg(T ) + (rg(T )− rg(T )) = T − rg(T ) = T − T ,

since for a Gröbner basis the residue does not depend on a choice of reductions.
Assume that k > 0, and that our statement is true for all l < k. We have

DkDk+1(m) = 0 since

DkDk+1(m) = Dk(dk+1(m)−Hk−1Dkdk+1(m)) =
= Dkdk+1(m)−DkHk−1Dkdk+1(m) = Dkdk+1(m)−Dkdk+1(m) = 0,

because Dkdk+1k ∈ kerDk−1, and so DkHk−1(Dk(y)) = Dk(y) by induction.
Also, for u ∈ kerDk we have

Dk+1Hk(u) = Dk+1hk(lt(u)) +Dk+1Hk(u−Dk+1hk(lt(u))),

and by the induction on lt(u) we may assume that

Dk+1Hk(u−Dk+1hk(lt(u))) = u−Dk+1hk(lt(u))

(on elements of positive syzygy degree, π̃ = 0), so

Dk+1Hk(u) = Dk+1hk(lt(u)) + u−Dk+1hk(lt(u)) = u,

which is exactly what we need.

We outline one most immediate application of the result of this section,
leaving it to the reader to explore various examples of their choice.

Corollary 6.4.3.2. A shuffle operad with a quadratic Gröbner basis is Koszul.

Proof. If the relations G are monomial, then the model of Section 6.4.2 has a
quadratic differential: for an indecomposable element T ⊗ si1 ∧ · · · ∧ siq , every
divisor sik shares exactly one internal edge with T , and every internal edge
determines the corresponding sik uniquely, so the differential maps such an
element to a sum of elements that decompose into exactly two parts.

If the relations are not monomial, then each generator of positive syzygy
degree q of the model of Section 6.4.3 has q = wt−1. Therefore, the differential
of an indecomposable element T ⊗ si1 ∧ · · · ∧ siq maps it to a sum of elements
that decompose into exactly two parts: otherwise, the syzygy degrees of these
elements would not add to q − 1.

6.5 Exercises
Exercise 6.1. For (V, d) = (V ′, d′), the formula for the map δk from Propo-
sition 6.1.1.5 becomes δf = [d, f ] = d◦f− (−1)kf ◦d, according to the Koszul
sign rule. Explain why this implies that δ2 = 0. (Hint: d2 = 1

2 [d, d].)
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Exercise 6.2. Show that the nonsymmetric operad S = EndFs is generated
by one binary operation µ of degree −1 subject to the relation

µ ◦1 µ+ µ ◦2 µ = 0.

Exercise 6.3. Complete the computation of the reduced Gröbner basis of
the operad tAs(N)

d from Section 6.2.3.

Exercise 6.4. Let A = T (V )/(R) be a quadratic associative algebra. Viewing
A as an operad with generators of arity 1, we may apply either Definition
6.3.1.5 or Definition 2.1.2.1. Compare the Koszul dual algebras that those
recipes produce, and explain how they are related.

Exercise 6.5. Viewing S = EndFs as a shuffle operad, compute the compo-
sition

γ{1,3},{2}(µ2, µ2),
and explain how this is relevant for the computation in Example 6.3.2.2.

Exercise 6.6. Prove Proposition 6.3.4.2. (Hint: define the weight as the sum
of weights coming from tensor factors.)

Exercise 6.7. Using Exercise 6.3, Corollary 6.3.4.4, and Theorem 6.3.3.2,
investigate for which values of N and d the nonsymmetric operad tAs(N)

d is
Koszul. For some values of N and d this question becomes very hard, since the
Gröbner basis is not quadratic and the Ginzburg–Kapranov criterion seems
to be inconclusive [186]; in the upcoming paper [77], this question is resolved
(it turns out that the corresponding operads are not Koszul).

Exercise 6.8. Prove part (i) of Proposition 6.3.3.4.

Exercise 6.9. Verify the claim PreLie! = Perm from Example 6.3.3.5.

Exercise 6.10. Show that the operad Leib from Exercise 5.11 is Koszul. (Hint:
if you are not sure which order to choose for a quadratic Gröbner basis, it may
help to know that the Koszul dual operad of Leib, called the operad of Zinbiel
algebras and denoted Zinb, satisfies dim Zinb(n) = n!.)

Exercise 6.11. The alternative operad Alt is generated by one operation
a1, a2 7→ a1 · a2 which satisfies the relations

(a1, a2, a3) = (−1)σ(aσ(1), aσ(2), aσ(3)) for all σ ∈ S3,

where (a1, a2, a3) = (a1 ·a2)·a3−a1 ·(a2 ·a3) is the associator of this operation.

(i) Show that the Koszul dual operad Alt! is generated by one operation
a1, a2 7→ a1 · a2 which satisfies the relations

(a1a2)a3 = a1(a2a3), (6.15)
(a1a2)a3 + (a1a3)a2 + (a2a1)a3 + (a2a3)a1 + (a3a1)a2 + (a3a2)a1 = 0.

(6.16)
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(ii) Show that over a ground field F of characteristic 3, the relation (6.16)
can be replaced by the relation

[[a1, a2], a3] + [[a1, a3], a2] = 0 (6.17)

for the commutator [a1, a2] = a1a2 − a2a1.

(iii) Use Exercises 5.17 and 5.20 to establish that over a field F of character-
istic 3, we have dim Alt!(n) = 2n − n.

(iv) Dzhumadil’daev and Zusmanovich established in [82], combining the
Ginzburg–Kapranov functional equation (Theorem 6.3.4.3) with fairly
heavy computations, that over a field of characteristic 0 the operad Alt
is not Koszul. Try to use methods of this book to establish a simpler
proof of their result.

Exercise 6.12. It is well known to specialists in nonassociative rings [260,
Cor. 7.1.2] that in every characteristic different from 3, an alternative algebra
which is commutative is also associative. Try to find an operadic proof of that
result, and to relate it to the special role of characteristic 3 for dual alternative
algebras observed in Exercise 6.11.

Exercise 6.13 ([72]).

(i) Show that if an operad E is obtained from two quadratic operads A and
B by a distributing rewriting rule, then the Koszul dual operad E ! is
obtained from B! and A! by a distributing rewriting rule.

(ii) Assume that the operad E is obtained from the binary quadratic operads
A and B via a filtered distributive law. Show that if the distributing
rewriting rule between B! and A! that gives the Koszul dual operad E !

is split, then that rule is in fact a filtered distributive law.

Exercise 6.14. Prove claim (ii) of Proposition 6.4.1.3.

Exercise 6.15. Justify the claim on decomposition from Proposition 6.4.2.3.





Chapter 7
Commutative Gröbner Bases

7.1 Introduction
The final chapters of this book provide an introduction to the well-known

theory of commutative Gröbner bases, which has many applications through-
out the mathematical sciences. After much discussion, we made the somewhat
unexpected decision to put these chapters at the end of the book, for the fol-
lowing reasons. First, as we mentioned previously, there is a natural logical
progression from noncommutative Gröbner bases to Gröbner bases for op-
erads, which cannot be extended backward to include commutative Gröbner
bases.1 Second, we are interested in commutative Gröbner bases almost exclu-
sively for their applications to the classification of operads, which obviously
requires a detailed development of the theory of operads as a prerequisite.

In addition to a brief exposition of the standard theory of (commutative)
Gröbner bases, we also discuss some aspects of the theory that are not usually
presented in much detail in textbooks: Robbiano’s classification of monomial
orders, and upper and lower bounds on the complexity of computing Gröbner
bases. See the appropriate sections for bibliographical information.

Commutative Gröbner bases are an essential tool in the study of linear
algebra over polynomial rings, which is the topic of the next chapter. The main
problem we consider is determining how the rank of a matrix with polynomial
entries behaves as a function of the variables. We give various examples of the
applications of this problem to the theory of operads in the rest of this book.
For further details on (commutative) Gröbner bases, we refer the reader to one
of the many excellent modern introductions to computational commutative
algebra and its numerous applications; we mention in particular [1, 14, 64, 65,
162, 163].

1We realize that this is a controversial statement, but we are prepared to defend it!
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7.2 Commutative associative polynomials
7.2.1 One variable

Let us recall briefly the case of univariate polynomials which we already
discussed in Section 1.2.2. For the polynomial algebra F[x] in one variable x
over the field F the monomial basis consists of the nonnegative powers of x in
their standard order defined by increasing degree:

1 = x0 ≺ x = x1 ≺ x2 ≺ x3 ≺ · · · · · · ≺ xn ≺ xn+1 ≺ · · · · · ·

In other words, xm ≺ xn if and only if m < n in the natural order on nonneg-
ative integers. A number of important properties are satisfied by this order;
we mention only two:

• It is compatible with multiplication: If u, v, w are monomials and u ≺ v
then uw ≺ vw. (If i, j, k are integers and i < j then i+ k < j + k.)

• For every monomial v the set {u | u ≺ v }, of monomials u preceding v,
is finite. This allows us to use induction to prove statements about poly-
nomials. It is essentially the well-ordering principle: every non-empty set
of nonnegative integers has a least element; if j is a nonnegative integer
then there are only finitely many nonnegative integers i < j.

7.2.2 The general case
Let us discuss general multivariate polynomials.

Definition 7.2.2.1 (Commutative monomials). In the general case, the set
X = {x1, . . . , xk } of variables consists of k ≥ 1 symbols. Consider the set
C(X) of all commutative monomials in the indeterminatesX which we identify
with exponent sequences of length k of nonnegative integers:

C(X) = {xe11 · · ·x
ei
i · · ·x

ek

k | e1, . . . , ei, . . . , ek ∈ N }
= { [e1, . . . , ei, . . . , ek] | e1, . . . , ei, . . . , ek ∈ N }.

The (total) degree2 of a monomial is the sum of its exponents:

deg(xe11 · · ·x
ei
i · · ·x

ek

k ) =
k∑
i=1

ei ∈ N.

The unique monomial of degree 0 is called the constant monomial, and is
denoted 1. The exponent ei ≥ 0 is called the degree in the variable xi.

2A thorough reader would notice that in all other cases where we discuss monomials we
call this number the weight, however, in the commutative case the word “degree” is too
standard to be avoided.
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We define a commutative associative multiplication on C(X) as usual by(
xe11 · · ·x

ei
i · · ·x

ek

k

)(
x
e′1
1 · · ·x

e′i
i · · ·x

e′k
k

)
= x

e1+e′1
1 · · ·xei+e′i

i · · ·xek+e′k
k ,

which corresponds to the addition of exponent sequences:

[e1, . . . , ei, . . . , ek][e′1, . . . , e′i, . . . , e′k] = [e1 + e′1, . . . , ei + e′i, . . . , ek + e′k].

(Compare the equation log xy = log x+ log y: the degree is a logarithm.)

Definition 7.2.2.2 (Commutative polynomial). A (commutative) polynomial
in the variables X over the field F is a (finite) linear combination of monomials
in C(X) with coefficients from F; two such combinations are equal if their re-
spective coefficients are equal. Multiplication of monomials extends bilinearly
to polynomials. The vector space of all such polynomials will be denoted by

F[X] = F[x1, . . . , xk].

Throughout this chapter, all monomials and polynomials are assumed com-
mutative.

Definition 7.2.2.3 (Polynomial algebra). The graded algebra F[X] is called
the polynomial algebra in the variables X with coefficients in F, or the free
commutative associative algebra generated by X over F.

Proposition 7.2.2.4. The polynomial algebra F[X] is infinite dimensional
as a vector space over F. It is the direct sum over all nonnegative integers
n ≥ 0 of the finite dimensional homogeneous spaces F[X]n spanned by the
monomials of total degree n. Moreover, F[X] is a graded algebra in the sense
that F[X]mF[X]n ⊆ F[X]m+n for all m,n ≥ 0.

Proof. Exercise 7.1.

Let C(X)n be the subset of C(X) consisting of the monomials of total
degree n ≥ 0; this subset forms a basis of F[X]n. The size of C(X)n is the
number of solutions in nonnegative integers of the equation e1 + · · ·+ ek = n.

Lemma 7.2.2.5. Let k, n be nonnegative integers. The number of distinct
monomials of total degree n in k variables is the binomial coefficient

|C(X)n| =
(
n+ k − 1
k − 1

)
Proof. Let us explain two different proofs, both of which may be useful both
in this context and for other topics discussed in this book.

A combinatorial argument conventionally known as “stars-and-bars” goes
as follows. We want to determine the number of ordered k-tuples (e1, . . . , ek)
of nonnegative integers satisfying e1 + · · · + ek = n. Let us encode such a
k-tuple by a sequence of n stars separated into k groups by k − 1 bars, the
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number of stars in the i-th group being ei for each i ≤ k; such a sequence
uniquely determines the corresponding k-tuple. The number of such sequences
is equal to the binomial coefficient

(
n+k−1
k−1

)
, since in the n+k−1 slots occupied

by n stars and k− 1 bars, we must choose the positions of k− 1 bars in order
to determine the sequence.

A more algebraic argument goes as follows. Note that we have an isomor-
phism of vector spaces

F[x1, . . . , xk] = F[x1]⊗ · · · ⊗ F[xk],

and hence the Hilbert series of F[x1, . . . , xk] (the generating function for di-
mensions of graded components of this algebra) is equal to the product of the
Hilbert series of the tensor factors, each of which is 1

1−t because for polynomi-
als in one variable each graded component is one-dimensional. Therefore, we
are interested in the coefficient of tn of the formal power series 1

(1−t)k , which
is equal to

(−1)n
(
−k
n

)
=
(
n+ k − 1

n

)
=
(
n+ k − 1
k − 1

)
.

7.2.3 Monomial orders
In the commutative case, monomial orders (sometimes called term orders)

behave quite differently from the case of associative algebras (where monomi-
als are noncommutative words) and the case of operads (where monomials are
trees whose vertices are decorated by generating operations). In particular, it
is only in the commutative case that it is reasonable to expect a complete clas-
sification of monomial orders; this has been achieved by Robbiano [218, 219]
and Weispfenning [257]. For now, we shall fix the basic definitions needed for
Gröbner bases, however later in this chapter we shall explain the classification
result.

Definition 7.2.3.1 (Monomial order). Amonomial order is a total well-order
on C(X) which is multiplicative: for all monomials m,m′,m′′, if m′ ≺ m′′ then
mm′ ≺ mm′′.

It can be shown (Exercise 7.3) that the well-order condition is equivalent
to the statement that every strictly decreasing sequence is finite. This is an
essential fact since it allows inductive proofs of termination of algorithms.

Example 7.2.3.2. Let’s first consider the standard dictionary order on
“words” (monomials) in the k = 2 letters a and b, assuming that a ≺ b.
This is not a well-order, since the subset { aeb | e ∈ N } has no least element:

· · · ≺ aeb ≺ · · · ≺ a2b ≺ ab ≺ b.
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This is perhaps clearer if we avoid exponents:

· · · ≺ a · · · a︸ ︷︷ ︸
e

b ≺ · · · ≺ aab ≺ ab ≺ b.

It is a good exercise to give a precise definition of the dictionary order on any
finite set of letters; see Exercise 7.5.

If we apply dictionary order to sequences of exponents, rather than se-
quences of variables, then we have much better luck. This leads directly to
the three standard monomial orders:

• plex: pure lexicographic order (Maple command: plex)

• dlex: degree (or graded) lexicographic order (Maple command: grlex)

• glex: degree (or graded) reverse lexicographic order (Maple command:
tdeg)

Combinations and variations of these provide (in a sense) all other monomial
orders, as we will see below.

Definition 7.2.3.3 (Pure lexicographic order). The plex (pure lexicographic)
order on C(X) is defined as follows: Given v = [e1, . . . , ek] and w = [f1, . . . , fk]
with v 6= w, let i be the least index for which ei 6= fi. Then v ≺ w if and
only if ei < fi. Note we can also define i as the greatest index for which
e1 = f1, . . . , ei−1 = fi−1: we determine the longest common initial sequence
and then compare the next exponents. Also note that if we define v ≺′ w if
and only if w ≺ v then ≺′ is not a monomial order (why?).

Example 7.2.3.4. Let k = 3 and write a, b, c instead of x1, x2, x3. Consider
the monomials v = [1, 2, 3] = ab2c3 and w = [3, 2, 1] = a3b2c. Then in plex
order we have v ≺ w since e1 = 1 but f1 = 3 (here i = 1). Warning: Even
though this order is called pure lexicographic, it is not quite the dictionary
order. Writing out the variables, we have v = abbccc and w = aaabbc, and
clearly w would precede v if these were words in a dictionary.

Recall that xi corresponds to the i-th standard basis vector ei for 1 ≤ i ≤ k.
For the plex order this implies the counter-intuitive fact that

xk ≺ xk−1 ≺ · · · ≺ x2 ≺ x1, (7.1)

which provides another difference between plex and dictionary order.
In the general definition of a monomial order, there is no reason to distin-

guish among the variables, but when we deal with a particular problem, the
variables may behave quite differently or represent quite different information
(for example, some variables may be primary and others secondary, etc.). We
may apply an arbitrary permutation to the variables before applying a mono-
mial order. This is the most convenient way of dealing with situations like
(7.1).
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Definition 7.2.3.5 (Action of permutations on orders). Let σ ∈ Sk be any
permutation of 1, . . . , k and let ≺ be any monomial order. The monomial order
≺σ is defined in terms of the action of Sk permuting the coordinates of vectors
in Nk. That is, we first set

σ · [e1, . . . , ei, . . . , ek] = [eσ(1), . . . , eσ(i), . . . , eσ(k)],

and then we define ≺σ in terms of ≺ by

v ≺σ w ⇐⇒ σ−1 · v ≺ σ−1 · w.

(To cancel the σ on ≺ we need to apply σ−1.) That is, given v = [e1, . . . , ek]
and w = [f1, . . . , fk] with v 6= w, let i be the least index satisfying the inequal-
ity eσ−1(i) 6= fσ−1(i). Then v ≺ w if and only if eσ−1(i) > fσ−1(i) (see Exercise
7.6).

The plex order does not take into account the total degrees of the mono-
mials. It is often beneficial to consider orders for which monomials of lower
degree precede monomials of higher degree. This leads directly to the defini-
tions of the next two monomial orders.

Definition 7.2.3.6 (Degree lexicographic order). The dlex (degree lexico-
graphic) order on C(X) is defined as follows. Given v = [e1, . . . , ek] and
w = [f1, . . . , fk] with v 6= w, we say that v ≺ w if and only if

• either deg(v) < deg(w),

• or deg(v) = deg(w) and v ≺ w in plex order.

Our final example of monomial order appears at first sight to be simply
the dlex order permuted by the reversal permutation ρ of order 2 which
transposes xi and xk+1−i for i = 1, . . . , bk/2c. In fact it is not!

Definition 7.2.3.7 (Graded reverse lexicographic order). The glex
(graded reverse lexicographic)3 order on C(X) is defined as follows. Given
v = [e1, . . . , ek] and w = [f1, . . . , fk] with v 6= w, we say that v ≺ w if and
only if

• either deg(v) < deg(w),

• or deg(v) = deg(w) and ei > fi where i is the greatest index with ei 6= fi.

“Reverse” refers to two aspects of this definition: first, we look at the rightmost
position where the exponents differ; and second, v ≺ w if and only if ei > fi.

Let us also recall an order that generalizes both plex and glex.

3Some authors say “grevlex” but that sounds a bit fishy to us.
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Definition 7.2.3.8 (Elimination order). Let k = a1 + · · ·+as be a partition,
which we may view as a partition of the alphabet X into s groups of consec-
utive variables. The elimination order, or the multigraded lexicographic order
associated to this partition is defined as follows: Given v = [e1, . . . , ek] and
w = [f1, . . . , fk] with v 6= w, we say that v ≺ w if and only if

• either a1∑
i=1

ei,

a2∑
i=a1+1

ei, . . . ,

as∑
i=as−1+1

ei

 ≺
 a1∑
i=1

fi,

a2∑
i=a1+1

fi, . . . ,

as∑
i=as−1+1

fi


for the lexicographic order of sequences,

• or a1∑
i=1

ei,

a2∑
i=a1+1

ei, . . . ,

as∑
i=as−1+1

ei

 ≺
 a1∑
i=1

fi,

a2∑
i=a1+1

fi, . . . ,

as∑
i=as−1+1

fi


and v ≺ w with respect to the glex order.

Example 7.2.3.9. Consider the 35 monomials of the form aibjck with total
degree at most 4. We sort these monomials in six different ways where “re-
verse” means reversing the usual order of the variables (abc ←→ cba): plex,
reverse plex, dlex, reverse dlex, glex, reverse glex:

[1, c, c2, c3, c4, b, bc, bc2, bc3, b2, b2c, b2c2, b3, b3c, b4, a, ac, ac2, ac3, ab,
abc, abc2, ab2, ab2c, ab3, a2, a2c, a2c2, a2b, a2bc, a2b2, a3, a3c, a3b, a4]

[1, a, a2, a3, a4, b, ab, a2b, a3b, b2, ab2, a2b2, b3, ab3, b4, c, ac, a2c, a3c, bc,

abc, a2bc, b2c, ab2c, b3c, c2, ac2, a2c2, bc2, abc2, b2c2, c3, ac3, bc3, c4]
[1, c, b, a, c2, bc, b2, ac, ab, a2, c3, bc2, b2c, b3, ac2, abc, ab2, a2c, a2b, a3, c4,

bc3, b2c2, b3c, b4, ac3, abc2, ab2c, ab3, a2c2, a2bc, a2b2, a3c, a3b, a4]
[1, a, b, c, a2, ab, b2, ac, bc, c2, a3, a2b, ab2, b3, a2c, abc, b2c, ac2, bc2, c3, a4,

a3b, a2b2, ab3, b4, a3c, a2bc, ab2c, b3c, a2c2, abc2, b2c2, ac3, bc3, c4]
[1, c, b, a, c2, bc, ac, b2, ab, a2, c3, bc2, ac2, b2c, abc, a2c, b3, ab2, a2b, a3, c4,

bc3, ac3, b2c2, abc2, a2c2, b3c, ab2c, a2bc, a3c, b4, ab3, a2b2, a3b, a4]
[1, a, b, c, a2, ab, ac, b2, bc, c2, a3, a2b, a2c, ab2, abc, ac2, b3, b2c, bc2, c3, a4,

a3b, a3c, a2b2, a2bc, a2c2, ab3, ab2c, abc2, ac3, b4, b3c, b2c2, bc3, c4]
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7.3 Equivalent definitions of commutative Gröbner
bases

In this section, instead of developing the theory and algorithms in the
usual way, we attempt to provide more conceptual insight by discussing three
different but equivalent definitions of Gröbner bases for ideals in polynomial
algebras. The technical details can of course be found in any of the standard
textbooks already mentioned, but we cannot avoid some basic definitions.
Throughout this chapter, we fix some monomial order Ξ of C(X), and use
all notions of Chapter 1, like the leading monomials, monic polynomials, etc.,
with respect to that chosen order.

7.3.1 Ideals, generators, and zero sets
Definition 7.3.1.1 (Ideal generated by several polynomials). Let I ⊂ F[X]
be an ideal, and let f1, . . . , f` ∈ I be a set of generators for I; this means that

g ∈ I ⇐⇒ g =
∑̀
i=1

hifi for some h1, . . . , h` ∈ F[X].

In this case we write I = ( f1, . . . , f` ) and we say I is generated by f1, . . . , f`.

If the set of generators {f1, . . . , f`} has one (and hence all) of a number
of equivalent special properties which are the main topic of this section, then
it may be used to solve many fundamental problems in commutative alge-
bra. The most important of these is the solution of systems of polynomial
equations, in this case the equations {f1 = 0, . . . , f` = 0} in the variables
x1, . . . , xk. This is equivalent to finding the zero set V (I) of the ideal I.

Definition 7.3.1.2 (Zero set of the ideal). For an ideal I ⊂ F[x1, . . . , xk],
the zero set V (I) consists of all k-tuples [a1, . . . , ak] ∈ Fk such that
g(a1, . . . , ak) = 0 for all g ∈ I. If I = ( f1, . . . , f` ) then V (I) is the set of
all k-tuples [a1, . . . , ak] ∈ Fk for which fi(a1, . . . , ak) = 0 for i = 1, . . . , `.

Remark 7.3.1.3. In the case of one variable, every ideal is principal, and
the Euclidean algorithm (Algorithm 1.2.2.2) for computing greatest common
divisors answers essentially all of the important questions. In the multivariate
case, the polynomial algebra is no longer a principal ideal domain, but it still
has unique factorization, so the greatest common divisor of two polynomials
still can be defined. However, greatest common divisors cannot be easily com-
puted, and even if they could be, we would not learn much from it, since for
example the ideal (f, g) may be proper even though gcd(f, g) = 1.
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7.3.2 First definition of a Gröbner basis: leading monomials
Definition 7.3.2.1 (First definition of a Gröbner basis). Suppose that the
ideal I ⊂ F[X] is generated by the finite set {f1, . . . , f`}. This set of generators
is a Gröbner basis for I if and only if(

lm(I)
)

=
(

lm(f1), . . . , lm(f`)
)
. (7.2)

That is, the ideal generated by the leading monomials of I coincides with the
ideal generated by the leading monomials of f1, . . . , f`.

In one direction, Equation (7.2) is trivial:

f1, . . . , f` ∈ I =⇒ lm(f1), . . . , lm(f`) ∈ lm(I),

and so the right side is contained in the left side. However, the reverse inclusion
does not always hold when there is more than one variable, and the converse
is a characteristic property of Gröbner bases: every leading monomial of I is a
multiple of the leading monomial of one (or more) of the generators f1, . . . , f`.

Example 7.3.2.2. Here is an example for which the left side of (7.2) is not
contained in the right side. Let k = 2 and write P = F[x, y]. Let I = ( f, g )
where f = x2 − 1 and g = xy − 1. We assume that our monomial order sorts
first by the degree, so that lm(f) = x2 and lm(g) = xy. Consider the following
element of I:

h = yf − xg = y(x2 − 1)− x(xy − 1) = x2y − y − x2y + x = x− y.

Both x and y have degree 1, and so which of them is lm(h) depends on the
monomial order. But neither x nor y is a multiple of either x2 or xy. So f, g
do not form a Gröbner basis of the ideal they generate.

7.3.3 Second definition of a Gröbner basis: long division
Let us briefly recall the notion of long division of a polynomial g ∈ F[X]

by a set of monic polynomials f1, . . . , f`.

Definition 7.3.3.1 (Multivariate long division). The multivariate long di-
vision of a polynomial g by a set f1, . . . , f` ∈ P is a repetition of simple
reduction steps. For each of those steps, we search for a term cm in g (where
c ∈ F \ 0 and m ∈ M) whose monomial m is a multiple m = m′m′′ of the
leading monomial m′ = lm(fi) for some i = 1, . . . , `, and then replace g by
g′ = g − c(m/m′)fi. We repeatedly perform these steps, and the algorithm
terminates when there are no more such terms in g. The final value of g is the
remainder of the original value of g modulo f1, . . . , f`.

This algorithm is only well-defined in the case of one variable; in the multi-
variate case, the algorithm can give different results depending on our choices
of which term in g to eliminate at each step.
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Example 7.3.3.2. Let us divide g = x2y by f1 = x2 − 1 and f2 = xy − 1.
Our choice of whether to start with f1 or f2 determines the output. If we first
use f1 then we obtain y, but if we first use f2 then we obtain x:

g = x2y −→ x2y − y(x2 − 1) = y, g = x2y −→ x2y − x(xy − 1) = x.

This lack of uniqueness cannot happen for a Gröbner basis.

Definition 7.3.3.3 (Second definition of a Gröbner basis). Version 1: Suppose
that the ideal I ⊂ F[X] is generated by the finite set {f1, . . . , f`}. This set
of generators is a Gröbner basis for I if and only if every polynomial g has a
unique remainder modulo f1, . . . , f`: no matter what choices we make during
long division we always obtain the same result.

Version 2: This version of the definition shows that a Gröbner basis for
an ideal I provides an effective membership test for I. The generating set
{f1, . . . , f`} for the ideal I is a Gröbner basis for I if and only if for all poly-
nomials g the following two conditions are equivalent:

• g ∈ I,

• the remainder of g modulo f1, . . . , f` is uniquely defined and equals 0.

7.3.4 Third definition of a Gröbner basis: the Church–Rosser
property

Definition 7.3.4.1 (One-step reducibility). Consider the reduction step in
the division of a polynomial g by a set of polynomials {f1, . . . , f`}: for some
term cm in g and some fi for which m is a multiple of m′ = lm(fi) we define
g′ = g − c(m/m′)fi. For fixed f1, . . . , f`, we can regard the set of all such
ordered pairs (g, g′) as a binary relation → on F[X]. In other words, we write
g → g′ to mean that g is one-step reducible to g′ using f1, . . . , f`.

Strictly speaking, this binary relation depends in an essential way on
f1, . . . , f`, and so we really ought to write

g −−−−−−→
f1,...,f`

g′ instead of g → g′,

but that level of precision is obviously more cumbersome than helpful.
In what follows, we use terminology of abstract rewriting systems from

Section 2.6.1. Let (A,→) be an ARS. We denote by ↔ the symmetric closure
of →, or in other words the union of the relations → and ←; thus g ↔ g′ if
and only if either g → g′ or g ← g′. We write ∗↔ for the reflexive transitive
closure of ↔, which is also the reflexive, symmetric, transitive closure of →;
that is, the smallest equivalence relation containing the original relation →.
The diagram representing ∗↔ is obtained from (2.16) by making each arrow
bidirectional:

g = g0 ←→ g1 ←→ g2 ←→ · · · ←→ gs−1 ←→ gs = g′. (7.3)



Commutative Gröbner Bases 231

Definition 7.3.4.2 (Church–Rosser property). An ARS (A,→) is said to
have the Church–Rosser property if ∗↔-equivalence implies joinability. That
is, the relation is Church–Rosser if for all f, g ∈ A we have

f
∗↔ g =⇒ f ↓ g.

(The converse is trivial by definition of the relations.) In other words, if f and
g can be connected by a sequence of left-right arrows as in (7.3), then they
have a common successor h.

The importance of this property was first pointed out in the work of Church
and Rosser [59] on mathematical logic.

Definition 7.3.4.3 (Third definition of a Gröbner basis). Suppose that the
ideal I ⊆ F[X] is generated by the finite set {f1, . . . , f`}. This set of generators
is a Gröbner basis for I if and only if the one-step reducibility relation → has
the Church–Rosser property.

7.3.5 Equivalence of the three definitions
We now state without proof the theorem guaranteeing that our three def-

initions of Gröbner bases are equivalent.

Theorem 7.3.5.1. Let S = {f1, . . . , f`} ⊂ F[X] be a finite set of polynomials
with coefficients in F, and let I = (S) be the ideal generated by S. The following
conditions on I are equivalent:

•
(

lm(I)
)

=
(
{ lm(f) | f ∈ S }

)
• Every polynomial g has a unique remainder after multivariate division
by S, and this remainder is 0 if and only if g ∈ I.

• The one-step reducibility relation g → h on F[X] has the Church–Rosser
property.

Proof. A proof may be found in any standard textbook on commutative Gröb-
ner bases.

Corollary 7.3.5.2. Let I be an ideal in F[X] and let S be a Gröbner basis
for I. Let N be the subspace of F[X] spanned by the monomials which are not
divisible by the leading monomial of any element of S:

N = spanF{ m ∈ C(X) | m 6= m1 lm(f), m1 ∈ C(X), f ∈ S }.

There we have the following direct sum of subspaces and linear isomorphism:

F[X] = I ⊕N, F[X]/I ∼= N.

If we define multiplication on elements of N by letting the product of f and g be
the (unique) remainder of fg modulo S, then F[X]/I ∼= N is an isomorphism
of algebras.
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Proof. For every polynomial g, long division gives g = q + r where q ∈ I
since it is the F[X]-linear combination of the elements of S determined by
the reduction steps, and r ∈ N since no further reduction steps are possible.
Hence P = I +N . If g ∈ I ∩N then since g ∈ I, uniqueness gives g = q + 0,
and since g ∈ N , uniqueness gives g = 0 + r; hence q = r = 0 and so g = 0.
The rest of the proof is left as an exercise for the reader (Exercise 7.11).

7.3.6 S-polynomials and Buchberger’s criterion
Definition 7.3.6.1 (S-polynomial). LetG be a finite set of monic polynomials
generating the ideal I = (G). For f1, f2 ∈ G the monomials d,m1,m2 are
uniquely determined by the following conditions:

d = gcd( lm(f1), lm(f2) ), lm(f1) = dm1, lm(f2) = dm2.

Clearly, we have
m1 lm(f2) = m2 lm(f1).

Hence the leading monomials cancel in the following element of I:

g = m1f2 −m2f1.

This polynomial g is called the S-polynomial of the polynomials f1 and f2.

S-polynomials are used for Buchberger’s criterion, our final equivalent def-
inition for Gröbner basis, and the only one of the four which leads directly to
an algorithm for computing a Gröbner basis of an ideal from an arbitrary set
of generators for the ideal.

Theorem 7.3.6.2 (Buchberger’s criterion). Let G = {f1, . . . , f`} be a subset
of F[x1, . . . , xk] generating the ideal I = (G). Then G is a Gröbner basis for I
if and only if every S-polynomial of two elements fi, fj ∈ G has remainder 0
after multivariate long division by G.

Proof. A proof may be found in any standard textbook on Gröbner bases.

Note that in Definition 7.3.6.1 we could in principle consider all possible
common divisors d, not just the greatest common divisor of two leading mono-
mials. We have already seen that with more general structures there may be
several different d for which an S-polynomial is defined (various overlaps of
leading monomials), so it is natural to ask for an explanation of why only the
greatest common divisors are needed.

Lemma 7.3.6.3. For commutative polynomials, considering S-polynomials
for all common divisors and for greatest common divisors only leads to equiv-
alent versions of Buchberger’s criterion.
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Proof. In the notation of Definition 7.3.6.1, suppose that d = d′d′′ where
d′ 6= 1 and d′′ 6= 1. Using d′ instead of d, we obtain

lm(f1) = d′(d′′m1), lm(f2) = d′(d′′m2), (d′′m1) lm(f2) = (d′′m2) lm(f1),

so we should replace m1,m2 by d′′m1, d
′′m2, respectively. It follows that the

S-polynomial corresponding to d′ is simply a monomial multiple of the S-
polynomial for d:

g′ = (d′′m1)f2 − (d′′m2)f1 = d′(m1f2 −m2f1) = d′g.

Thus, if g has the remainder 0 then g′ has the remainder 0.

A useful informal exercise is to identify exactly where commutativity is
necessary in the last proof!

Remark 7.3.6.4. It is also true that S-polynomials corresponding to d = 1
are redundant for purposes of Buchberger’s criterion. We leave it to the reader
to either find a proof of that or read the proof in a textbook of their choice.

Buchberger’s criterion leads directly to the celebrated Buchberger’s algo-
rithm, which takes as input any set of generators for the ideal I and produces
as output a Gröbner basis for I. To present something different from a usual
description of that algorithm which can be found in any textbook on commu-
tative Gröbner bases, we discuss a simple Maple code that implements that
algorithm from scratch in Appendix A.

7.4 Classification of commutative monomial orders
7.4.1 The classification theorem

Robbiano [218] has classified all possible monomial orders in k variables
x1, . . . , xk; see also [219] for his general theory of graded structures on com-
mutative rings. Robbiano’s proof was simplified soon afterward in a short
note by Weispfenning [257]. For further information about the classification
of monomial orders, see Kreuzer and Robbiano [162], especially section 1.4 and
tutorials 9, 10. Becker and Weispfenning [14] present this material in the con-
text of abstract reduction relations; see especially chapter 4 and section 5.1.
The rest of this section is devoted to an exposition of Robbiano’s results; we
closely follow his original paper.

Definition 7.4.1.1. We fix a positive integer n and write T for the semigroup
(in fact monoid) of monomials in the variables x1, . . . , xn under multiplication
as defined previously. We write N for the semigroup of nonnegative integers
under addition, and Nn for the semigroup of n-tuples under component-wise
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addition. Clearly the map φ : T → Nn is an isomorphism of semigroups, and
is in fact the multidegree function

φ(m) = ( degx1(m), . . . , degxn
(m) ).

Thus a monomial order ≺ on F[x1, . . . , xn] is equivalent to a total order ≺ on
Nn which makes Nn into a totally ordered positive semigroup, where positive
means that (0, . . . , 0) ≺ (d1, . . . , dn) for all (d1, . . . , dn) 6= (0, . . . , 0).

A commutative semigroup can be embedded into a group if and only if the
semigroup is cancellative; the proof is analogous to the construction of the
field of fractions of an integral domain [60]. Since Nn is a free commutative
semigroup, its minimal embedding is into the free abelian group Zn. Thus
a monomial order ≺ on F[x1, . . . , xn] is equivalent to a total order ≺ on Zn
for which the subsemigroup Nn is positive. For any group G, a total order is
determined by the positive elements G+, since v ≺ w if and only if 0 ≺ w− v.

Lemma 7.4.1.2. Every total order on Zn extends uniquely to Qn.

Proof. For any w = (q1, . . . , qn) ∈ Qn we write uniquely

w =
(
r1

s1
, · · · , rn

sn

)
, gcd(ri, si) = 1 (i = 1, . . . , n).

Define d = lcm(s1, . . . , sn) so that dw ∈ Zn and d ∈ Z is positive and as small
as possible. Using the semigroup operation, dw = w+ · · ·+w (d summands),
and hence we may define 0 ≺ w in Qn if and only if 0 ≺ dw in Zn.

For any subset G ⊆ Qn we write as usual G+ and G− for the positive and
negative elements of G with respect to the total order:

G+ = {w ∈ G | 0 ≺ w }, G− = {w ∈ G | w ≺ 0 }.

We now embed Qn into Rn so that we can take advantage of the Euclidean
geometry of Rn induced by the usual scalar product which we denote by v ·w.

Definition 7.4.1.3. If G ⊆ Qn is a subspace with dimQ(G) = r then we write
GR = G⊗Q R for the subspace of Rn spanned by G; we have dimR(GR) = r.

Definition 7.4.1.4. For any subspace G ⊆ Qn we define the subset IG ⊆ GR:

IG = { p ∈ GR | Bε(p) ∩G+ 6= ∅, Bε(p) ∩G− 6= ∅, for all ε > 0 },

where Bε(p) is the open ball in Rn centered at p with radius ε > 0. That is,
IG consists of those p ∈ GR for which every open neighborhood of p contains
both positive and negative elements from G.

Lemma 7.4.1.5. If dimQ(G) = r then IG is a subspace of GR and
dimR(IG) = r − 1.
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Proof. To show that IG is a subspace, suppose that p1, p2 ∈ IG. Then for any
ε > 0 there exist q1, q2 � 0 with

|q1 − p1| < ε/2, |q2 − p2| < ε/2.

Then q1 + q2 � 0 and the triangle inequality gives

|(q1 + q2)− (p1 + p2)| < ε.

Hence the ball of radius ε centered at p1 + p2 contains a positive element, and
the argument for negative elements is similar. The proof for scalar multipli-
cation is left to the reader as Exercise 7.13.

Define the function σ : GR \ IG → {±1} as follows: for p ∈ GR \ IG,

σ(p) =
{

+1 if Bε(p) ∩G ⊂ G+ for some ε > 0
−1 if Bε(p) ∩G ⊂ G− for some ε > 0

(7.4)

That is, σ(p) = +1 (resp. −1) if every rational point sufficiently close to p is
positive (resp. negative) in the semigroup order on Qn. Since σ is a surjective
and continuous map (Exercise 7.14), and {±1} has the discrete topology, it
follows that GR \ IG must be disconnected, and since IG is a subspace we
cannot have dimR(IG) < r − 1. Thus dimR(IG) ≥ r − 1.

Since G ⊂ Qn is a totally ordered group and has dimension r as a rational
vector space, we may choose positive elements e1, . . . , er ∈ G+ which form
a basis for G over Q. But then the set of all rational linear combinations of
these basis elements with positive rational coefficients is a subset of G+, hence
properly contained in G, and so dimR(IG) ≤ r − 1.

As before, G ⊆ Qn is a subspace with dimQ(G) = r, and Qn also has the
compatible structure of a totally ordered abelian group. We have seen that IG
is a hyperplane (subspace of codimension 1) in GR.

Definition 7.4.1.6. We write U(G) for the line (1-dimensional subspace) of
GR orthogonal to IG with respect to the restriction of the usual scalar product
on Rn to GR. We write U(G)+ = U(G) ∩ σ−1(1) where σ is defined by (7.4);
this is the positive half of U(G).

Definition 7.4.1.7. We write RQ for the 1-dimensional real vector space R
regarded as an infinite-dimensional vector space over Q. For any vector v ∈ Rn
we write d(v) for the dimension (over Q) of the subspace of RQ spanned by
the components of v; we call d(v) the rational dimension of v. Since d(v) is
constant on the set of nonzero real multiples of v, it is uniquely determined
on U(G)+.

Example 7.4.1.8. We can modify Definition 7.4.1.7 in the obvious way to
deal with vectors v ∈ Cn (although in this case we certainly cannot talk about
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total orders). For each n ≥ 1, let ωn ∈ C be a primitive n-th root of unity,
and let vn = [1, ωn, . . . , ωn−1

n ]. Write α = 1
2 (−1 +

√
−3) so that

v1 = [1], v2 = [1,−1], v3 = [1, α, α], v4 = [1, i,−1,−i].

Then clearly d(vn) = 1, 1, 2, 2 for n = 1, 2, 3, 4. For n = 5 the last 4 components
of v5 are as follows where ε, η ∈ {±1} are independent signs:

1
4

(
−1 + ε

√
5 + η

√
−2
√

5 + ε
√

5
)

Hence d(ω5) = 4. See Exercise 7.15.

Lemma 7.4.1.9. For every v ∈ GR we have d(v) ≤ r = dimQ(G).

Proof. Let {v1, . . . , vr} be a basis for G over Q; this is also a basis for GR
over R. Thus every v ∈ GR has the form v = a1v1 + · · · + arvr for some
a1, . . . , ar ∈ R. Since the components of v1, . . . , vr belong to Q, it follows that
the rational vector space spanned by the components of v is contained in the
span of a1, . . . , ar and hence has dimension ≤ r.

Definition 7.4.1.10. The lexicographic total order ≺lex on the groups Zn,
Qn, Rn is determined by defining the positive n-tuples to be those whose first
nonzero component is positive. A total order ≺ on Gn (for G = Z,Q,R)
is said to have lexicographic type if there is an order isomorphism (that
is, an order-preserving bijection) f : (Gn,≺) −→ (Gn,≺lex), meaning that
v ≺ w ⇐⇒ f(v) ≺lex f(w).

Theorem 7.4.1.11. For any total order ≺ on Qn, there exists an integer
s ∈ {1, . . . , n}, and s orthogonal vectors u1, . . . , us ∈ Rn, such that

d(u1) + · · ·+ d(us) = n,

and the map f : (Qn,≺) −→ (Rs,≺lex) defined by

f(v) = (v · u1, . . . , v · us),

is an injective order homomorphism; note that f maps into Rs, not Rn.

Proof. If we take G = Qn in Lemma 7.4.1.5 then we see that IG ⊂ Rn is a
subspace of dimension n−1; we also obtain a vector u1 ∈ U(G)+ and we write
d1 = d(u1). Consider the subspace G1 = G∩ IG; we have dimQ(G1) = n− d1,
and for any v ∈ G \ G1 we have 0 ≺ v ⇐⇒ 0 < v · u1. As for G1, consider
(G1)R = G1 ⊗Q R. Applying Lemma 7.4.1.5 again produces the subspace
IG1 ⊂ Rn of dimension n − d1 − 1, together with a vector u2 ∈ U(G1) for
which u1 ·u2 = 0. We write d2 = d(u2); Lemma 7.4.1.9 shows that d2 ≤ n−d1.
Clearly this process terminates after a finite number of steps.

Definition 7.4.1.12 (Type and partition of the order). Given a total order
≺ on Zn, we extend it to Qn, and consider the map f of Theorem 7.4.1.11.
We write:
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• s≺ for the integer s in the description of f , and call this the type of the
total order; we have 1 ≤ s≺ ≤ n.

• d≺ for the s-tuple of positive integers (d1, . . . , ds) where di = d(ui); since
d1 + · · ·+ ds = n, we call this the partition of the total order.

Let B(d) = { v ∈ Rn | d(v) = d } be the set of all vectors of rational dimension
d. For i = 1, . . . , s we set A(di) := B(di)/∼, where∼ is the equivalence relation
on B(di) defined by v ∼ w if and only if w = av for some a ∈ R, a > 0. In
other words, A(di) is the set of distinct rays (half-lines) starting at 0 in B(di).

After all these preliminary results, we have now proved Robbiano’s classi-
fication theorem for commutative monomial orders.

Theorem 7.4.1.13. For every monomial order ≺ on the polynomial algebra
F[x1, . . . , xn], one can uniquely assign the following data:

• An integer s ∈ {1, . . . , n}.

• A partition d1, . . . , ds of n with s parts.

• An s-tuple (u1, . . . , us) ∈ A(d1)× · · · ×A(ds) satisfying this condition:

– If for i = 1, . . . , s we set Gi−1 = span(u1, . . . , ui)⊥ ⊆ Qn (for i = 1
we set G0 = Qn) then ui ∈ (Gi−1)R.

This data determines the positive elements v ∈ Nn\{0} with respect to ≺ as fol-
lows: v is positive if and only if the first nonzero coordinate of (v ·u1, . . . , v ·us)
is positive.

Remark 7.4.1.14. Not any data as above defines a monomial order, as we
shall see below.

7.4.2 Examples and non-examples of monomial orders
Example 7.4.2.1. An Archimedean total order ≺ on a positive semigroup
S = S+ is one without infinitesimal elements: for x, y ∈ S it cannot happen
that nx ≺ y for all n ∈ N, where nx = x + · · · + x (n terms). A monomial
order on F[x1, . . . , xn] is Archimedean if and only if the type s = 1; hence
d1 = n, and so u1 ∈ Rn is any nonzero vector. For example, if n = 2 then we
may set u1 = (1,

√
2), noting that d1 = 2 says that the rational dimension of

the components must be 2, and then

xayb ≺ xcyd ⇐⇒ 0 ≺ (c− a, d− b) ⇐⇒ 0 < (c− a, d− b) · (1,
√

2)
⇐⇒ 0 < (c− a) +

√
2(d− b) ⇐⇒ a+

√
2b < c+

√
2d.

If n = 3 then we may set u1 = (1, 3
√

2, 3
√

4) and obtain

xaybzc ≺ xdyezf ⇐⇒ 0 < (d− a) + 3
√

2(e− b) + 3
√

4(f − c).



238 Algebraic Operads: An Algorithmic Companion

Remark 7.4.2.2. Note that if we set u1 = (1,−
√

2) in the previous example,
this does not lead to a well-order, since this would mean that xayb ≺ xcyd

if and only if a +
√

2d < c +
√

2b, and in particular y ≺ 1, implying
. . . yk ≺ yk−1 ≺ . . . ≺ y ≺ 1.

Example 7.4.2.3. A monomial order on F[x1, . . . , xn] is of lexicographic type
if and only if the type s = n; hence d1 = · · · = dn = 1, so all the components
are rational, and u1, . . . , un form an orthogonal basis of Qn. For example, with
n = 2 we may set u1 = (1, 1), u2 = (1,−1); we calculate(

(c− a, d− b) · (1, 1), (c− a, d− b) · (1,−1)
)

= ( c− a+ d− b, c− a− d+ b )

Therefore

xayb ≺ xcyd ⇐⇒

{
c+ d < a+ b, or
c+ d = a+ b and b+ c < a+ d.

Under the condition c + d = a + b, the condition b + c < a + d becomes
simply b < d.

Example 7.4.2.4. Suppose that ≺ is a monomial order on F[x1, . . . , xn] for
which d1 = 1. Then the rational span of the components of u1 has dimension 1,
and so the components are rational multiples of some nonzero a ∈ R. Divid-
ing u1 by amakes all the components rational, and in fact we can scale them so
that they are all positive integers (see the proof of Theorem 7.4.1.11). It follows
that m ≺ m′ for m = [e1, . . . , en] and m′ = [e′1, . . . , e′n] if u1 ·m < u1 ·m′ which
we can write as deg(m) < deg(m′) where deg now denotes the degree with re-
spect to the weights given by the components of u1 = [deg(x1), . . . ,deg(xn)].
If u1 · m = u1 · m′ then we consider the scalar products with u2, . . . , us. In
particular, the standard glex order corresponds to the weight vectors in the
rows of this n× n matrix:

U =



1 1 1 · · · 1 1 1
1− n 1 1 · · · 1 1 1

0 2− n 1 · · · 1 1 1
0 0 3− n · · · 1 1 1
0 0 0

. . . 1 1 1
0 0 0 · · · −2 1 1
0 0 0 · · · 0 −1 1



7.5 Zero-dimensional ideals
In this section, we discuss a fundamental theorem on one of the prettiest

topics in commutative algebra: zero-dimensional ideals and how Gröbner bases
can be used to study them.
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7.5.1 Characterization of zero-dimensional ideals
Definition 7.5.1.1. The ideal I ⊂ F[x1, . . . , xk] is said to be zero-dimensional
if the quotient ring F[x1, . . . , xk]/I is finite dimensional (as a vector space
over F).

Lemma 7.5.1.2. If I is zero-dimensional then I ∩ F[xi] 6= {0} for every
i = 1, . . . , k; in other words, I contains a (nonzero) univariate polynomial for
each variable x1, . . . , xk.

Proof. For each i = 1, . . . , k consider the cosets of the powers of xi:

1 + I, xi + I, x2
i + I, x3

i + I, . . . , xni + I, . . . .

Since F[x1, . . . , xk]/I is finite dimensional, these cosets are linearly dependent,
and hence some nonzero polynomial fi must satisfy

fi(xi) + I = fi(xi + I) = 0 + I.

Hence fi(xi) ∈ I as required.

Lemma 7.5.1.3. If the ideal I ⊂ F[x1, . . . , xk] contains a (nonzero) univari-
ate polynomial for each variable x1, . . . , xk then the zero set VK(I) is finite for
every field extension F ⊂ K.

Proof. It is enough to prove this for K = F, the algebraic closure of F. By
assumption, there exist polynomials fi ∈ F[xi] ∩ I for i = 1, . . . , n. Clearly,
for each such i, the i-th coordinate of any point of the zero set VF(I) is one of
the roots of fi, so the cardinality of the zero set does not exceed the product
of the degrees of the polynomials fi.

The following result can be found in any algebraic geometry textbook; for
us it is relevant since it marks a path for an application of Gröbner bases.

Theorem 7.5.1.4. The ideal I ⊂ F[x1, . . . , xk] is zero-dimensional if and
only if the zero set VK(I) is finite for every field extension F ⊂ K.

Proof. Again, it is enough to prove it for K = F.
The previous two lemmas provide the “only if” part (⇒), so it remains to

prove the “if” part (⇐), and this requires one of the fundamental results of
algebraic geometry, Hilbert’s Nullstellensatz.

Assume that the zero set VF(I) is finite. There are two possibilities:

• either VF(I) = ∅

• or VF(I) = {a1, . . . , a`} for ai = [aj1, . . . , ajk] ∈ Fk for j = 1, . . . , `.

If VF(I) = ∅ then the polynomials in I have no common zeros in F, and
so by the “weak Nullstellensatz” it follows that I = (1), and in particular, I
contains a nonzero univariate polynomial for each xi, i = 1, . . . , k.
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On the other hand, if VF(I) = {a1, . . . , a`} for aj = [aj1, . . . , ajk] ∈ Fk for
j = 1, . . . , `. Let Mji(x) be the minimal polynomial of aji over F, and let Mi

be the product of all Mji for j = 1, . . . , `. Then Mi(xi) vanishes at all points
of VF(I), and hence the Nullstellensatz implies that some power ofMi belongs
to I.

We have now proved that there exist polynomials fi ∈ F[xi] ∩ I for
i = 1, . . . , k. Thus, multivariate long division by {f1, . . . , fk} instantly es-
tablishes that the cosets of monomials m = xe11 · · ·x

ek

k where 0 ≤ ei < deg(fi)
for each i span the quotient F[x1, . . . , xk]/I. The number of such monomials
is
∏
i deg(fi), hence F[x1, . . . , xk]/I is finite dimensional.

The way to package the theorem we just recalled which is most familiar
to experts in commutative Gröbner bases is the following result, commonly
known as “shape lemma”, since it relates the “shape” of leading terms of
Gröbner bases to properties of solution sets.

Theorem 7.5.1.5 (Shape lemma). Let f1, . . . , f` ∈ F[X], and fix some mono-
mial order of C(X). The system of polynomial equations f1 = 0, . . . , f` = 0
has finitely many solutions in F if and only if every Gröbner basis of the ideal
I = (f1, . . . , f`) contains, for each i, a polynomial with the leading term xni

i

for some ni ∈ N.

Proof. In view of Theorem 7.5.1.4, it is enough to prove that F[X]/I is finite-
dimensional if and only if every Gröbner basis of the ideal I = (f1, . . . , f`)
contains, for each i, a polynomial with the leading term xni

i for some ni ∈ N.
If the latter condition is satisfied for some Gröbner basis, then essentially the
same argument as in the end of the proof of Theorem 7.5.1.4 (multivariate
long division) shows that F[X]/I is finite-dimensional. Conversely, for any
given Gröbner basis G if F[X]/I is finite-dimensional, then the cosets of the
monomials 1, xi, x2

i , . . . are linearly dependent, so not all of these are normal
monomials with respect to I, hence one of these monomials is divisible by a
leading term of an element of G, which then must be a power of xi as well.

7.5.2 Two examples, and a distribution table
We generated 1000 pseudorandom sets of three ideal generators f, g, h

in three variables x, y, z using the Maple function randpoly; each gen-
erator had degree at most 5 with at most three terms and coeffi-
cients ±1. We tested each set of three generators using the Maple function
Groebner][IsZeroDimensional] before computing the plex Gröbner basis
with x � y � z and the solution set to the system of equations. In the next
two examples we present the set of generators producing the largest Gröbner
basis, and the set of generators producing the largest solution set. Following
the examples, we display the matrix in Figure 7.1 which gives the distribu-
tion of the results: the (i, j) entry is the number of cases out of 1000 which
produced a Gröbner basis of j elements having i distinct solutions.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 43 252 34 11 35 6 11 4 5 1 3 2 1 . . .
2 . 4 123 45 19 16 9 11 5 4 2 2 1 1 . . .
3 . 1 51 39 18 17 5 5 2 . 1 1 . . . . .
4 . . 41 22 8 9 5 8 3 . . . . . . . .
5 . . 6 8 6 5 5 1 . 4 2 . 1 . . . 1
6 . . 14 6 3 3 4 2 . . . 1 . . . . .
7 . . 1 3 4 3 2 1 2 . . . . 1 . . .
8 . . 4 5 1 . . 1 . . . . . . . . .
9 . . 1 1 1 1 . . 1 . . . . . . . .

10 . . . 2 . 2 1 . . . . . . . . . .
11 . . . . . . . . . . . . . . . . .
12 . . . 1 . . . . . . . . . . . . .
13 . . . 1 . . . . . 1 . . . . . . .

FIGURE 7.1: Distribution of zero-dimensional ideals: The (i, j) entry is the
number (out of 1000) of pseudorandom zero-dimensional ideals with zero set
of i distinct solutions and plex Gröbner basis of j polynomials.

Example 7.5.2.1. The original three pseudorandom ideal generators:

−x4 − x3, x2y2z − xyz3 − y2z3, x2y3 + z5 + y4.

The plex Gröbner basis with pure-power leading monomials boxed:

z18 − 4z16 + 6z14 + 2z13 − 4z12 − z11 + z10,

yz10 + z17 − 3z15 + 3z13 + 2z12 − z11,

y2z8 − 2z17 + 7z15 − 8z13 − 4z12 + 3z11,

y3z6 − yz8 + 3z17 − 11z15 + 14z13 + 6z12 − 6z11 − z10,

y4z3 + z17 − 7z16 − 4z15 + 24z14 + 6z13 − 26z12 − 18z11 + 10z10 + z8,

y5z+yz6−2z17+14z16+8z15−48z14−12z13+52z12+36z11−20z10−z8,

y7 + y6 + y2z5 + z17 − 7z16 − 4z15 + 24z14 + 6z13 − 26z12 − 18z11 + 10z10,

xz8 − z17 − z16 + 4z15 + 4z14 − 6z13 − 8z12 + 2z11 + 5z10,

xyz6 + y2z6 − 3z17 + z16 + 9z15 − 4z14 − 8z13 + 3z11 − 7z10,

xy2z3 + y4z + y3z3 + z6,

xy4z+xyz5+xz6+y2z5−z17+7z16+4z15−24z14−6z13+26z12+18z11−10z10,

xy5−y6+y3z5−2y2z5−z17+7z16+4z15−24z14−6z13+26z12+18z11−10z10,

x2z5 + xy4 + xz5 − y5 − yz5,

x2y2z − xyz3 − y2z3,
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x2y3 + y4 + z5,

x3yz3 + x2yz3 + xyz5 − y4z − y3z3 + y2z5 − z6,

x4 + x3.

The solution set clearly contains the following elements:

[x, y, z] = [ 0, 0, 0 ], [−1, 0, 0 ], [−1, −1, 0 ].

Furthermore, if α and β are any roots of the following polynomials,

α2 + α+ 1 = 0, β6 − β5 − 2β4 + β3 + 3β2 − 1 = 0,

then the solution set also contains the following elements:

[x, y, z] = [−1, −α, α ], [−1, −β4+β3+β2−1, β ].

The main step toward establishing this is made by noting that the first element
of the Gröbner basis factors as

z18 − 4z16 + 6z14 + 2z13 − 4z12 − z11 + z10 =
z10(z2 + z − 1)(z6 − z5 − 2z4 + z3 + 3z2 − 1),

and the second element factors as

yz10 + z17 − 3z15 + 3z13 + 2z12 − z11 = z10(y + z7 − 3z5 + 3z3 + 2z2 − z).

Example 7.5.2.2. The original three ideal generators:

−x5 + xz3, −yz3 + y, y3 + z4.

The plex Gröbner basis consists of four polynomials:

x5 − xz3 = x(x4 − z3), y3 + z4 (irreducible),

yz3 − y = y(z − 1)(z2 + z + 1), z7 − z4 = z4(z − 1)(z2 + z + 1).

We leave it as an exercise for the reader (Exercise 7.22) to determine the
solution set.

7.6 Complexity of Gröbner bases: a historical survey
The most familiar algorithmic complexity class is that consisting of the

NP-complete problems, usually regarded as the canonical class of “very hard”
computations: candidate solutions to these problems can be checked quickly
(in polynomial time), but finding a solution from scratch is extremely difficult
(unless P = NP, see [95]). Very informally, solving a mathematical problem
yourself is hard, but having someone explain the solution to you is easy.
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7.6.1 A digression on ordinals and computability
Many useful tricks have been developed to circumvent at least partially

the intrinsic difficulty of NP-complete problems. For example, the original
problem statement may imply that the solutions consist of complex numbers
which are algebraic over the rational numbers, and the entire field of algebraic
numbers is countable, so in a sense (not a very useful sense) all we have to do is
enumerate this countable set and check all possibilities. On the other hand, as
we have all known since Abel and Galois (and Cantor), even though the set of
algebraic numbers may be countable, labelling them all in a meaningful way,
or equivalently constructing a useful bijection between them and the natural
numbers, is hardly possible.

The reader who believes that only uncountable sets cause serious philo-
sophical problems should investigate the fascinating topic of large countable
ordinals.

7.6.2 Exponential space complexity
Computing a Gröbner basis for a polynomial ideal using Buchberger’s al-

gorithm belongs to the complexity class EXPSPACE, which contains all the
decision problems that can be solved by a deterministic Turing machine with a
bound of the form O(2f(n)) on the amount of space (memory) used, where f(n)
is a polynomial function of the problem size n. If we allow a non-deterministic
Turing machine instead, we might expect that the complexity would decrease
significantly (compare P and NP) but the remarkable theorem of Savitch [226]
shows that this is not the case: For any function s(n) ≥ log2(n), in particular
s(n) = 2f(n) for polynomial f , we have NSPACE(s(n)) = DSPACE(s(n)2).
Thus using a non-deterministic Turing machine does not reduce the space
logarithmically as we might expect, but only by a square root.

Like the notion of NP-complete, a problem G is called EXPSPACE-
complete if G belongs to EXPSPACE and every problem H in EXPSPACE
can be reduced in polynomial time to G: that is, H can be solved in polyno-
mial time by a procedure that converts input data for H into input data for
G and then calls a procedure for G (at no cost of either time or space).

Computing Gröbner bases is in fact EXPSPACE-complete.
We will see an instance of this reduction in Example 7.6.6 when we reduce an
instance of the knapsack problem to the computation of a Gröbner basis.

It is known that the class EXPSPACE strictly contains the class PSPACE
(problems solvable using polynomial space), which equals NPSPACE by Sav-
itch’s theorem, and hence EXPSPACE also strictly contains NP and P (since
they are contained in PSPACE):

P ⊆ NP ⊆ PSPACE = NPSPACE ( EXPSPACE.

So the general case of computing a Gröbner basis is much harder than every
NP-complete problem.
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7.6.3 Pioneering work by Hermann and Noether
Forty years before Gröbner bases were discovered, the complexity of poly-

nomial computations was the topic of a Ph.D. thesis by Grete Hermann, super-
vised by Emmy Noether at Göttingen, and defended in 1926; it was published
as a 53-page article in Mathematische Annalen [128]. The title of the thesis is
“Die Frage der endlich vielen Schritte in der Theorie der Polynomideale”. An
English translation by Michael Abramson was published under the title “The
question of finitely many steps in polynomial ideal theory” in 1998 [129]. This
paper by Hermann is regarded by many as the foundational document for the
discipline of algorithmic and computational algebra.

Hermann’s paper established the existence of algorithms, and upper
bounds for the number of steps required, for many basic problems in com-
putational commutative algebra; most importantly, the question of deciding
whether a given polynomial belongs to the ideal generated by a given set
of polynomials (the ideal membership problem). Hermann’s definition of her
goals sounds remarkably modern; in Abramson’s translation:

The computational methods below are computations in finitely
many steps. The claim that a computation can be carried out in
finitely many steps will mean here that an upper bound for the
number of necessary operations for the computation can be spec-
ified. Thus it is not enough, for example, to suggest a procedure,
for which it can be proved theoretically that it can be executed
in finitely many operations, if no upper bound for the number of
operations is known. In particular, the bounds appearing in the
present work will depend only on the number n of variables, the
number t of basis elements of the ideal, and the maximum degree q
of these basis elements; they are independent of the coefficients of
the basis elements. Using these bounds, which indicate up to what
degree the variables must be considered, the problems can be re-
duced to problems of determinant and elementary divisor theory,
which can be settled in finitely many steps by known methods.

Of particular interest is Hermann’s doubly exponential upper bound for the
number of operations required to solve a system of linear equations with co-
efficients in a polynomial algebra. In view of the importance of this result, we
quote it in our own translation; note especially the very last equation:

Theorem 2. Assumption: Let the fij be polynomials in x1, . . . , xn
with coefficients in P, thus quantities in P[x1, . . . , xn]. Conclusion:
For the system of equations,

f11z1 + · · ·+ f1szs = 0,
...

ft1z1 + · · ·+ ftszs = 0,
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a complete system of solutions, which are also quantities belonging
to P[x1, . . . , xn], may be calculated in a finite number of steps. If q
is the maximal degree of the fij, then the degree of the polynomials
of the complete system of solutions does not exceed m(t, q, n) where
m satisfies the reduction formulas

m(t, q, 0) = 0, m(t, q, n) = qt+m(t2q, q, n−1).

We also have

m(t, q, n) =
n−1∑
i=1

(qt)2i

.

7.6.4 A detour: Seidenberg
Passing over for the moment the essential works of Buchberger from the

1960s, the next major advance in the analysis of complexity was made by Sei-
denberg [229], a student of Zariski, motivated by some issues with Hermann’s
work. Samuel has commented rather gently on these issues in the first para-
graph of his review of Seidenberg’s paper; the translation from the French is
our own:

G. Hermann wrote a historic article on explicit constructions in a
polynomial algebra A = K[X1, · · · , Xn] over a fieldK [Math. Ann.
95 (1925/26), 736-788]; this article contained some errors, minor
but annoying. The author [Seidenberg] here considers the question
again in a systematic way. Given two ideals I, J of A, given by
systems of generators, the problem is to give explicit procedures
allowing one to find, for example, by a finite number of elementary
operations, the ideals I∩J and I : J , the primary components of I,
its associated prime ideals, its intersection with K[X1, · · · , Xn−1],
etc. One assumes of course that one can calculate explicitly in K.

It is important to point out that Seidenberg’s work was published in the
mid-1970s, roughly 10 years after the papers by Buchberger that effectively
created the independent discipline of computational (or constructive) commu-
tative algebra. Apart from Seidenberg’s important but somewhat anomalous
contribution, every contribution to this topic after the mid-1960s has used the
terminology and conceptual framework of Gröbner bases.

7.6.5 Mayr and Meyer, Bayer and Stillman
A major breakthrough was made in the early 1980s by Mayr and Meyer

[194], who were the first to prove that the ideal membership problem is
exponential-space hard; that is, the general case inherently requires an amount
of computer memory that is exponential in the size of the input. Their focus
is primarily on the ideal membership problem for commutative semigroups:
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that is, to determine whether the monomial m belongs to the ideal generated
by the given relations m′i = m′′i for i = 1, . . . , k. This easily reduces to a
special case of the ideal membership problem for polynomial rings: determine
whether the monomial m belongs to the ideal generated by the polynomials
m′i−m′′i for i = 1, . . . , k. (But note that this reduction only goes one way.) In
an appendix to their paper, Mayr and Meyer give a simplified and corrected
proof of the theorem of Hermann quoted above.

Six years later, Bayer and Stillman [13] published a self-contained and
simplified version of Mayr and Meyer’s example of a polynomial ideal exhibit-
ing doubly exponential degrees for the ideal membership problem. We present
a very brief introduction to their discussion. Everything takes place in the
polynomial ring P = F[x1, . . . , xn] in n variables over a field F.

Let I be the ideal generated by the polynomials h1, . . . , hs which are dif-
ferences of monomials in the sense that

hi = xαi − xβi , αi = [αi1, . . . , αin], xα = xα1
1 · · ·xαn

n , i = 1, . . . , s.

We also require that the differences αi − βi ∈ Zn are distinct for i = 1, . . . , s.
Corresponding to such an ideal is a directed graph G(h1, . . . , hs) whose

vertex set consists of all monomials of P, and whose edge set consists of all
directed edges (α, β) where α− β = αi − βi for some (unique) i = 1, . . . , s.

Definition 7.6.5.1. We choose integers n ≥ 0 and d ≥ 2, and set en = d2n .
For each r = 0, . . . , n we introduce 10 variables which are said to have level r:

Vr = { sr, fr, br1, br2, br3, br4, cr1, cr2, cr3, cr4 }.

We consider the polynomial ring in the union of these 10(n+ 1) variables:

P = F
[
V0 ∪ · · · ∪ Vn

]
.

We work inductively from one level to the next, and to avoid confusion of
subscripts we write upper-case for level r,

S, F,B1, B2, B3, B4, C1, C2, C3, C4 = sr, fr, br1, br2, br3, br4, cr1, cr2, cr3, cr4,

and lower case for level r − 1:

s, f, b1, b2, b3, b4, c1, c2, c3, c4 =
sr−1, fr−1, br−1,1, br−1,2, br−1,3, br−1,4, cr−1,1, cr−1,2, cr−1,3, cr−1,4.

At level r = 0, we define the ideal I0 to be generated by four elements:

I0 =
(
SCi − FCiBdi | i = 1, . . . , 4

)
.

Assuming the ideal Ir−1 at level r− 1 has been defined, we define the ideal Ir
at level r to be generated by Ir−1 and these new generators at level r:

S − sc1, sc4 − F, sc3 − fc4, sc3 − sc2, fc1 − sc2,
fc2b1 − fc3b4, fc2Cib2 − fc2CiBib3 (1 ≤ i ≤ 4).
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Definition 7.6.5.2. We define the map pr : P→ P as follows:

• pr(v) = v for all variables v of level < r, and for v = sr and v = fr;

• pr(v) = 1 for all other variables v.

For r ≥ 1 we define the ideal Jr = pr(Ir); thus Jr differs from Ir only in that
the level r generators fc2Cib2−fc2CiBib3 for i = 1, . . . , 4 have been replaced
by the single generator fc2b2 − fc2b3.

Omitting most of the highly technical and combinatorial details, we arrive
at the following lemma:

Lemma 7.6.5.3. Consider the element h = S − F , and let h1, . . . , hs be the
generators of Jr. For any representation of h as an element of Jr, namely

h =
s∑
i=1

gihi,

at least one of the coefficients gi has degree no less than

deg(gi) ≥ r − 1 + 2e0 + · · ·+ 2er−1 (ei = d2i

).

This leads directly to the result of Mayr and Meyer from 1982: Any degree
bound for the ideal membership problem must grow doubly exponentially in the
maximum of the number of variables and the number of generators.

Remark 7.6.5.4. For a generalization of these results to polynomials with
integer coefficients, we refer the reader to the works of Aschenbrenner [6, 7].

7.6.6 An example: the knapsack problem
The knapsack problem is a famous problem in combinatorial optimization;

there have been two monographs entirely devoted to variations on this theme:
[146], [188]. In its decision form it was one of the first computational problems
to be proved NP-complete: [145], [98]. For the first applications of Gröbner
basis methods to knapsack problems, see [66].

We will consider only the simplest version. We have a finite set of objects,
indexed by the integers {1, . . . , n}; object i has size ai which is a positive
integer. We also have a knapsack of size b (another positive integer). Our
problem is to determine whether there exists a subset of the objects that fit
exactly into the knapsack, in the sense that for some S ⊆ {1, . . . , n} we have∑

i∈S
ai = b.

This is the one-dimensional version of the problem: think of object i as a stick
of length ai cm, and the knapsack as a tube of length b cm; then the problem
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is to decide whether we can choose a subset of the sticks which exactly fill the
tube.

To apply Gröbner bases to this problem, we first have to reformulate it
in terms of solving a system of polynomial equations. We introduce variables
x1, . . . , xn which may only take values in {0, 1}, and rewrite the last equation
as

n∑
i=1

xiai = b.

We set S = { i | xi = 1 }: the map i 7→ xi is the characteristic function
of S. To impose the conditions xi ∈ {0, 1} we simply include the equations
xi(xi−1) = 0 for i = 1, . . . , n. We now have the following set of n+1 generators
for the ideal K (for knapsack) in the polynomial ring P = F[x1, . . . , xn]:

f0 = a1x1 + · · ·+ anxn − b, fi = xi(xi − 1) (i = 1, . . . , n). (7.5)

These generators are very simple: f0 is linear with n+ 1 terms; fi is quadratic
with two terms.

We can use this formulation of the knapsack problem to illustrate the
complexity of computing Gröbner bases: the generators (7.5) embed an NP-
complete integer programming problem into a system of polynomial equations
that can be solved using Gröbner bases. To make this problem precise, we fix
a range of values for the number n of variables, choose an upper bound M
for the coefficients, and use a pseudorandom number generator to produce
integers a1, . . . , an, b in the range 1, . . . ,M . For example, with n = 10 and
M = 106, a typical set of generators for the ideal K ⊂ F[x1, . . . , x9] would be:

74805x1 + 347526x2 + 512608x3 + 608766x4 + 39299x5
+723475x6 + 327134x7 + 377286x8 + 812373x9 + 87438x10 − 4415,

x2
1 − x1, x2

2 − x2, x2
3 − x3, x2

4 − x4, x2
5 − x5,

x2
6 − x6, x2

7 − x7, x2
8 − x8, x2

9 − x9, x2
10 − x10.

A moment’s inspection of this system of polynomials makes it obvious that
the Gröbner basis for K is [1] and its zero set is Z(K) = ∅. We are interested
not in the existence or non-existence of solutions to these systems, but rather
in the average time it takes, as a function of the number n of variables, for
Buchberger’s algorithm to compute the Gröbner basis.

For each n = 2, . . . , 14 we performed 100 trials: for each trial, we gener-
ated n + 1 pseudorandom numbers a1, . . . , an, b in the range 1, . . . , 1000000,
recorded the time in seconds for the Maple 18 command Groebner[Basis]
on a MacBook Pro to compute the dlex Gröbner basis. For each n, we also
computed the average time over all 100 trials and obtained the following data:

n average n average n average n average n average
4 0.00731 7 0.00998 10 0.23285 13 73.11781

2 0.00718 5 0.00731 8 0.01727 11 1.50694 14 445.2669
3 0.00703 6 0.00799 9 0.05395 12 8.8213
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Piecewise linear graphs of the experimental data for n ≤ 9, 11, 13:

Polynomial interpolations of the experimental data for n ≤ 9, 11, 13:

FIGURE 7.2: Average time (seconds) to solve knapsack problem with Gröb-
ner bases as function of number n of objects (6-digit sizes).

The (super-)exponential growth of the time required can be visualized by a
piecewise linear graph of the average time as a function of n together with a
smooth graph obtained by polynomial interpolation. Figure 7.2 presents these
graphs for n ≤ 9, 11, 13.

To close our discussion of the knapsack problem, we mention that it is
also an important example in the application of lattice basis reduction to
cryptography; see [41, Chapter 7] and the references therein.

7.7 Exercises
Exercise 7.1. Prove Proposition 7.2.2.4.

Exercise 7.2. (i) Suppose one more star (or bar) is added to the left (or
right) end of the sequences discussed in the proof of Lemma 7.2.2.5. How
does this change the corresponding monomial?

(ii) Suppose the total number of stars and bars is odd, and the middle
element (star or bar) is removed. How does this change the corresponding
monomial?

(iii) Suppose the total number of stars and bars is even, and a star (or bar) is
inserted in the middle. How does this change the corresponding mono-
mial?
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Exercise 7.3. Prove that in the definition of monomial order, the well-order
condition can be replaced by the condition that every strictly decreasing se-
quence is finite.

Exercise 7.4. Prove that in the definition of monomial order, the well-order
condition can be replaced by the condition that for every monomial m 6= 1,
we have 1 ≺ m.

Exercise 7.5. Consider two monomials v = xe11 · · ·x
ek

k and w = xf1
1 · · ·x

fk

k .
Give a precise definition of what it means to say that v ≺ w in standard
dictionary order, assuming that x1 ≺ · · · ≺ xk.

Exercise 7.6. For the permuted plex order ≺σ with σ ∈ Sk, determine the
order of the variables. In particular, for which choice of σ do we obtain σi ≺ σj
if and only if i < j?.

Exercise 7.7. For each k ≥ 1 consider the k! monomials m of degree
n = k(k + 1)/2 in k variables whose exponent sequences are the permuta-
tions of 1, . . . , k:

m = x
σ(1)
1 x

σ(2)
2 · · ·xσ(k)

k (σ ∈ Sk).

(i) For k = 4 sort these monomials by precedence using dlex order.

(ii) For k = 4 sort these monomials by precedence using glex order.

(iii) For k = 4 sort these monomials by precedence using ρ-dlex order, where
ρ is the reversal permutation sending 1, 2, . . . , k to k, k − 1, . . . , 1.

(iv) Repeat (i)–(iii) for k = 5; use a computer algebra system.

(v) Repeat (i)–(iii) for k = 6; use a computer algebra system.

Exercise 7.8. How many monomials are there of the form aibjckd` with total
degree at most 4? Sort these monomials in the six different monomial orders
of Example 7.2.3.9.

Exercise 7.9. Sort the following monomials in each of the following orders:
plex, dlex, glex, elimination ordering for the partition 3 = 2 + 1, and the
same four orders permuted by the reversal cba:

abbccc, bbb, abbbccc, aaabc, aaabbbccc, bb, aabbb, bbc, aabccc, b, aaabb,

ab, bcc, bbbc, aaabbbcc, abbcc, abbbcc, aacc, a, aaacc, aab, aabbc, acc,

aaabbc, ac, aaabccc, aac, aabc, abb, aaab, abcc, c, bc, abccc, bbccc,

aabbccc, abc, aaabbccc, bbbcc, bbcc, aabcc, abbbc, aaaccc, aaabbbc,

aaccc, aa, aabbcc, abbc, ccc, aabbbcc, accc, aaac, bbbccc, aabb, cc,

aabbbc, aaabcc, aaabbcc, abbb, bccc, aabbbccc, aaa, aaabbb
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Exercise 7.10. Prove that the Church–Rosser property of an ARS is equiv-
alent to confluence.

Exercise 7.11. Complete the proof of Corollary 7.3.5.2.

Exercise 7.12. Let AX = B be the matrix form of a linear system over F
with m equations in n variables. Thus A = [aij ] has m rows and n columns,
X = [x1, . . . , xn]t is the column vector of unknowns, and B = [b1, . . . , bm]t
is the column vector of constant terms. Define m polynomials of degree 1 as
follows:

fi(x1, . . . , xn) =
( n∑
j=1

aijxj

)
− bi (1 ≤ i ≤ m).

Let I ⊆ F[x1, . . . , xn] be the ideal generated by f1, . . . , fm. We assume the
glex monomial order induced by x1 ≺ · · · ≺ xn.

(i) Prove that the ordered set {fm, . . . , f1} is a Gröbner basis for I if and
only if the augmented matrix [A|B] is in row canonical form (also called
reduced row-echelon form).

(ii) What happens if we replace the glex order by the dlex order?

(iii) What happens if we replace the glex order by the plex order?

Exercise 7.13. Complete the proof that IG is a subspace in the proof of
Lemma 7.4.1.5. That is, show that if p ∈ IG and a ∈ R then ap ∈ IG. Be sure
to deal with the possibility that a < 0.

Exercise 7.14. Prove that the map σ from the proof of Lemma 7.4.1.5 is
surjective and continuous.

Exercise 7.15. Refer to Definition 7.4.1.7 and Example 7.4.1.8. Deter-
mine d(vn) for all n ≥ 1 where vn is the vector in Cn whose components
are the n distinct powers of a primitive n-th root of unity.

Exercise 7.16. Let d(v) be the rational dimension of a vector v ∈ Rn ac-
cording to Definition 7.4.1.7. Prove that d(v) = d(av) for any a ∈ R, a 6= 0.

Exercise 7.17. Prove that every Archimedean total order on n variables
satisfies s = 1 and d1 = n; see Example 7.4.2.1.

Exercise 7.18. Prove that every total order of lexicographic type on n vari-
ables satisfies s = n and d1 = · · · = dn = 1; see Example 7.4.2.3.

Exercise 7.19. Identify where the standard monomial orders (plex,
dlex, glex) in n variables appear in Robbiano’s classification of mono-
mial orders (Theorem 7.4.1.13). In particular, determine the parameters s,
d1 + · · ·+ ds = n, etc., for each of these orders.

Exercise 7.20. Prove all the claims made in Example 7.4.2.4.
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Exercise 7.21. Consider the matrix U from Example 7.4.2.4. Choose some
integer i ∈ {1, . . . , n − 1} and change the first i entries in the first row of
U to 0. Show that the resulting matrix U (i) defines a monomial order ≺i on
F[x1, . . . , xn], and that for all e1, . . . , en ≥ 0 we have

xe11 · · ·x
ei
i ≺i x

ei+1
i+1 · · ·x

en
n .

Exercise 7.22. Determine the solution set of the ideal from Example 7.5.2.2.



Chapter 8
Linear Algebra over
Polynomial Rings

8.1 Introduction
Over a field F, to determine whether twom×n matrices A and B belong to

the same orbit under the left action of GLm(F), we compute the row canonical
forms (RCFs, also called Gauss–Jordan forms, or reduced row echelon forms)
of A and B and check whether they are equal. Similarly, for the left-right
action of GLm(F)×GLn(F), we compute the Smith normal forms Smith(A)
and Smith(B) and check whether they are equal.

Over a Euclidean domain, in particular the ring F[x] of polynomials in
one variable x over the field F, a modification of Gaussian elimination gives a
similar result. Since the domain is Euclidean, it is also a PID, and this means
that we can implement the Euclidean algorithm for gcds using elementary row
operations. Thus during every iteration of row reduction, we use elementary
row operations to replace the elements at and below the pivot by a single
nonzero element at the pivot, which is the monic gcd of the original elements,
together with zeros below the pivot. This analogue of the RCF is called the
Hermite normal form (HNF). The same comments apply to column operations,
and combining elementary row and column operations produces an algorithm
for computing the Smith form of a matrix with entries in a Euclidean domain.

It is not sufficient for the domain to be a PID: there exist PIDs which are
not Euclidean, and for a matrix over such a domain, gcds of elements will
exist but in general they may not be computable using row operations.

Once we go beyond PIDs, to domains such as F[x1, . . . , xk] for k ≥ 2, which
remain within the realm of UFDs, these computations suddenly become much
more difficult, for two reasons:

• the gcd still exists, but can only be computed by factorization into irre-
ducibles, which is hard even in Z; it cannot be computed by elementary
row operations;

• even if the gcd were easily computable, it wouldn’t help, since the ideal
generated by a finite set of elements is usually not the same as the

253
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principal ideal generated by their gcd: once we go beyond PIDs, we can
no longer assume that ideals are generated by a single element.

For example, the polynomial ring F[x, y] in two variables is a UFD, and so
gcds exist for any (finite) set of elements; but the gcd doesn’t tell us anything
useful from a geometric point of view. The gcd of x and y is 1, and the
ideal generated by 1 is the entire ring F[x, y], which is clearly not the ideal
generated by x and y, since that ideal contains only polynomials with zero
constant terms. Similar comments apply to any (finite) number of variables.

For matrices A whose entries belong to the ring F[x1, . . . , xk] for k ≥ 2, the
existence of a canonical form generalizing the RCF or HNF remains an open
problem. In the best case, we would like an easily computable normal form
NF(A) such that for any two m×n matrices A and B with polynomial entries,
we have NF(A) = NF(B) if and only if A and B belong to the same orbit
for the right action of GLm(F[x1, . . . , xk]). We have to be careful here: we
need to use the group generated by the elementary matrices, and for a general
commutative unital ring R this may not be the same as the group of all
invertible matrices; this is related to K-theory, in particular the group K1(R).

In spite of these obstacles, we can still obtain useful information about a
multivariate polynomial matrix by elementary methods. There are two oppo-
site ways to approach this: first, we can allow division by arbitrary (nonzero)
polynomials and compute over the field of rational functions F(x1, . . . , xk);
second, we can exclude division and use only polynomials (such as determi-
nants) and the ideals they generate (such as determinantal ideals).

This chapter is the first one where many large sparse matrices appear. We
therefore deem it appropriate to remind the reader of a notational convention
mentioned in Introduction: we find it convenient to follow the eastern Arabic
custom of writing dot instead of zero (· instead of 0) to make it easier to
identify the pattern of nonzero entries in such matrices.

8.2 Rank of a polynomial matrix; determinantal ideals
8.2.1 The rank of the matrix as a function of the variables

To focus the discussion, we will consider the following problem.

Problem 8.2.1.1. Let A be an m × n matrix with entries in the ring
F[x1, . . . , xk]. Determine how the rank of A behaves as a function of the values
a1, . . . , ak ∈ F assigned to the variables x1, . . . , xk.

Computing the rank for each choice of values of variables gives an invariant
of a matrix which is more refined than its rank when regarded as a matrix over
the field F(x1, . . . , xk) of rational functions: over a field, we can use Gaussian
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elimination to compute its RCF, however, crucial information is lost this way,
since we are implicitly assuming that none of the denominators that arise
during the row reduction process can ever become 0.

8.2.2 Definition of the rank of a polynomial matrix
A more useful (and more complex) definition of the rank is as follows.

Definition 8.2.2.1. Let A be an m × n matrix over F[x1, . . . , xk] regarded
as a parameterized family of matrices over F. We define the function

A| : Fk → Matmn(F),

as follows: for a1, . . . , ak ∈ F the matrix A|(a1, . . . , ak) is obtained from A by
setting xi = ai for i = 1, . . . , k.

Composing A| with the usual rank on Matmn(F) gives a function called
the substitution rank, denoted subsrankA = rank ◦A|:

subsrankA : Fk → { 0, 1, . . . ,min(m,n) }.

The inverse images of the ranks 0 ≤ r ≤ min(m,n) under the substitution
rank function define the inverse rank function, whose range is the power set
(set of all subsets) of Fk:

invrankA(r) =
{

[a1, . . . , ak]t ∈ Fk | subsrankA(a1, . . . , ak) = r
}
.

It is unusual for subsrankA to be surjective, so we define the minimal rank
and maximal rank functions

rmin, rmax : Matmn(F)→ { 0, 1, . . . ,min(m,n) },

in terms of the image of subsrank:

rmin(A) = min(image(subsrank)),
rmax(A) = max(image(subsrank)).

Remark 8.2.2.2. Clearly 0 ≤ rmin(A) ≤ rmax(A) ≤ min(m,n), but

rmin(A) < r < rmax(A) does not imply invrankA(r) 6= ∅.

8.2.3 Determinantal ideals of a polynomial matrix
Definition 8.2.3.1. Let A be an m× n matrix over F[x1, . . . , xk], and let r
(called the rank) belong to {0, 1, . . . ,min(m,n)+1}. The determinantal ideals
DIr(A) for r = 0, . . . ,min(m,n) are defined as follows:

• DI0(A) = ∅.
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• If 1 ≤ r ≤ min(m,n) then DIr(A) is the ideal in F[x1, . . . , xk] generated
by all r × r minors of A, whose number is

(
m
r

)(
n
r

)
.

• DImin(m,n)+1(A) = Fk.

The advantage of using determinantal ideals is that they allow us to study
the rank of a matrix using only ring operations (addition, subtraction, and
multiplication, without division).

The classical theory of determinantal ideals is concerned almost exclusively
with the homogeneous case, in which the entries xij are mn independent in-
determinates, and so every minor is a homogeneous polynomial, and every
determinantal ideal is homogeneous; see Miró-Roig [200]. Since the entries of
the matrices we consider will be general polynomials, the determinantal ideals
we study in what follows will be far from homogeneous. We could reformulate
our problem in terms of homogeneous polynomials by introducing a new pa-
rameter x0 as in the homogenization process which converts affine geometry
to projective geometry. This leads to a theory similar to that of sparse de-
terminantal ideals [38]. However, it will be very useful to us to have as many
leading 1s as possible in the matrix; from a computational point of view, this
allows us to go further when we do row/column reduction on the matrix.

We continue by recalling a familiar lemma from linear algebra over a field.

Lemma 8.2.3.2. Let A be an m×n matrix over the field F. These conditions
are equivalent:

• rank(A) = r

• Every (r+ 1)× (r+ 1) minor is 0, and at least one r× r minor is not 0.

Proposition 8.2.3.3. Let A be an m×n matrix over F[x1, . . . , xk]. For every
r = 0, 1, . . . ,min(m,n) we have

invrankA(r) = V (DIr+1) \ V (DIr).

Proof. A restatement of the previous lemma using the previous definitions.

Lemma 8.2.3.4. Let A be an m× n matrix over F[x1, . . . , xk]. If there exist
a1, . . . , ak ∈ F such that subsrankA(a1, . . . , ak) ∈ Matmn(F) has full rank
r = min(m,n), then A has full rank regarded as a matrix over the field
F(x1, . . . , xk) of rational functions.

Proof. An immediate consequence of Lemma 8.2.3.2.

Remark 8.2.3.5. We mention another proof of Lemma 8.2.3.4 which uses an
argument by contradiction and illustrates the technique of passing back and
forth between a ring and its field of fractions. We consider only the case in
which F is algebraically closed. Suppose that

rankF(A|(a1, . . . , ak)) = min(m,n), but rankF(x1,...,xk)(A) < min(m,n).
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Since A does not have full rank over F(x1, . . . , xk), it has positive nullity and
there is a nonzero vector V = [v1, . . . , vn]t ∈ F(x1, . . . , xk)n such that AV = 0.
For j = 1, . . . , k write vi = fi/gi where fi, gi ∈ F[x1, . . . , xk] have no common
factor. Since F[x1, . . . , xk] is a UFD, we can define

g = lcm(g1, . . . , gk), h = gcd(gv1, . . . , gvk), wj = gvj/h (j = 1, . . . , n).

The vector W = [w1, . . . , wn]t = (g/h)V is nonzero, satisfies AW = 0,
and its entries are polynomials with no common factor. If we assume that
F is algebraically closed, then for all j = 1, . . . , n the zero set V (wj) is a
(k − 1)-dimensional hypersurface in Fk. Since an algebraically closed field is
infinite, the union of these n hypersurfaces is not all of Fk. Hence there ex-
ists (a1, . . . , ak) ∈ Fk such that xj = wj(a1, . . . , ak) 6= 0 for all j = 1, . . . , n.
But then the vector [x1, . . . , xn] ∈ Fn is a nonzero vector in the nullspace of
A|(a1, . . . , ak); and this contradiction completes the proof.

8.3 Some elementary examples
8.3.1 Ranks of pseudorandom matrices

Fix a number k of variables and fix a size n ≥ 2 of square matrices. Let A
be an n×n matrix with entries in F[x1, . . . , xk]. In fact, we will take the entries
of A from the finite set {0, 1, x1, . . . , xk}, so that we may use a pseudorandom
number generator to choose the entries of A uniformly: each of the k + 2
possible entries is chosen with probability 1/(k + 2). For each possible rank
of A, namely 0 ≤ r ≤ n, we want to find all values a1, . . . , ak of the variables
x1, . . . , xk which produce rank exactly r.

Example 8.3.1.1. Consider the matrix

A =

 x1 x1 0
x2 x1 x1
x2 1 x1


What are the determinantal ideals of A? The first ideal DI1(A) is generated
by the entries of A, and since 1 is an entry of A, we see that [1] is a Gröbner
basis. Therefore DI1(A) = F[x1, x2] and so V (DI1(A)) = ∅. It follows that
det(A) 6= 0 no matter what values we assign to the variables, and so the
inverse image of r = 0 is the empty set.

As for DI2(A), it is generated by the distinct 2 × 2 minors of A, which
are the following polynomials; to avoid trivial repetitions we have scaled each
minor to make it monic with respect to the glex order with x1 ≺ x2:

x2
1, x2

1 − x1, x1x2 − x1, x1x2 − x2, x1x2 − x2
1.
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From the first two elements we see that DI2(A) contains x1, and then
the fourth element shows that DI2(A) contains x2. Since none of these
elements has a nonzero constant term, we conclude that [x1, x2] is a
Gröbner basis for DI2(A). It follows that DI2(A) = (x1, x2) and hence
V (DI2(A)) = {(0, 0)}. This implies that rank(A) < 2 if and only if
x1 = x2 = 0. Since we already know that rank(A) ≥ 1, we conclude that
the inverse image of r = 1 is the single point {(0, 0)}.

For r = 3, there is only one determinant to compute: det(A) = x3
1 − x2

1,
and this polynomial is a Gröbner basis for the (principal) ideal DI3(A). It
follows that rank(A) < 3 if and only if x1 ∈ {0, 1} (and the value of x2 does
not matter). So the inverse image of r = 2 consists of two vertical lines in F2:
the line x1 = 0 excluding the point (0, 0) which gives rank 1, and the line
x1 = 1. We summarize the results of these calculations as follows:

rank r inverse image in F2

0 ∅
1 { (0, 0) }
2 { (0, a2) | a2 ∈ F, a2 6= 0 } ∪ { (1, a2) | a2 ∈ F }
3 all points (a1, a2) ∈ F2 with a1 /∈ {0, 1}

Example 8.3.1.2. Consider this matrix involving three variables:

A =


x1 x3 x3 0
x3 x2 1 1
x3 0 0 x1
x3 x2 1 x2


As in the previous example, DI1(A) = F[x1, x2, x3] since 1 is a matrix entry,
and so V (DI1(A)) = ∅. We next compute all 2 × 2 minors, and obtain the
following set of generators for DI2(A); using glex order with x1 ≺ x2 ≺ x3
the elements are monic and increasing:

x1, x2 − 1, x3, x2
1, x2x1, x3x1, x3(x1 − 1), x2(x2 − 1),

x2x3, x3(x2 − 1), x3(x2 − x1), x2
3, x2

3 − x1, x2
3 − x2x1.

From this we directly obtain the Gröbner basis and the zero set:

DI2(A) =
(
x1, x2 − 1, x3

)
, V (DI2(A)) = { (0, 1, 0) }.

The same procedure for the 3×3 minors produces these generators forDI3(A):

x3(x2 − 1), x3x1(x2 − 1), x2
3x1 − x2

3 − x2
1, x2

3x1 − x2x
2
1 − x2

3,

x3x2(x2 − 1), x3(x2 − 1)2, x2
3(x2 − 1), (x2 − 1)(x2

3 − x1),
(x2 − 1)(x2

3 − x2x1), x2
3x2 − x2

3x1 + x2
1, x2

3x2 − x2
3x1 + x2x

2
1.
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From this we obtain the following glex Gröbner basis for DI3(A):[
f = x1(x2 − 1), g = x3(x2 − 1), h = x2

3x1 − x2
3 − x2

1
]
.

If x2 6= 1 then f and g imply x1 = 0 and x3 = 0, and these values satisfy h,
so we have the one-parameter set of solutions,

{ (0, a2, 0) | a2 ∈ F, a2 6= 1 }.

If x2 = 1 then f and g vanish, leaving only h, which is quadratic in both x1
and x3. Writing h as a polynomial first in x1 and then in x3 gives

−
(
x2

1 − x2
3x1 + x2

3
)

= 0, (x1 − 1)x2
3 − x2

1 = 0.

The second equation is slightly simpler, but it has the non-constant leading
coefficient x1−1, which means that we would have to treat x1 = 1 as a special
case. We therefore solve for x1 in terms of x3 using the first equation:

x1 = 1
2x3

(
x3 ±

√
x2

3 − 4
)
.

Finally, DI4(A) is the principal ideal generated by det(A) = −x2
3(x2 − 1)2,

and so rank(A) < 4 if and only if either x2 = 1 or x3 = 0.
We now have a complete understanding of how rank(A) depends on the

values a1, a2, a3 assigned to the parameters x1, x2, x3:

rank r inverse image in F3

0 ∅
1 { (0, 1, 0) }
2 { (0, a2, 0) | a2 ∈ F, a2 6= 1 } ∪

{ (a1, 1, a3) | a3 ∈ F, a1 = 1
2a3(a3 ±

√
a2

3 − 4 ) }
3 all points (a1, a2, a3) ∈ F3 with a2 = 1 or a3 = 0,

excluding the points listed under ranks 0, 1, 2
4 all points (a1, a2, a3) ∈ F3 with a2 6= 1 and a3 6= 0

8.3.2 Ranks of symmetric matrices
At the opposite end of the spectrum from pseudorandom matrices, we have

structured matrices, and in particular symmetric matrices. We consider the
sequence of n× n matrices An = (a(n)

ij ) for n ≥ 1 defined by

aii = 0 (1 ≤ i ≤ n),
ai,i+1 = ai+1,i = 1 (1 ≤ i ≤ n− 1),
ai,i+k = ai+k,i = xk−1 (1 ≤ i ≤ n− k, 2 ≤ k ≤ n− 1)
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where x1, . . . , xn−2 are variables. The first few cases A1, . . . , A5 are:

[
0
] [

0 1
1 0

]  0 1 x1
1 0 1
x1 1 0




0 1 x1 x2
1 0 1 x1
x1 1 0 1
x2 x1 1 0




0 1 x1 x2 x3
1 0 1 x1 x2
x1 1 0 1 x1
x2 x1 1 0 1
x3 x2 x1 1 0


We ignore the trivial case n = 1 and assume that n ≥ 2. It is clear that

DI1(An) = DI2(An) = F[x1, . . . , xn−2] (by conventionF[∅] = F),

since every matrix has 1 as an entry and also as a 2× 2 minor (consider any
of the diagonal 2× 2 blocks). Hence for n ≥ 2 we have

V (DI1(An)) = V (DI2(An)) = ∅, which implies rank(An) ≥ 2.

For n = 3 we have det(A3) = 2x1 and so DI3(A3) = (x1), which gives
V (DI3(A3)) = {0}. Therefore rank(A3) = 2 if and only if x1 = 0, and
rank(A3) = 3 otherwise (which can easily be seen by inspection).

For n = 4 we find that every 3× 3 minor is a scalar multiple of one of the
following polynomials:

x1, x2
1 + x2 − 1, x2

1 − x2 + 1, x2x1, x3
1 − x1x2 − x1, x2

1x2 − x2
2 + x2.

Since this list contains x1, we can retain x1 and set x1 = 0 in the others, which
leaves us with only x2 − 1 and x2(x2 − 1). Hence [ x1, x2 − 1 ] is a Gröbner
basis for DI3(A4) and so V (DI3(A4)) = {(0, 1)}. We calculate

det(A4) =
(
x2 − (x1 + 1)2)(x2 − (x1 − 1)2).

This polynomial generates the principal ideal DI4(A4), and so we have

V (DI4(A4)) =
{ (
x1, (x1+1)2) | x1 ∈ F

}
∪
{ (
x1, (x1−1)2) | x1 ∈ F

}
.

With this information we can write down the inverse image of each rank:
• A4 never has rank 0 or 1;

• A4 has rank 2 if and only if (x1, x2) = (0, 1);

• A4 has rank 3 if and only if x2 = (x1 ± 1)2 and x1 6= 0;

• A4 has rank 4 if and only if x2 6= (x1 ± 1)2.
For n = 5 we have the following results, which the reader is encouraged to

verify (with the help of a computer algebra system):

V (DI1(A5)) = V (DI2(A5)) = ∅
V (DI3(A5)) = {(0, 1, 0)}
V (DI4(A5)) =

{ (
x1, (x1 + ε)2, x1(x1 + 2ε)2) | x1 ∈ F, ε = ±1

}
V (DI5(A5)) =

{ (
x1, x2,−x1(x2

1−2x2−2)
)
| x1, x2 ∈ F

}
∪{ (

x1, 1±
√
x1x3, x3

)
| x1, x3 ∈ F

}



Linear Algebra over Polynomial Rings 261

8.3.3 Orthonormal bases in Rn

In this subsection we assume that F = R so that we can appeal to the famil-
iar notions and intuitions of n-dimensional Euclidean geometry in Rn, and in
particular the dot product x · y =

∑n
i=1 xiyi. Recall that a basis {x1, . . . , xn}

of Rn is called orthonormal if and only if its Gram matrix (the symmetric
n × n matrix whose (i, j) entry is xi · xj) is the identity matrix. If we write
xj = (x1j , . . . , xnj) for j = 1, . . . , n and form the n × n matrix C = (xij) in
which column j is xj , then the Gram matrix is CtC, and orthonormality is
characterized by the vanishing of the symmetric matrix Γ = CtC− I. Since Γ
is symmetric, the number of distinct relations is 1

2n(n + 1). If we regard the
coefficients xij as variables, then the entries of Γ generate an ideal I = (Γ) in
the polynomial algebra R[x11, . . . , xnn], whose zero set V (I) is the set of all
orthonormal bases of Rn, which we may identify with the real orthogonal Lie
group O(n,R). Let’s look at some small examples.

For n = 1 we have C = [x11] and Γ = [x2
11 − 1]; the zero set is {±1}, the

two orthonormal bases of R regarded as a 1-dimensional vector space.
For n = 2 we have

C =
[
x11 x12
x21 x22

]
Γ =

[
x2

11 + x2
21 − 1 x11x12 + x21x22

x11x12 + x21x22 x2
12 + x2

22 − 1

]
The distinct entries of Γ are the three polynomials

x2
21 + x2

11 − 1, x22x21 + x12x11, x2
22 + x2

12 − 1,

which generate an ideal whose glex Gröbner basis has six elements:

x2
12 + x2

11 − 1,
x22x12 + x21x11,

x2
21 + x2

11 − 1,
x22x21 + x12x11,

(x22 − x11)(x11 + x22),
x21x12x11 − x22x

2
11 + x22.

These six polynomials vanish whenever the three generators vanish; that is,
whenever the xij are assigned values corresponding to an orthonormal basis.
For example, the vanishing of the fifth element of the Gröbner basis means
that in every orthonormal basis of R2 we have either x11 = x22 or x11 = −x22.
This is not difficult to see: draw a unit circle centered at the origin and two
radii at a right angle. Equivalently, note that the two unit vectors orthogonal
to (cos θ, sin θ) are (− sin θ, cos θ) and (sin θ,− cos θ). That last calculation
provides a tiny example of how Gröbner bases can be used to derive and
(possibly) prove new results from old assumptions. This problem belongs to
the general topic of automated theorem proving, which has been especially
successful in its applications to elementary geometry.
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For n = 3 the set of generators consists of the six polynomials

x2
31 + x2

21 + x2
11 − 1,

x32x31 + x22x21 + x12x11,

x33x31 + x23x21 + x13x11,

x2
32 + x2

22 + x2
12 − 1,

x33x32 + x23x22 + x13x12,

x2
33 + x2

23 + x2
13 − 1.

The glex Gröbner basis of the ideal generated by these polynomials contains
27 elements, which represent equations holding in spherical trigonometry; see
Figure 8.1. The size of the Gröbner basis increases rapidly as a function of n:
for n = 4 the ten generators of the ideal I ⊂ R[x11, . . . , x44] produce a glex
Gröbner basis consisting of 141 polynomials.

x2
13 + x2

12 + x2
11 − 1, x23x13 + x22x12 + x21x11,

x2
23 + x2

22 + x2
21 − 1, x33x13 + x32x12 + x31x11,

x2
31 + x2

21 + x2
11 − 1, x33x23 + x32x22 + x31x21,

x2
32 + x2

22 + x2
12 − 1, x33x32 + x23x22 + x13x12,

x32x31 + x22x21 + x12x11, x33x31 + x23x21 + x13x11,
x2

33 − x2
22 − x2

21 − x2
12 − x2

11 + 1,
x22x13x12 − x23x

2
12 + x21x13x11 − x23x

2
11 + x23,

x32x13x12 − x33x
2
12 + x31x13x11 − x33x

2
11 + x33,

x32x23x12 − x33x22x12 + x31x23x11 − x33x21x11,
x2

22x13 + x2
21x13 − x23x22x12 − x23x21x11 − x13,

x32x22x13 + x31x21x13 − x33x22x12 − x33x21x11,
x31x22x21 − x32x

2
21 + x31x12x11 − x32x

2
11 + x32,

x31x23x21 − x33x
2
21 + x31x13x11 − x33x

2
11 + x33,

x32x23x21 − x33x22x21 + x32x13x11 − x33x12x11,
x31x

2
22 − x32x22x21 + x31x

2
12 − x32x12x11 − x31,

x31x23x22 − x33x22x21 + x31x13x12 − x33x12x11,
x32x23x22 − x33x

2
22 − x31x13x11 + x33x

2
11,

x31x22x13x11 − x32x21x13x11 − x31x23x12x11 + x33x21x12x11 + x32x23x
2
11

−x33x22x
2
11 − x32x23 + x33x22,

x2
21x

2
12 − 2x22x21x12x11 + x2

22x
2
11 − x2

22 − x2
21 − x2

12 − x2
11 + 1,

x31x21x
2
12 − x31x22x12x11 − x32x21x12x11 + x32x22x

2
11 − x32x22 − x31x21,

x2
21x13x12 − x22x21x13x11 − x23x21x12x11 + x23x22x

2
11 − x23x22 − x13x12,

x31x21x13x12 − x32x21x13x11 − x31x23x12x11 + x32x23x
2
11 − x32x23

FIGURE 8.1: Gröbner basis (glex) defining orthonormal bases of R3.

In general, Gröbner bases bring one closer to fulfilling the Descartes’ dream
of proving geometric theorems using the coordinate method. For further in-
formation about automated geometric theorem proving using Gröbner bases,
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see the following references: [45], [47], [58], [64, §6.4], [93], [144], [164], [213],
[214], [258], [259].

8.4 Algorithms for linear algebra over polynomial rings
8.4.1 Introduction: elementary row and column operations

Our naive goal is to construct an algorithm as simple and efficient as Gaus-
sian elimination which would compute an (as yet unspecified) canonical form
for matrices over a polynomial ring. This goal is almost certainly not practical,
but nonetheless in this section we describe some useful algorithms that can
be used in many cases to simplify polynomial matrices very substantially.

To begin, let us recall the valid and permitted elementary row/column
operations on matrices with entries in F[x1, . . . , xk]:

• Interchange two rows/columns.

• Multiply one row/column by a nonzero scalar a ∈ F \ {0}: only these
coefficients are allowed since they are the only invertible polynomials.

• Add a multiple (by any polynomial) of one row/column to a different
row/column; in this case the coefficients can be arbitrary polynomials
since the resulting row/column operation is invertible in all cases.

8.4.2 Partial row/column reduction (partial Smith form)
Like most of the algorithms we will discuss, this one can be described

in two different but equivalent ways: top-down (recursively) or bottom-up
(inductively). Different readers will prefer different approaches.

The basic idea at each step is to locate any remaining nonzero scalar entry
in the matrix, use row/column operations to move it to the pivot and convert
them to 1, and then use this 1 to eliminate other entries in the same row and
column. The algorithm terminates when there are no more nonzero scalars
in the lower right block. That is, the algorithm reduces an arbitrary m × n
matrix with polynomial entries to a block diagonal matrix diag(Ir, Bm−r,n−r)
where Ir is the r × r identity matrix and Bm−r,n−r is a matrix in which no
entry is a nonzero scalar. Over a field, r is the rank of the matrix, B = 0 is
the zero matrix, and diag(Ir, 0m−r,n−r) is the usual Smith form.

Definition 8.4.2.1 (Equivalence of matrices with polynomial entries). Let A
be anm×nmatrix with entries in F[x1, . . . , xk]. Anm×nmatrix C is said to be
equivalent to A over F[x1, . . . , xk] if C = UAV where U (m×m) and V (n×n)
are invertible matrices over F[x1, . . . , xk]: that is, det(U),det(V ) ∈ F\{0} are
nonzero scalars.
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Definition 8.4.2.2 (Partial Smith form). The (non-unique) result of the
following algorithm is called the partial Smith form of the original matrix A.

Algorithm 8.4.2.3 (Partial row/column reduction).

Input: An m× n matrix A with entries in F[x1, . . . , xk].

Output: The quantities C, r, B where C is an m× n block diagonal
matrix C = diag(Ir, B) consisting of an identity matrix of size r and
a lower right block B = Bm−r,n−r in which no entry is a nonzero
scalar.

• Set C ← A. Set k ← 1.

• While cij ∈ F \ {0} for some i, j ≥ k do:

– Find the least i ≥ k for which cij ∈ F \ {0} for some j ≥ k.
– If i 6= k then interchange rows i and k of C.
– Find the least j ≥ k for which ckj ∈ F \ {0}.
– If j 6= k then interchange columns j and k of C.
– If ckk 6= 1 then divide row k of C by ckk.
– For i = k + 1, . . . ,m do: subtract cik times row k from row i.
– For j = k + 1, . . . , n do: subtract ckj times column k from col-

umn j.
– Set k ← k + 1.

• Set r ← k − 1.

• Set B ← C(r + 1, . . . ,m; r + 1, . . . , n).

• Return C, r,B.

Example 8.4.2.4. Consider the following sparse 8×12 matrix A with entries
in Q[a, b]:

A =



b . 1 . . . . . a . . .
. a . . . . . . 1 . . b
. . . 1 . . . . . b . a
. . . . a 1 . . . . b .
. b . . 1 . a . . . . .
. . . b . . a 1 . . . .
. . 1 . . a . b . . . .
1 . . . . . . . . b a .


To compute the determinantal ideals of this matrix requires calculating the
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following numbers of r × r determinants for r = 1, . . . , 8:(
8
r

)(
12
r

)
= 96, 1848, 12320, 34650, 44352, 25872, 6336, 495.

Gröbner bases for these determinantal ideals are as follows, r = 1, . . . , 8:

[1], [1], [1], [1], [1], [1], [1], [b3 + b2, ab2 + ab, a2b+ a2, a3 − ab].

This computation took 17.371 seconds using Maple 18 on a 2013 MacBook
Pro. Computing the partial Smith form took 0.020 seconds, 869 times faster:

C = [I7, B1,5] =



1 . . . . . . . . . . .
. 1 . . . . . . . . . .
. . 1 . . . . . . . . .
. . . 1 . . . . . . . .
. . . . 1 . . . . . . .
. . . . . 1 . . . . . .
. . . . . . 1 . . . . .
. . . . . . . ab2 + ab a3 − ab b3 + b2 . a2b + a2


In both cases we find the solution [a, b] = [0, 0], [0,−1], [i,−1], [−i,−1]; for
these values we have rank(A) = 7, and for all other values the rank is 8.

8.4.3 Canonical forms of row submodules
A submodule R of a free module F[x1, . . . , xk]n of rank n which is a direct

summand is projective (by one of equivalent definitions), and the Quillen–
Suslin theorem implies that R is free. But generally submodules of free mod-
ules over a polynomial ring F[x1, . . . , xk] are not necessarily free.

Example 8.4.3.1. Let R = (a, b), the row module of the 2× 1 matrix [a, b]t.
It consists of all polynomials with zero constant term, and as vector spaces we
have R ⊕ F = F[a, b]. No submodule of a free F[a, b]-module is 1-dimensional
as a vector space. This shows that R is not projective, hence not free.

Let A be an m × n matrix with entries in F[x1, · · · , xk]. Its row module
and null module are defined in the usual way (here Ai is the row i of A):

row(A) = { f1A1 + · · ·+ fmAm | f1, . . . , fm ∈ F[x1, · · · , xk] }
null(A) = {[f1, . . . , fn] | f1A1 + · · ·+ fmAm = 0, f1, . . . , fm ∈ F[x1, · · · , xk]}

These are submodules of the free modules of ranks m and n, respectively. The
first natural question to ask is: is either of these submodules also free?

Of course, F[x1, · · · , xk] itself is a free module, and an ideal is a submodule.
The theory of Gröbner bases for submodules of free F[x1, · · · , xk]-modules was
generalized in [201] from the free module of rank one to free modules of any
finite rank. This is now a standard topic in commutative algebra [65, Chap. 5].
In particular, this theory includes algorithms for computing row canonical
forms of matrices over polynomial rings, as we will now demonstrate.
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The algorithm for computing a submodule Gröbner basis consists of three
components: first, Gaussian elimination using elementary row operations; sec-
ond, Buchberger’s algorithm for Gröbner bases; and third, the occasional
addition of a zero row to the matrix as “scratch paper” for computing S-
polynomials. We did not find a matrix form of this algorithm in the literature,
but we can direct the reader to the original paper [201, §I.4], as well as the
somewhat sketchier versions in [1, §3.5] and [65, §5.2]. Algorithm 8.4.3.2 is
our own somewhat sketchy matrix version of this algorithm.

Algorithm 8.4.3.2 (Submodule Gröbner basis algorithm (matrix form)).

Input: An m× n matrix A with entries in F[x1, . . . , xk].

Output: The Gröbner basis for row(A), with respect to the given
(implicit) order of the columns and some given monomial order.

• Set i← 1, j ← 1.

• While i ≤ m and j ≤ n do:

1. If all entries at and below pivot (i, j) are 0, then set j ← j + 1.
2. Otherwise:

(a) Repeat until convergence: Use row operations to swap the
smallest nonzero entry into the pivot and reduce the other
entries modulo the pivot.

(b) Sort the entries at and below the pivot in increasing order,
with 0 being the greatest.

(c) For k = 1, . . . ,m− j repeat the two previous steps (i and ii)
for the entries at and below position (i+ k, j) to self-reduce
the column.

(d) For every pair of indices k, k′ such that i ≤ k 6= k′ ≤ m
and the entries in positions (i, k) and (i, k′) produce an S-
polynomial with a nonzero reduced form modulo the entries
in rows i through m, do the following:
i. Set m← m+ 1; add a new zero row at the bottom.
ii. Use row operations to construct the S-polynomial in po-

sition (m+1, j), and compute its nonzero reduced form
modulo the entries in rows i through m.

(e) Repeat steps (a)–(d) until the entries at and below the pivot
form a reduced Gröbner basis for the ideal they generate.

(f) Delete any zero rows and modify m accordingly.
(g) Use the Gröbner basis at and below the pivot to reduce the

entries above the pivot to their normal forms.
(h) Set i← i+ 1, j ← j + 1.
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Example 8.4.3.3. Let F[a, b] equipped with the plex order; we view poly-
nomials in a, b as polynomials in b whose coefficients are polynomials in a. We
consider the 10× 14 matrix A displayed sideways in two parts in Figure 8.2;
the significance of this matrix will become clear in the next chapters.

Column 1. The first column has two nonzero entries which generate the
principal ideal

(ab2 + ab).

We interchange rows 1 and 10, multiply row 1 by −1, and then subtract a
times row 1 from row 2. Column 1 is now zero except for the ideal generator
in row 1.

Column 2. At this point column 2 has b3 + b2 in row 1 and zeros in the
other rows, so it is already reduced.

Column 3. The entries

ba− a3, −ba2 + a4, b2a2 − ba4, b2a2 − 2ba4 + ba2 + a6 − a4

in column 3 in row 2 and below generate the principal ideal

(ba− a3).

Conveniently, the generator appears in row 8, so we swap it up to row 2 and
use row operations to eliminate the entries below it. The entry in row 1 of
column 2 is −ba3 + a5, which is −a2 times the generator; we use one more
row operation to make this entry zero too.

Column 4. The entries in column 4 in row 3 and below generate our first
non-principal ideal:

−ba2−a2, ba4+a4, ba6−ba4+a6−a4, −b2a−ba3−ba−a3, −b2a4−ba4.

The plex (a ≺ b) Gröbner basis for this ideal consists of two elements

ba2 + a2 and b2a+ ba.

The first of these already appears in the column so we swap it up to row 3
and use row operations to replace each of the lower entries by their remainders
after long division by this entry. This makes all the lower entries zero except
for −b2a − ba in row 9; we swap it up to row 4 and change its sign. We now
have the Gröbner basis in rows 3 and 4; we use it to reduce the entries in rows
1 and 2. For example, the entry in position 1,4 reduces as follows:

(b2a3 + b2a+ ba5 + a5)− (a3 + ab− a)(ba2 + a2)− (b2a+ ba) −→ (−ba+ a3).

Column 5. The entries in column 5, in row 5 and below, generate the
principal ideal

(ba2 + a2).

The negative of the generator is the entry in row 10, so as before we swap it
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up to row 5, change its sign, and use row operations to eliminate the entries
below it and reduce the entries above it.

The calculations get significantly more complicated at this point, so we
record the state of the matrix after the reduction of column 5, at least the
reduced part. The upper left 5 × 5 block is as follows, and the 5 × 5 block
below it is the zero matrix:

b2a+ ba b3 + b2 0 −ba+ a3 −b3 − b2
0 0 ba− a3 0 0
0 0 0 ba2 + a2 0
0 0 0 b2a+ ba b3 + b2

0 0 0 0 ba2 + a2


Column 6. The nonzero entries at or below the current pivot (6,6) are as

follows, appearing once each in rows 9, 8, 7, respectively :

f = −b2a+ 2ba3 − a5,

g = b3a− 2b2a3 + ba5,

h = b3a− b2a3 + b2a+ 2ba5 − ba3 − a7 + a5.

Clearly g = −bf so we can use a row operation with f to eliminate g. Negat-
ing f and renaming, we are left with these two generators of the column ideal:

f = b2a− 2ba3 + a5, g = b3a− b2a3 + b2a+ 2ba5 − ba3 − a7 + a5.

The normal form of g with respect to f is 3ba5 + ba3 − 2a7, so our new
generators are (renaming again):

f = 3ba5 + ba3 − 2a7, g = b2a− 2ba3 + a5.

This is a self-reduced set, so we must consider S-polynomials: there is one,
which we will denote by s, corresponding to the overlap ab; we also give its
reduced form s′ with respect to f and g:

s = b2a3 + 4ba7 − 3a9, s′ = 2ba3 + 3a9 + 5a7.

Computing the reduced forms of f and g with respect to s′ gives the polyno-
mials f ′ and g′, respectively, where

f ′ = a11 + 2a9 + a7, g′ = b2a+ 3a9 + 5a7 + a5.

We now verify that the ordered set {f ′, s′, g′} is the reduced plex Gröbner
basis for the column ideal in this case.

Let us see how this can be translated into matrix terms. Before computing
the S-polynomial, we need to perform these row operations:

• Interchange rows 6 and 9.
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• Multiply row 6 by −1.

• Add −b times row 6 to row 8.

• Add −(a2 + b+ 1) times row 6 to row 7.

• Interchange rows 6 and 7.

At this point rows 6 and 7 contain (the last values of) f and g, respectively. In
order to construct the S-polynomial we need either to have a zero row in the
matrix, or to temporarily add a new zero row at the bottom of the matrix.
Conveniently, it happens that row 8 is zero, and although this is not strictly
necessary, we will start by swapping this zero row to the bottom of the matrix
so that we can do our calculations there. Recall that the S-polynomial is

b(3ba5 + ba3 − 2a7)− 3a4(b2a− 2ba3 + a5) = b2a3 + 4ba7 − 3a9.

To compute the S-polynomial and the Gröbner basis, we need to perform these
row operations:

• Interchange rows 8 and 10.

• Add b times row 6 to row 10; add −3a4 times row 7 to row 10.

• Add − 4
3a

2− 2
9 times row 6 to row 10; add −a2 times row 7 to row 10.

• Multiply row 10 by −9.

• Interchange rows 7 and 8, 6 and 7, 10 and 6.

• Add − 3
2a

2− 1
2 times row 6 to row 7; add −1 times row 6 to row 8.

• Multiply row 7 by − 2
9 , and interchange rows 6 and 7.

It remains to reduce the entries above the pivot with respect to the Gröbner
basis; these are the entries in the upper right corner of the following array,
which is the upper left 8× 6 block of the current state of the original matrix.
This task is left as an exercise for the reader:

b2a+ba b3+b2 0 −ba+a3 −b3−b2 b2a2 + ba4 − 2ba2 − a6 + 2a4 − a2

0 0 ba−a3 0 0 ba2 − a4

0 0 0 ba2+a2 0 −ba + a3

0 0 0 b2a+ba b3+b2 2ba2 − a4 + a2

0 0 0 0 ba2 + a2 0

0 0 0 0 0 a11 + 2a9 + a7

0 0 0 0 0 2ba3 + 3a9 + 5a7

0 0 0 0 0 b2a + 3a9 + 5a7 + a5

Column 7. Rows 1–5 and 10 contain 0, row 9 contains ab − a3, and rows
6–8 contain two (one is repeated) somewhat complex polynomials which are
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a direct result of the S-polynomial calculation from column 6; however, these
polynomials

−b(4a4 − 3a2b+ 2a2 − b)(ab− a3),
−b(12a2 − 9b+ 2)(ab− a3).

are multiples of ab−a3 and so the column ideal is principal. These multipliers
show us how to use row operations to use the leading entry of row 9 to make
every other entry in column 7 equal to 0.

Columns 8–14. Row 10 is not zero, so there is one remaining leading entry
to be dealt with. Finishing the reduction of the matrix is left as an exercise
for the reader (rather easy with the help of a computer algebra system).

We can obtain simpler (but non-canonical) results by using column op-
erations as well, and always swapping into the current position that column
whose Gröbner basis is the smallest (breaking ties using the monomial order).
This allows us to show the non-obvious fact that the submodule generated by
the rows of the matrix in the previous example (Figure 8.2) is free of rank 9.

Example 8.4.3.4. We start again from the matrix in Figure 8.2, except that
now we are allowing column transpositions, as well as general row operations.
At each step we consider the (sub)columns below and to the right of the pivot,
determine which of them generates the simplest ideal, and swap that column
into the current position. By simplest we mean either the Gröbner basis has
fewer elements, or the Gröbner basis has the same number of elements but
precedes in the monomial order, or the Gröbner bases are equal but the original
column has fewer nonzero entries.

Column 1. The columns of the original matrix which generate principal
ideals are 1, 2, 3, 7, 8, 14, and their generators are, respectively,

ab2 + ab, b3 + b2, a3 − ab, a3 − ab, a2b+ a2, b3 + b2.

The minimal generator is a3 − ab corresponding to columns 3 and 7 having,
respectively, 6 and 2 nonzero elements, so we swap columns 1 and 7. To reduce
the new column 1, we swap rows 1 and 6, and add b times row 6 to row 7.
Column 1 now has a3 − ab in row 1 and 0 in the other rows.

Column 2. We notice that column 8 is the only column apart from column 1
which has a nonzero entry in row 1 with zeros below it, so we swap columns 2
and 8. Column 2 now has −ba2 − a2 in row 1 and 0 in the other rows.

Column 3. This column already has the minimal generator among the
principal ideals generated by the entries in rows 2 to 10 of columns 3 to 14
and so no column operation is necessary. After a sequence of row operations,
column 3 has a3 − ab in row 2 and 0 in the other rows.

Column 4. We swap columns 4 and 7, perform a sequence of row operations,
and obtain the result in which b2a+ ba is in row 3 and the other entries are 0.

Column 5. We swap columns 5 and 8; no row operations are necessary.
Column 5 now has b3 + b2 in row 4 and 0 in the other positions.
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Column 6. We swap columns 6 and 11, perform a few row operations, and
we are left with b3 + b2 in row 4 and the irreducible entry −b2a− ba in row 1.

Column 7. We swap columns 7 and 11, and after a few row operations, the
first eight columns of the matrix are as follows; the vertical line separates the
reduced part (left) from the unreduced part (right):

ba−a3 −ba2−a2 0 0 0 −b2a−ba 0 0
0 0 ba−a3 0 0 0 −a4−a2 −b3−b2
0 0 0 b2a+ba b3+b2 0 0 −b2a2−ba2

0 0 0 0 0 b3+b2 −a4−a2 −b3−b2a2−b2−ba2

0 0 0 0 0 0 ba−a3 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −b3a3−2b2a3−ba3

0 0 0 0 0 0 0 −b3a3−b2a3

0 0 0 0 0 0 0 b2a3+ba3

0 0 0 0 0 0 0 −ba2−a2

Columns 8–14. Continuing in a similar manner, we obtain the reduced
form of the remaining 8 columns of the matrix; see Figure 8.3 which gives
the complete reduced form, and note that row 10 consists entirely of zeros.
Verifying the details is left as an exercise for the reader (use of a computer
algebra system is highly recommended).

Example 8.4.3.5. We computed the Gröbner bases (using the plex mono-
mial order) for the determinantal ideals of the matrix of Figure 8.2 before
the row-column reduction of Example 8.4.3.4, and then computed them again
after. For the reduced matrix of Figure 8.3 computing all the determinan-
tal ideals took 301.769 seconds, just over 5 minutes (all computations using
Maple 18 on a Lenovo ThinkCenter). For the original matrix of Figure 8.2 com-
puting all the determinantal ideals took 6524.820 seconds, or 108.747 minutes,
more than 21.6 times longer. The reduction process eliminated one row from
the matrix, which made the subsequent computations significantly simpler.

Remark 8.4.3.6. We provide some further information about the rank dis-
tribution for the matrices of Figure 8.2 and 8.3. Since these matrices are
row/column equivalent, they have the same determinantal ideals and the same
plex Gröbner bases; moreover, the ideals have the same radicals and zero sets.
Basic data about the Gröbner bases are summarized in Figure 8.4. One of the
most complex polynomials in the Gröbner bases is the following:

a7b3(b+ 1)3( a16 + 6a14 − 22a12b− 7a12 − 64a10b3 − 38a10b2 + 6a10b

+ 221a8b4 + 252a8b3 + 46a8b2 − 300a6b5 − 398a6b4 − 104a6b3 − 81a4b8

− 324a4b7 − 300a4b6 − 58a4b5 + 118a2b11 + 450a2b10 + 642a2b9 + 428a2b8

+ 118a2b7 − 148b18 − 1228b17 − 4711b16 − 10914b15 − 16688b14 − 17222b13
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total minors nonzero minors plex Gröbner basis
r
(10
r

)(14
r

) (9
r

)(14
r

)
original reduced size degs terms max cft

1 140 126 37 24 4 3 2 1
2 4095 3276 401 172 6 5,6 3,4 3
3 43680 30576 2333 814 8 7-9 4-9 6
4 210210 126126 10253 2692 11 10-12 5-12 36
5 504504 252252 30354 5766 13 12-15 6-20 130
6 630630 252252 51624 8017 14 14-18 7-26 474
7 411840 123552 44168 6748 15 17-21 8-37 592
8 135135 27027 15111 2909 14 21-24 9-49 9992
9 20020 2002 1203 436 14 29-32 14-59 124383
10 1001 0 1 0

FIGURE 8.4: Gröbner bases for original/reduced matrices.

− 11739b12 − 4930b11 − 1090b10 − 82b9 ).

Nonetheless, the radicals are all very simple, and have the following plex
Gröbner bases, from which the zero sets can be easily derived (Exercise 8.13):

r plex Gröbner basis, r-th determinantal ideal
1 b(b+ 1), a(b+ 1), a(a2 + 1)
2 b(b+ 1), a(b+ 1), a(a2 + 1)
3 b(b+ 1), a(b+ 1), a(a2 + 1)
4 b(b+ 1), a(b+ 1), a(a2 + 1)
5 b(b+ 1), a(b+ 1), a(a2 + 1)
6 a(b+ 1), a(a2 + 1)
7 ab(b+ 1), a(a− 1)(a+ 1)(b+ 1)
8 ab(b+ 1)
9 ab(b+ 1)(b2 + b+ 1), ab(b+ 1)(a2 − b)

To conclude this section, we would like to mention very briefly how in-
voking the notion of a syzygy from commutative algebra can sometimes be
used to simplify matrices with polynomial entries. We start with a finitely
generated submodule M of a free module of rank n over the polynomial ring
F[x1, . . . , xk], in other words with the row module of an m×n matrix A with
polynomial entries.

Definition 8.4.3.7. By a syzygy of (the rows of) the matrix A we mean a
linear dependence relation for the rows, with polynomial coefficients: in other
words, a (nonzero) row vector S ∈ F[x1, . . . , xk]m for which SA = 0.

Since the rows of A generate the module M , every syzygy is a relation
among the generators of M . For a matrix over a field, a syzygy is the same
thing as a nonzero element of the left nullspace of the matrix, or equivalently



Linear Algebra over Polynomial Rings 275

the right nullspace of the transpose of the matrix. In this situation, we can
easily determine all syzygies by transposing the matrix, computing the RCF,
and extracting a basis for the nullspace.

Example 8.4.3.8. Let us see what happens when we replace polynomials
by rational functions and apply Gaussian elimination. This is best illustrated
by an example, and we have just seen one: in the last example, the last row
became a row of zeros when we computed the upper triangular form. Start
with the 10× 14 block matrix from Figure 8.2, transpose it, and compute its
RCF over F(x1, . . . , xk):

1 . . . . . . . . .
. 1 . . . . . . . −1/a
. . 1 . . . . . . .
. . . 1 . . . . . −b/a
. . . . 1 . . . . .
. . . . . 1 . . . .
. . . . . . 1 . . .
. . . . . . . 1 . .
. . . . . . . . 1 .


The nullspace is 1-dimensional, and a basis is[

0 1
a

0 b

a
0 0 0 0 0 1

]
Now something special happens: when we clear the denominators, we are left
with a nonzero scalar as one of the coefficients:

1
a

[
0 1 0 b 0 0 0 0 0 a

]
This tells us that as long as a 6= 0, then R2 + bR4 + aR10 = 0, where Ri is
row i of the original block B. It is easy to check that the condition a 6= 0 is
superfluous, and so we see that

R2 = −aR4 − bR10.

In other words, syzygies that have scalar coefficients allow to simplify matrices
we work with: if we perform the polynomial row operations “add aR4 to R2”
and “add bR10 to R2” then we will have eliminated row 2: it will have become
a row of zeros.

8.5 Bibliographical comments
The topic of linear algebra over polynomial rings is not as well known as

it should be, for a number of reasons. Perhaps the fundamental reason is that
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this nomenclature for the topic is relatively recent and has been influenced by
the rapid development of computer algebra; until the late 1970s research in
this area was regarded as the theory of finitely generated submodules of free
modules over commutative rings (which makes it hard to identify the most rel-
evant papers during a bibliographical search). A second reason, closely related
to the first, is the dichotomy between axiomatic methods and constructive
methods: there are many impressive theorems which require Zorn’s Lemma in
their proofs, but unless an algorithmic version can be given in the finite case,
most specialists in computer algebra tend to lose interest rather quickly. A
third reason, not related to the first two, is the breadth of connections of the
topic of linear algebra over polynomial rings; all of the following areas can be
expected to contribute directly to progress in research on this topic:

• Constructive methods in module theory over commutative rings.

• Complexity of Gröbner basis computations.

• Classification of modules over polynomial rings: free, projective, injec-
tive, etc.

• The Quillen–Suslin theorem (solution to Serre’s problem).

• Group actions on polynomial matrices, and orbit representatives.

• Algebraic K-theory, especially the K1 group of polynomial rings.

Nonetheless, we somewhat boldly compiled the list [133, 129, 238, 215, 172,
83, 229, 211, 245, 246, 168, 169, 195, 201, 13, 130] of essential papers, in
chronological order (it all, unsurprisingly, starts with Hilbert).

8.6 Exercises
Exercise 8.1. For each possible value r of the rank of each of the fol-
lowing matrices A, determine the values of the parameters x1, x2 for which
rank(A) = r: x1 x1 x2

1 x1 0
0 x1 0

  x2 x1 0
x2 0 1
x2 0 x1

  1 x2 1
0 1 x1
x1 1 1




1 x1 0 x1
x1 1 x2 0
0 1 x1 x1
1 x2 1 x2



x2 x1 0 0
1 1 x2 x2
x1 x2 0 x2
x2 0 x1 x2




0 x2 1 x1
x2 1 1 x1
1 1 x1 x2
1 0 1 x1


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x1 0 x1 x2 0
x2 x2 x2 x1 x2
1 x2 0 x2 x2
1 0 x2 x2 0
0 1 x1 x1 1




1 x2 x2 x2 x2
x1 0 x2 0 x2
x1 x1 0 0 0
x2 1 x2 0 0
x2 1 1 x2 x1



x2 0 x2 x1 x1
x1 1 1 0 x1
0 0 x2 x1 1
0 x2 x2 x1 x2
x2 1 x1 x1 x1


Exercise 8.2. For each possible value r of the rank of each of the follow-
ing matrices A, determine the values of the parameters x1, x2, x3 for which
rank(A) = r: x3 x2 x1

1 x1 0
0 x1 x3

  x2 x3 x1
x2 0 0
0 1 1

  x3 1 x3
1 x1 x2
x2 x3 x1



x1 x2 0 x1
1 x2 1 1
x1 x2 1 x2
1 x2 x2 x3



x2 x1 x1 x2
0 0 x3 x2
0 x2 1 1
x1 1 x2 1



x3 x1 x1 1
1 0 x1 x3
x3 x2 x1 1
0 x1 x1 x1




0 x1 x1 x1 x2
0 x2 1 0 x3
0 x2 x3 x3 0
0 x1 1 1 x1
x2 x1 x3 x2 x1



x2 x3 x1 0 x2
x2 1 x1 1 x1
x2 0 0 x3 0
1 x1 0 x2 x1
x1 0 0 0 x2




1 0 x2 0 x2
0 1 0 1 1
x3 1 x3 x2 x1
1 0 x2 x1 x2
0 1 0 1 x2


Exercise 8.3. For each possible value r of the rank of each of the following
matrices A, determine the values of the parameters x1, x2, x3, x4 for which
rank(A) = r: x1 0 x4

x3 x4 x2
x1 x4 x3

  1 x1 x2
x3 0 x4
x2 0 1

  x3 1 x1
x4 x4 0
x2 x2 x4




0 0 x4 0
1 x3 1 x3
x2 x1 0 x2
x2 0 x4 x3



x2 0 1 x4
x2 x4 x3 x2
x4 x2 x2 x2
x1 0 x3 0



x4 x3 x2 x1
x2 x3 x1 0
x4 x2 x4 x2
1 x1 1 x1



x3 1 x1 x4 0
x1 1 0 x2 0
x4 x2 0 1 0
1 1 x3 1 x3
x2 x4 x4 x1 1



x2 0 0 0 0
1 x3 x4 x2 x1
x4 x3 x3 x2 0
x2 1 1 x3 1
x3 x3 x4 x2 x1



x3 0 0 x2 0
x3 0 x1 1 x2
x1 x1 x1 x4 x1
1 x3 0 0 0
x2 1 x2 x3 x1


Exercise 8.4. Write a computer program which takes as input a given num-
ber k of parameters x1, . . . , xk and a given size n of square matrices, and
produces as output a pseudorandom n × n matrix whose entries are chosen
uniformly from the set E = {0, 1, x1, . . . , xk}. Extend this to a program which
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takes as input positive integers k, m, n and whose output is a pseudorandom
m× n matrix whose entries are chosen uniformly from E .

Exercise 8.5. Write a computer program which takes as input an m × n
matrix A whose entries belong to the polynomial ring F[x1, . . . , xk] and which
produces as output Gröbner bases for the determinantal ideals DIr(A) where
0 ≤ r ≤ min(m,n). Extend this to a program which also computes the zero
sets V (DIr(A)) and the inverse image for each possible rank:

inverse image rank(s)
V (DIr+1(A) \ V (DIr(A)) 0 ≤ r < min(m,n)
Fk \ V (DIr(A)) r = min(m,n)

Exercise 8.6. Verify the claims made in subsection 8.3.2 about the ranks of
the matrices An for n ≤ 5.

Exercise 8.7. Verify the following claims about the matrix A6 (see subsection
8.3.2 for the definition), and fill in the blanks for ranks 5 and 6:

V (DI1(A6)) = V (DI2(A6)) = ∅
V (DI3(A6)) = {(0, 1, 0, 1)}
V (DI4(A6)) =

{ (
x1, (x1+ε)2, x1(x1+2ε)2, (x2

1+3εx1+1)2 ) |
x1 ∈ F, ε = ±1

}
V (DI5(A6)) = V (DI6(A6)) = exercise

For this problem, computing the radicals of the determinantal ideals may be
useful. Recall that the radical

√
I of the ideal I ⊆ F[x1, . . . , xk] consists of

all polynomials which vanish on the zero set of I, and hence V (
√
I) = V (I).

Typically,
√
I is much larger than I and has a much simpler Gröbner basis.

For example, here is the deglex Gröbner basis of DI4(A6),

x2
2 − x3x1 − 2x2 + 1,
x3x2 − x4x1 − x2x1 − x3 + 2x1,

x2
3 − x4x2 − x3x1 + x4 + x2 − 1,
x1
(
x3

1 − 2x2x1 + x3 − 2x1
)
,

x1
(
x2x

2
1 − 2x3x1 − x2

1 + x4 − 3x2 + 2
)
,

x3x
3
1 − 2x4x

2
1 − 2x2x

2
1 + x4x2 − 3x3x1 + 4x2

1 − x4 − x2 + 1,(
x4 − 1

)(
x3

1 − 2x2x1 + x3 − 2x1
)
,(

x4 − 1
)(
x2x

2
1 − 2x3x1 − x2

1 + x4 − 3x2 + 2
)
,

and here is the deglex Gröbner basis of its radical
√
DI4(A6),

x2
2 − x3x1 − 2x2 + 1,
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x3x2 − x4x1 − x2x1 − x3 + 2x1,

x2
3 − x4x2 − x3x1 + x4 + x2 − 1,
x3

1 − 2x2x1 + x3 − 2x1,

x2x
2
1 − 2x3x1 − x2

1 + x4 − 3x2 + 2.

Computing a Gröbner basis for the radical can be very time-consuming, but
it can also make finding the zero set of the ideal much easier.

Exercise 8.8. Consider the sequence of symmetric matrices Bn defined by:

bii = 1 (1 ≤ i ≤ n), bi,i+k = bi+k,i = xk (1 ≤ i ≤ n− k, 1 ≤ k ≤ n− 1).

For n = 1, 2, 3, 4, . . . and continuing as far as you can, determine the inverse
image for each possible rank of Bn.

Exercise 8.9. Consider the skew-symmetric matrices Cn defined by:

cii = 0 (1 ≤ i ≤ n), ci,i+1 = 1, ci+1,i = −1 (1 ≤ i ≤ n− 1),
ci,i+k = xk−1, ci+k,i = −xk−1 (1 ≤ i ≤ n− k, 2 ≤ k ≤ n− 1).

where x1, . . . , xn−2 are variables. Here are two examples:

C4 =


0 1 x1 x2
1 0 1 x1
−x1 1 0 1
−x2 −x1 1 0

 C5 =


0 1 x1 x2 x3
1 0 1 x1 x2
−x1 1 0 1 x1
−x2 −x1 1 0 1
−x3 −x2 −x1 1 0


For n = 1, 2, 3, 4, . . . and continuing as far as you can, determine the inverse
image for each possible rank of Cn.

Exercise 8.10. Consider this sequence of skew-symmetric matrices Dn:

dii = 0 (1 ≤ i ≤ n), di,i+k = xk, di+k,i = −xk (1 ≤ i ≤ n− k, 1 ≤ k ≤ n− 1).

For n = 1, 2, 3, 4, . . . and continuing as far as you can, determine the inverse
image for each possible rank of Dn.

Exercise 8.11. Explain how to interpret the polynomials in Figure 8.1
as equations in spherical trigonometry. (If necessary, refer to Todhunter’s
classic 1886 textbook available for free download at Project Gutenberg
(www.gutenberg.org/ebooks/19770, and to Wolfram webpage http://
mathworld.wolfram.com/SphericalTrigonometry.html.)

Exercise 8.12. Compute the 141-element deglex Gröbner basis for the ideal
generated by the polynomials in 16 variables defining orthonormal bases of R4;
see subsection 8.3.3 for details. (Also, not quite seriously: after you have com-
puted the Gröbner basis, interpret the elements as equations in 4-dimensional
spherical trigonometry.)
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Exercise 8.13. Determine the zero sets of the determinantal ideals discussed
in Remark 8.4.3.6.

Exercise 8.14. In each case, determine all values of the parameters a, b, c, d
for which the 4× 4 matrix has rank exactly 2:

0 1 0 a
0 0 1 b
1 0 0 0
0 −a b 1




1 a b 0
0 0 0 1
a 1 0 0
−b 0 1 0




1 a 0 b
0 0 1 c
a 1 0 0
b 0 c 1




1 0 a b
0 1 c d
−a c 0 0
b −d 0 0


Exercise 8.15. Consider the set of all n×n matrices A whose entries belong
to the set {0, 1, x, y}. Clearly this set contains a total of 4n2 distinct matrices.

(a) For n = 2, determine by hand how many of these matrices satisfy
condition RF: their rows generate a free submodule of F[x, y]n.

(b) For n = 3, use a computer algebra system to determine how many of
these matrices satisfy condition RF.



Chapter 9
Case Study of Nonsymmetric Binary
Cubic Operads

9.1 Introduction
In this chapter we choose one particular question as a model that demon-

strates how methods of this book can be used for purposes of studying operads
with the given number of generators and relations. Let us consider the gener-
ating operation alphabet X for which

X (2) = {f}, and X (k) = ∅ for k 6= 2.

We will consider quotients of the free nonsymmetric operad T (X ) by several
relations of weight 3. Similarly to how operads with relations of weight 2 are
conventionally referred to as quadratic, operads with relations of weight 3
are called cubic. In a more classical language of identities in nonassociative
algebra, we focus on identities of arity 4 that involve one binary operation
and are nonsymmetric, so that in nonassociative monomials of each identity
all arguments appear in the same order (like in the associativity identity).
Our methods in principle apply to any number of operations, of any arities,
satisfying relations of any arities, either symmetric or nonsymmetric. However,
as we shall see below, sizes of matrices involved in investigating these questions
grow very fast, so computational feasibility may be an issue in practice.

To appreciate the power of our methods in full, we encourage the reader
to examine the large paper [205] (over 200 pages) where similar goals were
attempted without the advantage of computer algebra systems or the theory
of algebraic operads. This is also an appropriate place to mention the so-called
“Russian book” [260] which concentrates on alternative and Jordan algebras
but has much useful information on general (nonassociative) algebras.

Throughout this chapter, we implicitly assume that the ground field is
algebraically closed or at least contains roots of all equations we solve; we
leave it to the reader to adapt the results appropriately for when it is not the
case. Interestingly, results of this chapter provide in particular some examples
of “notable” operads whose defining relations have irrational coefficients.

281
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9.2 Toy model: the quadratic case
To motivate our problem we recall the analogue for quadratic operads:

those for which every term of every relation involves two operations (the
monomials have arity 3). Throughout this section, we shall often represent
operations in the free operad generated by f by balanced bracketings, e.g.,
the operations

f ◦1 f and f ◦2 f

that form a basis of T (X )(3) are represented by

((∗∗)∗) and (∗(∗∗)),

respectively. Hence the most general quadratic element we may consider has
the form

R = x1((∗∗)∗) + x2(∗(∗∗)). (9.1)

In principle, we already discussed this relation in Example 3.6.1.2, but we
shall now examine it in a different way, outlining the general methods that we
are going to use later on.

The space of arity 4 consequences of Relation (9.1) is spanned by the
cubic relations obtained by pre-composing and post-composing this relation
with the generating operation f of the operad:

R ◦1 f = x1(((∗∗)∗)∗) + x2((∗∗)(∗∗)),
R ◦2 f = x1((∗(∗∗))∗) + x2(∗((∗∗)∗)),
R ◦3 f = x1((∗∗)(∗∗)) + x2(∗(∗(∗∗))),
f ◦1 R = x1(∗((∗∗)∗)) + x2(∗(∗(∗∗))),
f ◦2 R = x1(((∗∗)∗)∗) + x2((∗(∗∗))∗).


(9.2)

These relations include all 5 balanced bracketings in arity 4:

(((∗∗)∗)∗), ((∗(∗∗))∗), ((∗∗)(∗∗)), (∗((∗∗)∗)), (∗(∗(∗∗))).

We construct the 5 × 5 relation matrix R over the polynomial ring F[x1, x2]
whose (i, j) entry is the coefficient of bracketing j in consequence i; the row
space of R is the subspace of TX (4) consisting of the consequences (9.2) of the
general quadratic relation (9.1):

R =


x1 0 x2 0 0
0 x1 0 x2 0
0 0 x1 0 x2
0 0 0 x1 x2
x1 x2 0 0 0


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A straightforward calculation shows that the set of r × r minors, which gen-
erates the r-th determinantal ideal, is as follows:

r = 1, 2, 3, 4: {±xr−i1 xi2 | 0 ≤ i ≤ r }, r = 5: {x2
2x

2
1(x1 + x2) }.

For r = 1, 2, 3, 4 the Gröbner basis is obtained by taking only the monomials
with positive sign, and in these cases the determinantal ideals have the same
radical (x1, x2). For r = 5 the ideal is principal and the generator det(R) is a
Gröbner basis; the radical is also principal with the exponents “erased”:√

DIr(R) = (x1, x2) (r = 1, 2, 3, 4),
√
DI5(R) = (x1x2(x1 + x2)).

From this we read off the zero sets:

V (DIr(R)) = { (0, 0) } (r = 1, 2, 3, 4),

V (
√
DI5(R)) = { (0, x2), (x1, 0), (x1,−x1) | x1, x2 ∈ F }.

With this information we completely understand the rank of R:

rank(R) =



0 for x1 = x2 = 0,
4 for x1 = 0, x2 6= 0,
4 for x1 6= 0, x2 = 0,
4 for x2 = −x1 6= 0,
5 for all other values of x1 and x2.

In particular, the rank is never 1, 2, or 3. In the case of rank 4, we make the
following conclusion: The only interesting case is rank 4:

• if [x1 : x2] = [0 : 1] then R = (∗(∗∗)),

• if [x1 : x2] = [1 : 0] then R = ((∗∗)∗),

• if [x1 : x2] = [1 : −1] then R = ((∗∗)∗) − (∗(∗∗)), so we obtain the
associativity identity.

In all other cases the operad is either free (rank 0, no relations) or nilpotent
(rank 5, all products of arity 4 vanish). Notably, these computations have
identified associativity, together with two trivial relations.

The calculations we have done are homogeneous: every nonzero coefficient
in every relation is an indeterminate; there are no nonzero scalars. We can
simplify these calculations by recalling that every nonzero scalar multiple of
a relation expresses the same algebraic property, and splitting the problem
into several different cases depending on whether the leading coefficient is 0
or 1. For example, the general quadratic relation x1((∗∗)∗) +x2(∗(∗∗)) can be
represented by the 1 × 2 coefficient matrix [x1, x2], and there are 3 possible
canonical forms for this matrix: [0, 0] (rank 0); [0, 1], [1, x] (rank 1). Substi-
tuting these values for x1 and x2 into the matrix R we obtain the zero matrix,
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a matrix of rank 4, and the following matrix over F[x]; we present the last
matrix together with its Hermite normal form (HNF):

1 0 x 0 0
0 1 0 x 0
0 0 1 0 x
0 0 0 1 x
1 X 0 0 0

 HNF−−−−−−−→


1 0 0 0 −x2

0 1 0 0 −x2

0 0 1 0 x
0 0 0 1 x
0 0 0 0 x2(x+ 1)


The Smith normal form is diag[1, 1, 1, 1, x2(x+ 1)]. From this we see immedi-
ately (without commutative algebra) that rank 4 occurs if and only if [x1 : x2]
is one of the pairs [0 : 1], [1 : 0], [1 : −1]. This approach allows us to reduce
the number of indeterminates by 1, which can make the difference between a
computation being possible or impossible. The purpose of the next section is
to extend these calculations to cubic relations.

9.3 The cubic case
Considering now the cubic case, we recall that in arity 4, there are five

bracketings for a binary operation, so the most general cubic relation depends
on five scalars x1, . . . , x5 ∈ F:

x1(((∗∗)∗)∗)+x2((∗(∗∗))∗)+x3((∗∗)(∗∗))+x4(∗((∗∗)∗))+x5(∗(∗(∗∗))). (9.3)

The vector space of all such relations has dimension 5, hence it is not sufficient
to study one relation at a time: we must also study sets of 2, 3, or 4 linearly
independent relations.

9.3.1 Preliminary analysis
Definition 9.3.1.1 (Relation rank). By the relation rank we mean the di-
mension r of the space of cubic relations in a given cubic quotient of T (X ).

For each rank r the coefficients of the relations form an r × 5 matrix R,
and we may assume that R is in row canonical form (RCF). For each rank
r there are

(5
r

)
cases depending on the positions of the pivots; entries of the

relation matrix which are not pivots, and are not above, below, or to the left
of a pivot, are independent free parameters. Within each rank r the cases are
sorted by the lexicographic order on the r-element subsets of {1, . . . , 5}. For
example, here are the five relation matrices of rank 1,[

1 x1 x2 x3 x4
]
,
[
0 1 x1 x2 x3

]
,
[
0 0 1 x1 x2

]
,
[
0 0 0 1 x1

]
,
[
0 0 0 0 1

]
. (9.4)

For ranks 2 and 3 there are ten cases each, which we leave to the reader
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(Exercise 9.1); here is the first case for each rank, both have 6 parameters:[
1 0 x1 x2 x3
0 1 x4 x5 x6

]  1 0 0 x1 x2
0 1 0 x3 x4
0 0 1 x5 x6

 . (9.5)

Here are the five relation matrices of rank 4:
1 0 0 0 x1
0 1 0 0 x2
0 0 1 0 x3
0 0 0 1 x4

,


1 0 0 x1 0
0 1 0 x2 0
0 0 1 x3 0
0 0 0 0 1

,


1 0 x1 0 0
0 1 x2 0 0
0 0 0 1 0
0 0 0 0 1

,


1 x1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (9.6)

We ignore the trivial cases: rank 0 (zero relation matrix, free operad), rank 5
(identity relation matrix, nilpotent operad).

Every cubic relation R in arity 4 produces six arity 5 consequences by
pre-composing and post-composing that relation with the generator:

R ◦1 f, R ◦2 f, R ◦3 f,
R ◦4 f, f ◦1 R, f ◦2 R.

}
(9.7)

The consequences of every cubic relation are linear combinations of the fol-
lowing ordered set of 14 bracketings in arity 5:

((((∗∗)∗)∗)∗), (((∗(∗∗))∗)∗), (((∗∗)(∗∗))∗), ((∗((∗∗)∗))∗),
((∗(∗(∗∗)))∗), (((∗∗)∗)(∗∗)), ((∗(∗∗))(∗∗)), ((∗∗)((∗∗)∗)),
((∗∗)(∗(∗∗))), (∗(((∗∗)∗)∗)), (∗((∗(∗∗))∗)), (∗((∗∗)(∗∗))),
(∗(∗((∗∗)∗))), (∗(∗(∗(∗∗)))).

 (9.8)

With respect to this basis of T (X )(5), the coefficient vectors of the conse-
quences of the generic relation (9.3) are the rows of the following 6 × 14
matrix, whose row space consists of all consequences of (9.3) in arity 5:

x1 x2 x3 x4 x5 0 0 0 0 0 0 0 0 0
x1 0 x2 0 0 x3 0 x4 x5 0 0 0 0 0
0 x1 0 x2 0 0 x3 0 0 x4 0 x5 0 0
0 0 x1 0 x2 0 0 x3 0 0 x4 0 x5 0
0 0 0 0 0 x1 x2 0 x3 0 0 x4 0 x5
0 0 0 0 0 0 0 0 0 x1 x2 x3 x4 x5

 (9.9)

Thus each cubic relation matrix of rank r in arity 4 produces a 6r×14 quartic
relation matrix in arity 5, whose row space consists of all consequences in arity
5 of the original relations in arity 4.

Our main goal in the rest of this chapter is to understand how the rank of
the 6r×14 quartic relation matrix in arity 5 matrix depends on the parameters
in the original cubic relations in arity 4. In particular, for each cubic relation
rank we wish to determine the minimal rank of the corresponding quartic
relation matrix, and the values of the parameters which produce that minimal
rank. This will provide a generalization of the (much simpler) results obtained
in Section 9.2 for quadratic relations.
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9.3.2 Relation rank 1
The relation matrices for the five cases corresponding to relation rank 1

have been displayed in (9.4). For case 1, we substitute 1, x1, x2, x3, x4 for
x1, x2, x3, x4, x5 into (9.9) to obtain the matrix C of consequences in arity 5:

C =


1 x1 x2 x3 x4 0 0 0 0 0 0 0 0 0
1 0 x1 0 0 x2 0 x3 x4 0 0 0 0 0
0 1 0 x1 0 0 x2 0 0 x3 0 x4 0 0
0 0 1 0 x1 0 0 x2 0 0 x3 0 x4 0
0 0 0 0 0 1 x1 0 x2 0 0 x3 0 x4
0 0 0 0 0 0 0 0 0 1 x1 x2 x3 x4

 (9.10)

Computing the partial Smith form using Algorithm 8.4.2.3, we obtain

C −→
[

I5 O5,9
O1,5 B1,9

]
where the row vector B = B1,9 contains the following nonzero entries, which
have been made monic and sorted by glex order with x1 ≺ · · · ≺ x5:

x2
1 − x3, x2x1 − x2

1 − x4, x2
2 − x4, x2

2 − x2x1 + x3,

x3(x2
1 − x2 + x1), x3x2x1 + x3x2 − x4x1,

x2
3x1 − x4x2 + x4x1, x4(x3x1 + x2).

 (9.11)

It follows that the rank of C is either 5 or 6, and rank(C) = 5 if and only
if the ideal I generated by the polynomials (9.11) vanishes. From (9.11) we
obtain the glex Gröbner basis for I:

x2
1 − x3, x2x1 − x4 − x3, x2

2 − x4, x3x2 − x4x1 − x3x1,
x4x2 + x3x1, x2

3 − x4x1, x4x3 + x4x1 + x3x1, x2
4 − x3x1.

From this we obtain the glex basis1 for
√
I:

x3 − x2 + x1, x4 + x2, x2
1 + x1 − x2, x1(x2 + 1), x2(x2 + 1).

The zero set of the radical (and the original ideal) contains three points, where
ω is a primitive cube root of unity:

V (
√
I) =

{
(x1, . . . , x4) = (0, 0, 0, 0), (ω,−1, ω2, 1)

}
.

For cases 2, 3, 4 of relation rank 1, the same steps produce the matrix
[ I6 | O6,8 ] which has rank 6 independently of the values of the parameters.
For case 5, there are no parameters and the same steps produce the matrix of
rank 5 which has I5 in the upper left corner and zeros elsewhere. To summarize,
we have proved the following result.

1Computer algebra systems are not infallible. The first time we did this computation,
the output was {x1, x3, x4, x2

2}. This set is indeed a Gröbner basis for the ideal it generates,
but that ideal is certainly not a radical ideal, neither does it have the same zero set! The
CAS in question will remain anonymous, and those responsible have been informed.
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Theorem 9.3.2.1. For a cubic relation matrix of rank 1, the dimension of
the space of quartic consequences in arity 5 is either 5 or 6. The minimal
dimension 5 is achieved if and only if the relation matrix represents one of
the following four elements:

R = (((∗∗)∗)∗),
R = (((∗∗)∗)∗) + ω((∗(∗∗))∗)− ((∗∗)(∗∗)) + ω2(∗((∗∗)∗)) + (∗(∗(∗∗))),
R = (∗(∗(∗∗))).

Here ω is one of the two roots of the polynomial t2 + t+ 1, that is a primitive
cube root of unity.

Theorem 9.3.2.2. Let P be any of the four operads of Theorem 9.3.2.1.
Then the generating function fP(t) :=

∑
n≥1 dimP(n)tn satisfies the algebraic

equation
fP(t) = t(1 + fP(t) + fP(t)2).

In particular, the numbers an, dimensions of P(n), are Motzkin numbers [236,
Seq. A001006]:

a1 = 1, an+1 = an +
∑

p+q=n
apaq.

Proof. Let us establish this equation for the first of those operads. Denote by
an the dimension of the arity n component of that operad P. Since we are
dealing with the operad whose defining relation is (((∗∗)∗)∗) = 0 each basis
element T of arity n+ 1 ≥ 2 that is not divisible by (((∗∗)∗)∗) is either of the
form (∗T ′), where T ′ is a basis element of arity n, or of the form ((∗T ′)T ′′),
where T ′ and T ′′ are basis elements of some arities p and q with p + q = n.
We immediately conclude that an+1 = an +

∑
p+q=n apaq. Multiplying this

equation by tn+1 and taking the sum for all n ≥ 1, we obtain

fP(t)− t = tfP(t) + tfP(t)2,

which is the equation for the generating function of Motzkin numbers. The
proof for the last operad is similar, one merely has to consider the “mirror
reflections” of all bracketings we just discussed. The case of the second and
the third operad is more complicated, and involves operadic Gröbner bases. In
fact, it turns out that the reduced Gröbner basis of the corresponding operads
for the gpathlex order consists of the original relation only (Exercise 9.3).
This of course implies that the normal forms for the second and the third
operad are exactly the same as for the first operad, and therefore they have
the same dimensions of components.

9.3.3 Relation rank 2
The cubic relation matrix for rank 2, case 1 is displayed in (9.5). In ma-

trix (9.9), we independently replace x1, . . . , x5 by the two rows of the cubic
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relation matrix, namely 1, 0, x1, x2, x3 and 0, 1, x4, x5, x6 and then stack the
two resulting 6×14 matrices, obtaining the following matrix whose row space
contains all consequences in arity 5 of the original cubic relations:

C =



1 . x1 x2 x3 . . . . . . . . .
1 . . . . x1 . x2 x3 . . . . .
. 1 . . . . x1 . . x2 . x3 . .
. . 1 . . . . x1 . . x2 . x3 .
. . . . . 1 . . x1 . . x2 . x3
. . . . . . . . . 1 . x1 x2 x3

. 1 x4 x5 x6 . . . . . . . . .

. . 1 . . x4 . x5 x6 . . . . .

. . . 1 . . x4 . . x5 . x6 . .

. . . . 1 . . x4 . . x5 . x6 .

. . . . . . 1 . x4 . . x5 . x6

. . . . . . . . . . 1 x4 x5 x6



(9.12)

The partial Smith form is a block matrix:

C −→
[

I9 O9,5
O3,9 B3,5

]
.

Hence the minimal rank of C is 9, and the maximal rank is at most 12. In
fact, another calculation shows that the lower right block B = B3,5 has full
rank over the field of rational functions F(x1, . . . , x6), and so the maximal
rank of C is 12.

Let us focus on a particular classification question: describe all parameters
for which the matrix of consequences has the smallest possible rank. The
entries of the block B = (bij) are as follows:

b1,1 = x5 − x1, b1,2 = −x4x1 + x6, b1,3 = 0,
b1,4 = x5x2 − x3, b1,5 = −x4x3 + x6x2,

b2,1 = −x4(x1 + x6), b2,2 = x4(x4x5 + x1),
b2,3 = x6x5x4 + x2

5x4 + x2
4x2 + x2

5x1 − x6x5 + x5x1 + x2x1 − x3,

b2,4 = x6x
2
5 + x2

5x2 + x5x4x2 − x2
6 − x4x3 + x2

2,

b2,5 = x2
6x5 + x6x5x4 + x2

5x3 + x6x4x2 + x3x2 + x6x1,

b3,1 = x4x3 + x2
1 + x2, b3,2 = −x2

4x2 − x2
1 + x3,

b3,3 = −x5x4x3 − x5x4x2 − x5x2x1 − x4x2x1 + x6x2 − x2x1,

b3,4 = −x2
5x3 − x5x

2
2 − x5x2x1 + x6x3 + x3x1,

b3,5 = −x6x5x3 − x6x4x2 − x5x3x2 − x6x2x1 − x3x1.
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The glex Gröbner basis of the ideal I generated by these entries is as follows:

x5 − x1, x2x1 − x3, x1(x3 + x1),
x4x1 − x6, x6x1 + 2x2

1 − x3 + x2, x2(x2 + 1),
x3(x2 + 1), x4x2 − x2

1 + x3, x6x2 + x2
1 + x2,

(x3 − x1)(x3 + x1), x4x3 + x2
1 + x2, x6x3 − 2x2

1 + x3 − x2,
x6(x4 + 1), x2

6 − 2x2
1 + x3 − x2, x3

1 + 2x2
1 + x2.

From this we obtain the glex Gröbner basis of the radical
√
I:

x3 + x1, x5 − x1, x2
1 − x6 + x2, x1(x2 + 1), x4x1 − x6,

x6x1 + 2x6 − x2 + x1, x2(x2 + 1), x4x2 − x6 + x2 − x1,
x6(x2 + 1), x6(x4 + 1), x2

6 − 2x6 + x2 − x1.

From this we find that the zero set V (
√
I) consists of two points and a line:

x1 x2 x3 x4 x5 x6

−1 −1 1 0 −1 0
−φ −1 φ −1 −φ φ

0 0 0 X 0 0

φ2 − φ− 1 = 0

X free

The corresponding cubic relation matrices are[
1 0 −1 −1 1
0 1 0 −1 0

] [
1 0 −φ −1 φ
0 1 −1 −φ φ

] [
1 0 0 0 0
0 1 X 0 0

]
These correspond to the cubic binary nonsymmetric operads defined by the
following three pairs of relations:

(((∗∗)∗)∗)− ((∗∗)(∗∗))− (∗((∗∗)∗)) + (∗(∗(∗∗))) = 0
((∗(∗∗))∗)− (∗((∗∗)∗)) = 0
(((∗∗)∗)∗)− φ((∗∗)(∗∗))− (∗((∗∗)∗)) + φ(∗(∗(∗∗))) = 0
((∗(∗∗))∗)− ((∗∗)(∗∗))− φ(∗((∗∗)∗)) + φ(∗(∗(∗∗))) = 0
(((∗∗)∗)∗) = 0
((∗(∗∗))∗) +X((∗∗)(∗∗)) = 0 (X ∈ F)


(9.13)

Up to this point, we have been studying only the first determinantal ideal
of the 3 × 5 block B, since this is what we need to determine the minimal
rank of C and the corresponding cubic relations. But in order to understand
completely the possible ranks of C, we need to investigate the second and
third determinantal ideals of B. This is significantly harder, since the degrees
of the generators increase, and hence computing Gröbner bases for the ideals
and their radicals takes much more time and memory. In particular:

• There are
(3

2
)(5

2
)

= 30 minors of size 2, all of which are nonzero; they
have degrees between 4 and 6, numbers of terms between 8 and 50, and
coefficients at most 2 in absolute value.
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• There are
(3

3
)(5

3
)

= 10 minors of size 3, all of which are nonzero; they have
degrees 7 and 8, numbers of terms between 87 and 136, and coefficients
at most 3 in absolute value.

Further discussion of these ideals is left to Exercises 9.4 and 9.5.
So far we have only considered case 1, and there are altogether 10 cases

for rank 2. Further calculations verify that 9 is the minimal dimension of the
space of consequences in arity 5 over all 10 cases. (Recall that the matrix C
representing these consequences depends on the case.) The remaining cases
have fewer parameters than case 1, and so the computations are simpler.
Complete verification of the following result is left to the reader.

Theorem 9.3.3.1. For all ten cases of cubic relation matrices of rank 2, the
matrix C representing the consequences in arity 5 satisfies rank(C) ≥ 9. The
following is a complete list over all ten cases of the sets of two relations which
produce the minimal rank 9 for C:

• the relations

(((∗∗)∗)∗)− ((∗∗)(∗∗))− (∗((∗∗)∗)) + (∗(∗(∗∗))) = 0,
((∗(∗∗))∗)− (∗((∗∗)∗)) = 0,

• the relations

(((∗∗)∗)∗) = 0,
((∗(∗∗))∗) +X((∗∗)(∗∗)) = 0

for any X ∈ F,

• the monomial relations

(((∗∗)∗)∗) = 0, ((∗∗)(∗∗)) = 0

(the “X =∞ version” of the previous case),

• the relations

((∗∗)(∗∗)) +X(∗((∗∗)∗)) = 0,
(∗(∗(∗∗))) = 0

for any X ∈ F,

• the monomial relations

(∗((∗∗)∗)) = 0, (∗(∗(∗∗))) = 0

(the “X =∞ version” of the previous case),
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• the relations

(((∗∗)∗)∗)− φ((∗∗)(∗∗))− (∗((∗∗)∗)) + φ(∗(∗(∗∗))) = 0,
((∗(∗∗))∗)− ((∗∗)(∗∗))− φ(∗((∗∗)∗)) + φ(∗(∗(∗∗))) = 0

where φ is a root of the polynomial t2 − t− 1.

Proof. Exercise 9.7.

Using operadic Gröbner bases, one can prove the following result on di-
mensions of components of the operads from the previous theorem.

Theorem 9.3.3.2. For the relations

(((∗∗)∗)∗) = 0,
((∗(∗∗))∗) +X((∗∗)(∗∗)) = 0

and

((∗∗)(∗∗)) +X(∗((∗∗)∗)) = 0,
(∗(∗(∗∗))) = 0

with X ∈ F×, the dimension of the n-th component of the corresponding operad
is equal to 

1, n = 2,
2, n = 3,
3, n = 4,
5, n = 5,
6, n ≥ 6,

and for all other operads listed in Theorem 9.3.3.1, the dimension of its n-th
component is equal to the n-th Fibonacci number.

Proof. Exercise 9.8.

Remark 9.3.3.3. It is the most amusing coincidence that Fibonacci numbers
arise as dimensions of components for the operad with relations

(((∗∗)∗)∗)− φ((∗∗)(∗∗))− (∗((∗∗)∗)) + φ(∗(∗(∗∗))) = 0,
((∗(∗∗))∗)− ((∗∗)(∗∗))− φ(∗((∗∗)∗)) + φ(∗(∗(∗∗))) = 0

involving the golden ratio.
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9.3.4 Relation rank 3
The situation for rank 3 is very similar to that for rank 2, although for

rank 3 we begin to obtain values of the parameters for which the matrix of
consequences in arity 5 has full rank 14, and hence the corresponding operad
is nilpotent of index 4: the space of relations has full rank for all arities n ≥ 5.

For case 1, the matrix of consequences in arity 5 has size 18× 14; we have
sorted the rows to make the matrix as close to upper-triangular as possible,
so the blocks representing the three individual relations are no longer visible:

C =



1 . . x1 x2 . . . . . . . . .
1 . . . . . . x1 x2 . . . . .
. 1 . x3 x4 . . . . . . . . .
. 1 . . . . . . . x1 . x2 . .
. . 1 x5 x6 . . . . . . . . .
. . 1 . . . . x3 x4 . . . . .
. . 1 . . . . . . . x1 . x2 .
. . . 1 . . . . . x3 . x4 . .
. . . . 1 . . . . . x3 . x4 .
. . . . . 1 . x5 x6 . . . . .
. . . . . 1 . . . . . x1 . x2
. . . . . . 1 . . x5 . x6 . .
. . . . . . 1 . . . . x3 . x4
. . . . . . . 1 . . x5 . x6 .
. . . . . . . . 1 . . x5 . x6
. . . . . . . . . 1 . . x1 x2
. . . . . . . . . . 1 . x3 x4
. . . . . . . . . . . 1 x5 x6



(9.14)

Computation of the partial Smith form gives the following result:

C −→
[

I12 O12,2
O6,12 B6,2

]
(9.15)

To display the relatively complex entries of the 6×2 lower right block B = B6,2
we write the two column vectors separately, 5 above 6, in Figure 9.1.

As above, let us focus on determining parameters for which the matrix of
consequences has the smallest possible rank.

Let I denote the ideal generated by the entries of B: so I is the first
determinantal ideal of B. The glex Gröbner basis for I is not displayed: it
consists of 30 polynomials with degrees 2 and 3, terms from 3 to 12, and
coefficients at most 21 in absolute value. Its first and last elements are:

f1 = x5x2 − x3x1 + x2
1 + x4,

f30 = 4x3
4 + 4x3

1 − 3x2
4 + 10x4x3 − 18x4x2 − 20x3x2

+ 21x2
2 − 9x4x1 + 4x3x1 + 11x2x1 + 6x4 − 10x2.
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x5(x6 − x3 + x1)
−x5x4x3 − x4x

2
3 − x2

3x1 + x2
4 − x5x2 − x2

1

x2
5x2 − x2

3x2 − x5x4x1 + x5x3x1 − x3x
2
1 + x4x2 − x6x1

−x6x
2
3 + x5x

2
3 − x5x3x1 + x6x4 − x6x3

−x6x
2
5 − x2

5x3 + x6x5 − x5x1

−x2
5x4 − x6x

2
3 − x5x3x1 + x6x4 − x3x1 + x2




x2
6 − x6x3 + x5x2 + x4

−x6x4x3 − x2
4x3 − x2

3x2 − x6x2 − x2x1

x6x5x2 − x4x3x2 − x6x4x1 + x5x4x1 − x3x2x1 − x6x2

−x6x4x3 + x5x4x3 − x5x3x2 − x6x4

−x2
6x5 − x2

5x4 + x2
6 − x6x1 + x2

−x6x5x4 − x6x4x3 − x5x3x2 − x4x1


FIGURE 9.1: Rank 3, case 1: the lower right block B = B6,2.

The glex Gröbner basis for the radical
√
I consists of 19 polynomials with

degrees 2 and 3, terms from 3 to 9, and coefficients at most 5 in absolute
value. These polynomials are

x5x1 + x4x1 + 2x3x1 − x2x1 − 2x2
1 − x6 − x4 + x2 + x1,

2x6x1 + x4x1 − 2x3x1 − x2x1 + 2x2
1 + 2x6 + x4 − x2,

x2
2 + x4x1 + x2x1 + x2

1 + x2 + x1,

2x3x2 + x4x1 + 2x3x1 − x2x1 − x4 + x2 + 2x1,

x4x2 + x4x1 + x2,

x5x2 − x3x1 + x2
1 + x4,

2x6x2 + x4x1 + 2x3x1 + x2x1 − x4 + x2 + 2x1,

2x4x3 − x4x1 + 2x3x1 − x2x1 − 2x2
1 − x4 + x2,

2x5x3 + x4x1 + 2x3x1 − x2x1 − 2x2
1 − 2x6 − x4 + x2 + 2x1,

x6x3 + x4x1 + x2
1 + x6 + x1,

x2
4 − x4x1 − 2x3x1 + x2x1 + x2

1 + x4 − x1,

x5x4 + 2x4x1 + x3x1 − x2x1 + x2 + x1,

2x6x4 + x4x1 + 2x3x1 − x2x1 − 2x2
1 − x4 + x2,

2x6x5 − x4x1 − 2x3x1 + x2x1 + 2x2
1 + x4 − x2,

x2
6 + x4x1 + x3x1 + x6 + x1,

x2x
2
1 + x3

1 − x4x1 − 2x3x1 + 2x2
1 + x4 − x2 − x1,

2x3x
2
1 − 2x3

1 − x4x1 − 2x3x1 + 3x2x1 + 4x2
1 − x4 + x2 + 2x1,
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x4x
2
1 + x3

1 − x2x1 + x4 − x2 − x1,

2x2
3x1 − 2x3

1 − x4x1 + 5x2x1 + 4x2
1 − 3x4 + 3x2 + 4x1.

This seems like a good opportunity to demonstrate explicitly some methods
for solving systems of polynomial equations. We will determine the set of
common zeros of the Gröbner basis for the radical that we found (and hence
the zero set of the original ideal), relying on a computer algebra system only
for computations of intermediate Gröbner bases.

Lemma 9.3.4.1. The zero set of the ideal I consists of the union of three
lines and five points in F6:

[ x1, . . . , x6 ] ∈
{

[X,−X − 1, X,−X − 1,−1, 0 ] | X ∈ F
}
∪{

[ 0, 0, X, 0, 0, 0 ] | X ∈ F
}
∪{

[ 0, 0, 0, 0, X, 0 ] | X ∈ F
}
∪{

[−1, 0,−1, 0, 0,−1 ]
}
∪ S.

Here the set S contains all points of the form

[ω2φ,−φ, ωφ, ω2,−ω2,−φ],

where ω is a root of the polynomial t2 + t+ 1 and φ is a root of the polynomial
t2 − t− 1.

Proof of Lemma 9.3.4.1. Note that the sum of the elements

2x6x4 + x4x1 + 2x3x1 − x2x1 − 2x2
1 − x4 + x2,

2x6x5 − x4x1 − 2x3x1 + x2x1 + 2x2
1 + x4 − x2

(elements 13 and 14 of the Gröbner basis above) is 2x6(x5 + x4), and so we
can split the proof into two parts: first, set x6 = 0; second, set x5 = −x4. In
both cases we reduce the number of variables by one.

Case 1: We set x6 = 0 in the 19 polynomials, and compute the glex
Gröbner basis of the ideal generated by the resulting polynomials in x1, . . . , x5.
This basis has only 8 elements:

x4 − x2, x1(x1 + x2 + 1), x1(x3 − x1),
x1(x5 + 1), (x2 + x1 + 1)(x2 − x1),
x2

1 + x2x3 + x1, x2(x5 + 1), x3x5 + x1.

 (9.16)

The second, third, and fourth elements have x1 as a factor, and so we can
split again into two cases: either x1 = 0, or x2 = −x1 − 1 and x3 = x1 and
x5 = −1.

Case 1.1: We set x1 = 0 in the polynomials (9.16) and recompute the
Gröbner basis in x2, . . . , x5 which consists of these five polynomials:

x4 − x2, x2(1 + x2), x3x2, x2(x5 + 1), x5x3.
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From this we see that either x2 = 0 or x2 = −1; in the former case, x4 = 0
and either x3 is free or x5 is free but not both and the other is zero; in the
latter case, x3 = 0, x4 = −1, x5 = −1. This produces three solutions:

[x1, . . . , x6] =


[0, 0, X, 0, 0, 0] (X ∈ F)
[0, 0, 0, 0, X, 0] (X ∈ F)
[0,−1, 0,−1,−1, 0]

(9.17)

Case 1.2: We set x2 = −x1−1, x3 = x1, x5 = −1 in (9.16) and recompute
the Gröbner basis in x1, x4; the ideal is principal with generator x4 + x1 + 1.
We obtain this solution

[x1, . . . , x6] = [X,−X − 1, X,−X − 1,−1, 0] (X ∈ F). (9.18)

Note that for X = 0 we obtain the previous solution [0,−1, 0,−1,−1, 0].
Case 2: We set x5 = −x4 in the 19 polynomials, and compute the

glex Gröbner basis of the ideal generated by the resulting polynomials in
x1, . . . , x4, x6. This Gröbner basis consists of the following 14 elements:

2x3x1 − x2x1 − 2x2
1 − x6 − x4 + x2 + x1,

2x4x1 − x2x1 − x6 + x4 + 3x2 + x1,

4x6x1 − 3x2x1 + 3x6 − x4 − 3x2 + x1,

2x2
2 + 3x2x1 + 2x2

1 + x6 − x4 − x2 + x1,

4x3x2 + x2x1 + 4x2
1 + 3x6 − x4 − 3x2 + x1,

2x4x2 + x2x1 + x6 − x4 − x2 − x1,

4x6x2 + 5x2x1 + 4x2
1 + 3x6 − x4 − 3x2 + x1,

4x4x3 − x2x1 + x6 + x4 + 3x2 − x1,

2x6x3 + x2x1 + 2x2
1 + 3x6 − x4 − 3x2 + x1,

2x2
4 − x2x1 − 2x2

1 − 3x6 + x4 + 5x2 + x1,

4x6x4 + x2x1 + 3x6 − x4 − 3x2 − 3x1,

x2
6 + x2x1 + x2

1 + 2x6 − 2x2,

4x3
1 − 13x2x1 − 4x2

1 + x6 + 9x4 − 5x2 − 9x1,

4x2x
2
1 + 7x2x1 + 4x2

1 − 7x6 − 7x4 + 11x2 + 11x1.

Analyzing this Gröbner basis we see that there are equations where the vari-
ables x4 and x6 appear among linear terms with some scalar coefficients, and
do not appear in other terms. This suggests that we should eliminate these
variables from our equations, so that only variables x1, x2, and x3 remain.
This can be done as follows: consider the monomial order which assigns the
weight 1 to the variables x1, x2, and x3, and the weight 10 to the variables x4
and x6. The reduced Gröbner basis for this order consists of the nine polyno-
mials

x6 − x1x3 + x2
2 + 2x1x2 + 2x2

1 − x2,
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x4 − x2
2 − x3x1 − x2x1 − x1,

(2x2 + x1)(x3 − x2 − x1),
2x3

1 + 4x2
2 + 5x3x1 − 3x2x1 − 3x2

1 − 2x2,

2x2x
2
1 − 7x3x1 + 7x2x1 + 9x2

1 + 2x2 + 2x1,

x3x
2
1 + 2x2

2 + x3x1 + x2
1 + x1,

2x2
2x1 − 2x2

2 + 5x3x1 − 5x2x1 − 7x2
1 − 2x1,

x2
3x1 + x2

2 + x3x1 + x2
1 + x2 + x1,

2x3
2 + 2x2

2 − x3x1 + x2x1 + x2
1 − 2x2.

Examining the polynomial (2x2 + x1)(x3 − x2 − x1), we see that either
x1 = −2x2 or x1 = x3 − x2, so we again split into two cases.

Case 2.1: We substitute x1 = −2x2 in the last six polynomials of the set
above and compute the reduced Gröbner basis for the glex order, obtaining
{x2(x2 − 1), x2(x3 + 2) }, for which the zero set is

[x2, x3] ∈ { [0, X] | X ∈ F } ∪ { [1,−2] }.

Solving backwards for the values of the other variables, we obtain

[x1, . . . , x6] = [0, 0, X, 0, 0, 0], [−2, 1,−2, 1,−1, 0].

The first has already appeared in (9.17), and the second is the special case
X = −2 of (9.18), so there are no new solutions.

Case 2.2: We substitute x1 = x3−x2 in the last six polynomials of the set
above and compute the reduced Gröbner basis for the glex order, obtaining
these four polynomials:

x2(x2
2 + x2 − 1),

x3x
2
2 − x2

3 + 2x3x2 − x2
2 − x3,

x2
3x2 − x2

3 + 2x3x2 − 2x2
2 − x3 + x2,

x3
3 + x2

3 − x3x2 + x2.

The first of these implies that either x2 = 0 or x2
2 + x2 − 1 = 0.

Case 2.2.1: If x2 = 0, we find that the resulting polynomials generate the
principal ideal of multiples of x3(x3 + 1). Working backward from x3 = 0 we
obtain only the solution [0, 0, 0, 0, 0, 0]. Working backward from x3 = −1 we
obtain a new solution:

[x1, . . . , x6] = [−1, 0,−1, 0, 0,−1]. (9.19)

Case 2.2.2: If x2
2 + x2 − 1 = 0, we see that x2 = −φ, where φ = −1±

√
5

2 is
a root of the polynomial t2 − t − 1. Substituting this value of x2 in elements
above, we obtain the following polynomials:

−x2
3 − φx3 + (−φ− 1),

(−φ− 1)x2
3 + (−2φ− 1)x3 + (−3φ− 2),

x3
3 + x2

3 + φx3 − φ.
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By a direct computation,

(−φ− 1)x2
3 + (−2φ− 1)x3 + (−3φ− 2) = (φ+ 1)(−x2

3 − φx3 + (−φ− 1)),
x3

3 + x2
3 + φx3 − φ = (−x2

3 − φx3 − (φ+ 1))(−x3 − 1 + φ),

so the corresponding ideal is generated by the polynomial

F = x2
3 + φx3 + (φ+ 1).

In fact, we can rewrite it as

F = x2
3 + φx3 + φ2,

which instantly shows that x3
φ = ω is a root of the polynomial t2 + t + 1, a

primitive cube root of unity. Furthermore, we recall that throughout Case 2.2
we have x1 = x3 − x2, so

x1 = ωφ+ φ = φ(ω + 1) = −ω2φ,

Next, we substitute the values that we found in the first two polynomials of
the set above, obtaining

x6 = −φ2ω3 − φ2 − 2φ2ω2 − 2φ2ω4 − φ = −φ, (9.20)
x4 = φ2 − φ2ω3 + φ2ω2 − φω2 = (φ2 − φ)ω2 = ω2. (9.21)

Finally, since throughout Case 2 we have x5 = −x4, we conclude that

x5 = −ω2.

Theorem 9.3.4.2. For the ten cases of cubic relation matrices of rank 3,
the matrix C representing the quartic consequences satisfies rank(C) ≥ 12.
Figure 9.2 gives a complete list of the triples of cubic relations which produce
the minimal rank 12 for the quartic relations.

Proof. Case 1, the most difficult case, has been done in Lemma 9.3.4.1. The
remaining cases 2–10 are left to the reader; see Exercise 9.10.

Another classification question which we decided to discuss here is how
to hunt for values of parameters that give nilpotent operads. The operad
corresponding to the cubic relation matrix becomes nilpotent in arity 5 if
and only if the 18 × 14 matrix C has full rank, which happens if and only
if the 6 × 2 lower right block B = B6,2 has full rank; see Figure 9.1. Thus
nilpotent operads exist if and only if there exist values of x1, . . . , x6 for which
rank(B) = 2. Do such values exist? If so, can we find all such values?

To answer the second question requires studying the second determinantal
ideal DI2(B). The values we want form the complement of V (DI2(B)) in F6.
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(((∗∗)∗)∗) +X(∗((∗∗)∗))− (X + 1)(∗(∗(∗∗))) = 0
((∗(∗∗))∗) +X(∗((∗∗)∗))− (X + 1)(∗(∗(∗∗))) = 0

((∗∗)(∗∗)) = (∗((∗∗)∗))
(((∗∗)∗)∗) = 0, ((∗∗)(∗∗)) = 0,

((∗(∗∗))∗) +X(∗((∗∗)∗)) = 0
(((∗∗)∗)∗) = 0, ((∗(∗∗))∗) = 0,

((∗∗)(∗∗)) +X(∗((∗∗)∗)) = 0
(((∗∗)∗)∗) = ((∗(∗∗))∗) = (∗((∗∗)∗)),

((∗∗)(∗∗)) = (∗(∗(∗∗)))
(((∗∗)∗)∗) + ω2φ (∗((∗∗)∗))− φ (∗(∗(∗∗))) = 0
((∗(∗∗))∗) + ωφ (∗((∗∗)∗)) + ω2 (∗(∗(∗∗))) = 0

((∗∗)(∗∗))− ω2 (∗((∗∗)∗))− φ (∗(∗(∗∗))) = 0



case 1

(((∗∗)∗)∗) = 0, ((∗(∗∗))∗) = 0, (∗((∗∗)∗)) = 0
(((∗∗)∗)∗) = ((∗∗)(∗∗)),

((∗(∗∗))∗) = (∗((∗∗)∗)) = (∗(∗(∗∗)))
(((∗∗)∗)∗) +X((∗∗)(∗∗))− (X + 1)(∗(∗(∗∗))) = 0,

((∗(∗∗))∗) = ((∗∗)(∗∗)), (∗((∗∗)∗)) = (∗(∗(∗∗)))


case 2

(((∗∗)∗)∗) = ((∗(∗∗))∗),
((∗∗)(∗∗)) = (∗((∗∗)∗)) = (∗(∗(∗∗)))

(((∗∗)∗)∗) = 0, ((∗∗)(∗∗)) = 0, (∗((∗∗)∗)) = 0

 case 4

(((∗∗)∗)∗) = ((∗∗)(∗∗)) = (∗(∗(∗∗))) = 0
}

case 5

((∗(∗∗))∗) = ((∗∗)(∗∗)) = (∗((∗∗)∗)) = (∗(∗(∗∗)))
((∗(∗∗))∗) = 0, ((∗∗)(∗∗)) = 0, (∗((∗∗)∗)) = 0

}
case 7

((∗(∗∗))∗) +X(∗((∗∗)∗)) = 0,
((∗∗)(∗∗)) = 0, (∗(∗(∗∗))) = 0

}
case 8

((∗(∗∗))∗) +X((∗∗)(∗∗)) = 0,
(∗((∗∗)∗)) = 0, (∗(∗(∗∗))) = 0

}
case 9

((∗∗)(∗∗)) = 0, (∗((∗∗)∗)) = 0, (∗(∗(∗∗))) = 0
}

case 10

FIGURE 9.2: Operads with cubic rank 3 and minimal quartic rank 12.

It is not hard to compute the 2 × 2 minors: there are
(6

2
)

= 15 of them, and
all are nonzero; they have degrees 5 and 6, and terms from 19 to 44; and their



Case Study of Nonsymmetric Binary Cubic Operads 299

coefficients lie in {−2, . . . , 2}. Here is the greatest in glex order:

x2
5x

2
4x3x2 − x6x5x4x

2
3x2 + x5x

2
4x

2
3x2 − x6x4x

3
3x2 + x2

5x
2
3x

2
2

− x4
3x

2
2 − x2

5x
2
4x3x1 − x5x

3
4x3x1 + x6x5x4x

2
3x1 + x6x

2
4x

2
3x1

− x6x5x
2
3x2x1 + x5x

3
3x2x1 + 2x4x

3
3x2x1 − x5x4x

2
3x

2
1

− x2
4x

2
3x

2
1 + x6x5x

2
4x2 + x6x5x4x3x2 + x6x

2
4x3x2 + x6x4x

2
3x2

+ x5x4x3x
2
2 − x6x

2
3x

2
2 + x4x

2
3x

2
2 − x6x

3
4x1 + x5x

3
4x1

− x2
6x4x3x1 − x6x

2
4x3x1 − x2

5x4x2x1 + x6x5x3x2x1

− x2
4x3x2x1 + x2

5x
2
2x1 + x5x3x

2
2x1 − x2

3x
2
2x1 − x6x5x2x

2
1

− x5x4x2x
2
1 − x6x3x2x

2
1 + x5x3x2x

2
1 + x4x3x2x

2
1 + x6x4x

3
1

− x5x4x
3
1 − x6x

2
4x2 + x6x5x

2
2 + x6x4x

2
2 − x2

6x2x1 + x4x
2
2x1.

Problems begin when we compute the glex Gröbner basis. It contains 332
polynomials of degrees between 5 and 19; each has between 19 and 3441 terms;
and the coefficients have up to 98 decimal digits. So it seems to be a hard
problem to compute a Gröbner basis for the radical, and to find the zero set;
see Exercise 9.9.

To answer the first question is much easier: we use modular methods to
understand the distribution of the ranks, and if this indicates that full rank
is possible, then we use trial and error with pseudorandom values of the pa-
rameters to find examples of nilpotent operads. This is reasonable since the
nilpotency condition is that the highest determinantal ideal does not vanish,
and so the set of parameter values which imply nilpotency is Zariski open. To
justify the use of modular methods to obtain rational results, we appeal to
the following fact.

Lemma 9.3.4.3. Let A be any m×n matrix with entries in Z. Let rank0(A)
be the rank of A over Q, and for any prime p let rankp(A) be the rank of A
over the field Fp with p elements. Then

rankp(A) ≤ rank0(A) for all p.

In particular, if A has full rank over Fp for some p, then A has full rank
over Q.

Proof. Lemma 8.2.3.2 implies that the rank of A over any field F is the largest
integer r satisfying condition N(r,F): at least one r × r minor is nonzero in
F. (To deal with rank 0, we define the unique 0 × 0 minor to be 1.) Minors
are polynomial functions of the matrix entries aij , and reduction modulo p is
a ring homomorphism from polynomials with coefficients in Z to polynomials
with coefficients in Fp. Hence N(r,Fp) implies N(r,Q) but not conversely. For
extensions of this result, see Exercise 9.13.

It follows that if the relation matrix for a given arity has full rank over Fp
for some prime p then the operad is nilpotent. Figure 9.3 displays the results of
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Case 1 : parameters 6, block 6× 2 Case 2 : parameters 5, block 6× 2
rank(B) rank(C) number percent rank(B) rank(C) number percent

0 12 33 0.001863 0 12 13 0.008072
1 13 3351 0.1892 1 13 488 0.3030
2 14 1768177 99.81 2 14 160550 99.69

Case 3 : parameters 4, block 4× 1 Case 4 : parameters 4, block 5× 2
rank(B) rank(C) number percent rank(B) rank(C) number percent

12 0 12 2 0.01366
0 13 11 0.07513 1 13 148 1.011
1 14 14630 99.92 2 14 14491 98.98

Case 5 : parameters 3, block 3× 2 Case 6 : parameters 2, block 0× 0
rank(B) rank(C) number percent rank(B) rank(C) number percent

0 12 1 0.07513 12
1 13 39 2.930 0 13 121 100
2 14 1291 96.99 14

Case 7 : parameters 3, block 5× 1 Case 8 : parameters 2, block 2× 1
rank(B) rank(C) number percent rank(B) rank(C) number percent

0 12 2 0.1503 0 12 11 9.091
1 13 1329 99.85 1 13 110 90.91

14 14
Case 9 : parameters 1, block 0× 0 Case 10 : parameters 0, block 0× 0
rank(B) rank(C) number percent rank(B) rank(C) number percent

0 12 11 100 0 12 1 100
13 13
14 14

FIGURE 9.3: Ranks of consequences and nilpotency of operads.

computations for cases 1–10 using p = 11. The number of k-tuples [x1, . . . , xk]
of parameter values in terms of the number k of parameters in each case is

pk = 1, 11, 121, 1331, 14641, 161051, 1771561 (k = 0, . . . , 6).

We see that nilpotency, rank(C) = 14, occurs only for cases 1–5, and in those
cases a large majority (nearly 100%) of the k-tuples [x1, . . . , xk] produce nilpo-
tent operads. This motivates using trial-and-error methods to find examples.

For each case we used a loop over the Cartesian product of k copies of the
coefficient set X = { 0,±1, . . . ,±5 } where k is the number of parameters, and
obtained the following results, verifying that in cases 1–5 almost all parameter
values produce nilpotent operads:
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case parameters nilpotent |X |k percentage
1 6 1768810 1771561 ≈ 99.845
2 5 160662 161051 ≈ 99.758
3 4 14636 14641 ≈ 99.966
4 4 14570 14641 ≈ 99.515
5 3 1310 1331 ≈ 98.422

Closer inspection of these results shows that we can obtain nilpotent operads
even when only one of the parameters is nonzero. Since this special case has
only one parameter, we can make the corresponding substitutions into the
quartic relation matrix C, and compute its Smith normal form. In all cases
the minimal rank is 12, and so the first 12 diagonal entries of the Smith form
are 1; we are only concerned with the last two diagonal entries, which are
displayed in the table below. Considering each parameter on its own, we have:

• If x1 6= 0, others 0, then only case 3 produces a nilpotent operad.
• If x2 6= 0, others 0, then every case is nilpotent.
• If x3 6= 0, others 0, then only cases 3, 4, 5 are nilpotent.
• If x4 6= 0, others 0, then only cases 1, 2, 3 are nilpotent; case 4 is not.
• If x5 6= 0, others 0, then neither case 1 nor 2 is nilpotent.
• If x6 6= 0, others 0, then case 1 is not nilpotent.

parameter case 1 case 2 case 3 case 4 case 5
x1 x2

1 0 x2
1 0 1 x1 x1 0 x2

1 0
x2 x2 x2 x2 x2 1 x2 x2 x2 x2 x2
x3 0 0 x2

3 0 1 x3 x3 x3 x3 x2
3

x4 x4 x2
4 x4 x4 1 x4 x4 0

x5 0 0 x2
5 0

x6 x2
6 0

9.3.5 Relation rank 4
Since there are five nonsymmetric cubic monomials, a cubic relation matrix

has nullity 1 if and only if it has rank 4. We have the following result.

Theorem 9.3.5.1. Every nonsymmetric operad defined by a four-dimensional
space of cubic relations is nilpotent (in the sense that every quartic composition
is zero) except for the three operads defined by the following relation matrices:

1 · · · −1
· 1 · · −1
· · 1 · −1
· · · 1 −1




1 · · · ·
· 1 · · ·
· · 1 · ·
· · · 1 ·



· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1


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The first matrix says that all five monomials are equal; “cubic associativity”:

(((∗∗)∗)∗) = ((∗(∗∗))∗) = ((∗∗)(∗∗)) = (∗((∗∗)∗)) = (∗(∗(∗∗))).

The second matrix says that the first four monomials vanish, and the last is
“free”:

(((∗∗)∗)∗) = ((∗(∗∗))∗) = ((∗∗)(∗∗)) = (∗((∗∗)∗)) = 0.

The third matrix says that the last four monomials vanish, and the first is
“free”:

((∗(∗∗))∗) = ((∗∗)(∗∗)) = (∗((∗∗)∗)) = (∗(∗(∗∗))) = 0.

The operads defined by these three relation matrices have positive dimension
in every arity, and are therefore not nilpotent.

Proof. There is a bijection f between the set of 4-dimensional subspaces R of
the 5-dimensional space TX (4), and the set of 4× 5 matrices in row canonical
form (RCF). By definition f(R) is the matrix in RCF whose row space is R
with respect to the monomial basis. We obtain five cases for f(R) correspond-
ing to the five choices of 4 columns containing leading 1s in the RCF:

1 · · · x1
· 1 · · x2
· · 1 · x3
· · · 1 x4




1 · · x1 ·
· 1 · x2 ·
· · 1 x3 ·
· · · · 1




1 · x1 · ·
· 1 x2 · ·
· · · 1 ·
· · · · 1




1 x1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1



· 1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1


For each case, the four relations produce 24 consequences, so we obtain a
24× 14 matrix C whose (i, j) entry is the coefficient of the j-th monomial in
the i-th consequence. The row space of C is the space of relations in arity 5 for
the operad defined by the cubic relations represented by the rows of R, and
null space of C can be identified with the homogeneous subspace of arity 5 in
the quotient operad. In particular, the quotient operad becomes nilpotent in
arity 5 (all compositions of arity 5 are 0) if and only if rank(C) = 14.

We will discuss case 1 in more detail than the others. The sorted matrix C
of consequences is displayed in Figure 9.4. Using the partial Smith form algo-
rithm, we reduce C to this block diagonal form:[

I13 O13,1
O11,13 B11,1

]
where I13 is the identity matrix, O13,1 and O11,13 are zero matrices, and the
lower right block B11,1 is a column vector containing these polynomials:

x4 − x3, x2
3 + x1, x4x3 + x2, x2

4 + x1, x2
4 + x2,

x1(x4x2 + x3), x4(x2
2 + x1), x4(x3x2 + x1),

x3x2(x4 + 1), x4x2(x4 + 1).

 (9.22)

One zero entry has been omitted and the others have been made monic and
sorted using the glex monomial order with x1 ≺ x2 ≺ x3 ≺ x4. It follows that
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1 · · · x1 · · · · · · · · ·
1 · · · · · · · x1 · · · · ·
· 1 · · x2 · · · · · · · · ·
· 1 · · · · · · · · · x1 · ·
· · 1 · x3 · · · · · · · · ·
· · 1 · · · · · x2 · · · · ·
· · 1 · · · · · · · · · x1 ·
· · · 1 x4 · · · · · · · · ·
· · · 1 · · · · · · · x2 · ·
· · · · 1 · · · · · · · x2 ·
· · · · · 1 · · x3 · · · · ·
· · · · · 1 · · · · · · · x1
· · · · · · 1 · · · · x3 · ·
· · · · · · 1 · · · · · · x2
· · · · · · · 1 x4 · · · · ·
· · · · · · · 1 · · · · x3 ·
· · · · · · · · 1 · · · · x3
· · · · · · · · · 1 · x4 · ·
· · · · · · · · · 1 · · · x1
· · · · · · · · · · 1 · x4 ·
· · · · · · · · · · 1 · · x2
· · · · · · · · · · · 1 · x3
· · · · · · · · · · · 1 · x4
· · · · · · · · · · · · 1 x4


FIGURE 9.4: Quartic consequences for cubic relations (rank 4, case 1).

C has rank 13 if and only if the polynomials (9.22) simultaneously vanish;
otherwise C has rank 14 and the corresponding operad is nilpotent. The poly-
nomials (9.22) generate the ideal I ⊂ F[x1, x2, x3, x4] which has the following
glex Gröbner basis:

x2 − x1, x4 − x3, x1(x3 − x1), x2
3 + x1, x2

1(x1 + 1).

A power of each parameter appears as the leading monomial of an element of
the Gröbner basis, so I is zero-dimensional: the zero set V (I) is finite. The last
element gives x1 = 0 or x1 = −1; if x1 = 0 then element 4 gives x3 = 0, and if
x1 = −1 then element 3 gives x3 = −1. Finally, elements 1 and 2 give x2 = x1
and x4 = x3. Hence the only solutions are [0, 0, 0, 0] and [−1,−1,−1,−1];
they corresponding to the first and second matrices in the statement of the
theorem. We remark that I is not a radical ideal; a Gröbner basis for

√
I is

x2 − x1, x3 − x1, x4 − x1, x1(x1 + 1),

which gives the solutions immediately.
For cases 2–4, the matrix of consequences has full rank for all values of

the parameters. For case 5, there are no parameters and the matrix of conse-
quences has rank 13; this corresponds to the third matrix in the statement of
the theorem. For the last statement of the theorem, see Exercise 9.14.
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9.4 Exercises
Exercise 9.1. For each rank r ∈ {2, 3}, write down the 10 cubic relation
matrices for a binary operation, and count the number of parameters in each.

Exercise 9.2. We call a matrix filled with symbols 0, 1, and ∗ a row canonical
pattern if after replacing symbols ∗ by any elements of the ground field F we
get a matrix in row canonical form. For example, the following matrix is a
row canonical pattern: 

1 ∗ 0 0 ∗ 0 ∗
0 0 1 0 ∗ 0 ∗
0 0 0 1 ∗ 0 ∗
0 0 0 0 ∗ 1 ∗


Prove that for k ≤ n the set of row canonical patterns of size k×n which have
a 1 in each row (they represent row canonical forms of full rank) is in one-
to-one correspondence with Young diagrams contained inside the rectangle
k× (n−k). (For each Young diagram λ of that kind, the set of all row echelon
matrices that follow the corresponding row canonical pattern form the so-
called Schubert cell Xλ of the Grassmann variety G(n, k) [96].)

Exercise 9.3. Let ω denote a primitive cube root of unity. Show that the
element

(((∗∗)∗)∗) + ω((∗(∗∗))∗)− ((∗∗)(∗∗)) + ω2(∗((∗∗)∗)) + (∗(∗(∗∗)))

forms the reduced Gröbner basis (with respect to gpathlex order) of the ideal
it generates.

Exercise 9.4.

(i) Compute a Gröbner basis for the second determinantal ideal I = DI2(C)
of the matrix C of Equation (9.12). The monomial ordering does not
have to be glex with x1 ≺ · · · ≺ x6; it might be more useful to assume
some other ordering of the variables, or to use a plex order (with some
ordering of the variables).

(ii) Compute a Gröbner basis for the radical
√
I.

(iii) Compute the zero set of I. Use this, together with the results of Section
9.3.3, to determine all values of the parameters for which C has rank 10.

Exercise 9.5. Same as Exercise 9.4 for the third determinantal ideal
I = DI3(C). More precisely:

(i) Compute a Gröbner basis for the second determinantal ideal I = DI3(C)
of the matrix C of Equation (9.12).
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(ii) Compute a Gröbner basis for the radical
√
I.

(iii) Compute the zero set of I. Use this, together with the results of Exercise
9.4, to determine all values of the parameters for which C has rank 11.

Exercise 9.6. Referring to Exercises 9.4 and 9.5, what about rank 12?
Exercise 9.7. Extend the computations for case 1 in Section 9.3.3 to cases 2–
10. Use these results to complete the proof of Theorem 9.3.3.1.
Exercise 9.8. Prove Theorem 9.3.3.2.
Exercise 9.9. Compute the Gröbner basis (for your choice of monomial or-
der) of the radical of the second determinantal ideal of the 6 × 2 matrix B
(Figure 9.1) arising from case 1 of cubic relation rank 3. Use this to compute
the zero set of the ideal.
Exercise 9.10. Extend the computations for case 1 in Section 9.3.4 to
cases 2–10. Use these results to complete the proof of Theorem 9.3.4.2.
Exercise 9.11. For operads listed in Theorem 9.3.4.2, compute their Gröbner
bases for an ordering of your choice, and determine the dimensions of their
homogeneous components.
Exercise 9.12. Explore the case of a cubic relation matrix of rank 3 for
which the matrix of quartic consequences has rank 13. Give an example of a
non-nilpotent operad presented by relations of that kind. Are there nilpotent
operads presented by relations of that kind?
Exercise 9.13. Let A = (aij) be any m × n matrix with entries in Z. Let
rank0(A) be the rank of A over Q, and for any prime p let rankp(A) be its
rank over the field Fp with p elements. We have rankp(A) ≤ rank0(A) for all
primes p by Lemma 9.3.4.3.
(i) Let ∆(A) be the set of primes p for which we have the strict inequality

rankp(A) < rank0(A). Prove that ∆(A) is a finite set.

(ii) Let P (A) = max ∆(A) be the largest prime for which the ranks are not
equal. Find and prove an upper bound (as tight as possible) for P in
terms of m, n, and the matrix entries aij .

(iii) For each prime p, and each number m of rows and n of columns, con-
struct an m× n matrix A for which ∆(A) = { q | 2 ≤ q ≤ p, q prime },
or prove that no such matrix exists.

Exercise 9.14. Refer to the operads (cubic rank 4) in the classification of
Theorem 9.3.5.1. That result proved only that every other such operad is
nilpotent; it remains to show that those three operads are not nilpotent. Prove
that all three of those operads have dimension 1 in all arities n ≥ 1, except in
arity n = 3 for which the dimension is 2.
Exercise 9.15. Attempt to extend the classification results of this chapter
to the case of several quartic relations.





Chapter 10
Case Study of Nonsymmetric
Ternary Quadratic Operads

10.1 Introduction
There are not many examples of nonsymmetric operads that arise very

naturally in research questions, and most of those that do are generated by
binary operations. In this section, we shall discuss some attempts at hunt-
ing for interesting examples of operads generated by one ternary operation.
Throughout this chapter, we again implicitly assume that the ground field is
algebraically closed or at least contains roots of all equations we solve; we
leave it to the reader to adapt the results appropriately for when it is not the
case. For the extension of these results to one quaternary operation, see [43].

Before we begin a systematic investigation, let us mention some examples
of properties of ternary operations that in some way generalize the binary
associative law. The simplest possible example of an operad generated by
a ternary operation is the totally associative ternary operad. In notation of

Chapter 6, it is the operad tAs(3)
0 generated by one ternary generator

subject to the following relations:

= = . (10.1)

This kind of associativity is exhibited by the so-called triadic groups;
see [208] (the first systematic paper in English that established n-ary op-
erations as an independent field of study). The following proposition shows
that such algebras are intimately related to usual associative algebras. The
first two parts of it are folklore, the third can be traced back to [50], where it
is shown that n-ary associativity is intimately related to binary associativity.

This operad also arises in homology of partially ordered sets, in the spirit
of the formalism of [253]. If we consider, for each odd n = 2k+1, the partially
ordered set of all decompositions of the ordered set {1, 2, . . . , n} into a disjoint
union of intervals of odd length, with the partial order induced by merging

307
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an odd number of adjacent intervals, the collection of those posets becomes a
nonsymmetric cooperad, the bar complex of the operad tAs3.

Unlike the case of the usual associative algebras, there are several different
types of associativity one can talk about in the context of ternary algebras:
since there are three different quadratic monomials

, ,

in the free operad, we have a choice between imposing one or two linear
dependencies relating these elements. We already gave an example of what
happens when considering two dependencies. In the case of one dependency,
there are several somewhat natural choices one can make to generalize the
associative law.

The alternating partially associative ternary operad is the nonsymmetric

operad pAs(3)
−1 generated by one ternary generator subject to the relation

− + = 0. (10.2)

Suppose that F contains a primitive cube root of unity ω. The ω-partially
associative ternary operad is the nonsymmetric operad ω − pAs(3)

0 generated

by one ternary generator subject to the relation

+ ω + ω2 = 0. (10.3)

The odd partially associative ternary operad is the graded nonsymmetric

operad pAs(3)
1 generated by one ternary generator of homological degree 1

subject to the relation

+ + = 0. (10.4)

Each of these relations generalizes the associative law. The first one views
the associative law as an alternating sum of partial compositions. The second
one views the associative law as a sum of partial compositions with coefficients
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being powers of a primitive root of unity. The third one utilizes the fact that
the associative operad is self-dual for the Koszul duality, and thus examines
the Koszul dual of the operad tAs(3)

0 . In this chapter, we will investigate general
ternary operations satisfying quadratic relations.

10.2 Generalities on nonsymmetric operad with one gen-
erator

In this section, we assemble some general results on operads with one
generator of some arity n. In the main part of the chapter, we shall focus on
the case n = 3, but since most basic statements and their proofs do not get
more difficult as n grows, we collate those statements here, hoping that the
reader will be interested in generalizing some of our classification results for
higher arities of generators. Throughout this section, we fix an integer n ≥ 2,
and consider the nonsymmetric collection X with X (n) = {f} and X (k) = ∅
for k 6= n, and the corresponding free nonsymmetric operad TX .

10.2.1 Enumeration and ordering of monomials
The natural basis of the operad TX consists of tree monomials. For the

collection X that we consider, the underlying trees of such monomials are
“planar rooted complete n-ary trees” [119], meaning that it is a planar rooted
tree such that for each vertex v, the set Parent−1(v) consists of either 0 or n
elements. Moreover, since X (n) is one-dimensional, each tree monomial can
be identified with its underlying tree.

Proposition 10.2.1.1 ([119, §7.5]). The number of distinct planar rooted
complete n-ary trees of a given weight w is given by the n-ary Catalan number

C(n)(w) = 1
(n− 1)w + 1

(
nw

w

)
Example 10.2.1.2. We compile the values for n = 2, 3, 4 and w = 1, 2, . . . , 9:

w 1 2 3 4 5 6 7 8 9

C(2)(w) 1 2 5 14 42 132 429 1430 4862
C(3)(w) 1 3 12 55 273 1428 7752 43263 246675
C(4)(w) 1 4 22 140 969 7084 53820 420732 3362260

Lemma 10.2.1.3. For a planar rooted complete n-ary tree T , we have the
following equation that relates the arity of T to the weight of T :

ar(T ) = 1 + (n− 1) wt(T ).
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Proof. Exercise 10.3.

Corollary 10.2.1.4. We have the following formula for dimensions of com-
ponents of TX :

dim(TX (m)) = 1
m

( n
n−1 (m− 1)

1
n−1 (m− 1)

)
.

Lemma 10.2.1.5. The n-ary Catalan numbers satisfy this recurrence rela-
tion:

C(n)(0) = 1, C(n)(w) =
∑

w1,...,wn

n∏
i=1

C(n)(wi),

where the sum is over all
(
w−1
n−1
)
compositions (partitions where the order mat-

ters) of w into the sum of n positive integers w1, . . . , wn = w.

Proof. Exercise 10.6.

We next give a precise definition of the total order on trees which we used
in computer algebra computations.

Definition 10.2.1.6. Let T 6= T ′ be two planar rooted complete n-ary trees
of arities m, m′, respectively. We say that T ≺ T ′ if and only if

• m < m′ or

• m = m′ and Ti ≺ T ′i , where T1, . . . , Tn are the n subtrees of the root of
T in the planar order, and T ′1, . . . , T ′n are the n subtrees of the root of
T ′ in the planar order, and i is the least index for which Ti 6= T ′i .

10.2.2 Quadratic relations and their consequences
Recall that an element of TX is called quadratic if it is a combination

of tree monomials of weight 2. There are n such tree monomials: f ◦i f for
1, . . . , n.

Definition 10.2.2.1 (Relation matrix and relation rank). Let U be an r-
dimensional subspace of T (2)

X . Such subspaces are parameterized by the Grass-
mann variety Gr(n, r) and can be represented bijectively by r×n matrices in
row canonical form (RCF). We call such a matrix the relation matrix corre-
sponding to the space of quadratic relations, and we call r the relation rank.

The number of distinct ranks for an n-ary operation is n+1 since 0 ≤ r ≤ n;
for rank r there are

(
n
r

)
choices for the columns of the leading 1s in the RCF.

Summing these binomial coefficients gives a total of 2n cases to be considered.

Example 10.2.2.2. Let us list the cases to be considered for n = 3. In this
case, every space of quadratic relations has dimension r ∈ {0, 1, 2, 3} and is
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the row space of a unique r × 3 matrix [R] of rank r in row canonical form
(RCF). For arbitrary a, b ∈ F the possibilities for [R] are as follows:

r=0︷ ︸︸ ︷
[empty matrix]

r=1︷ ︸︸ ︷[
1 a b

] [
0 1 a

] [
0 0 1

]
r=2︷ ︸︸ ︷[

1 0 a
0 1 b

] [
1 a 0
0 0 1

] [
0 1 0
0 0 1

] r=3︷ ︸︸ ︷ 1 0 0
0 1 0
0 0 1


Further in this chapter, we will study the quotient operads Q = TX /(R) where
(R) denotes the ideal generated by the space R ⊆ T (2)

X of quadratic relations.

To study quotient operads using commutative Gröbner bases, we should
form various spaces of consequences of given quadratic relations, and explore
dimensions of those.

Definition 10.2.2.3 (Cubic consequences of a quadratic relation). Let R be a
quadratic relation for an n-ary operation. There are 2n−1 compositions R◦if
and n compositions f ◦j R, which are cubic relations in f , and which span
the subspace R(3) of TX (3n − 2) called the space of all cubic consequences
of R. Combining these for several relations, we obtain the space of cubic
consequences of arbitrary quadratic relations.

We can inductively repeat this generation of cubic consequences into higher
arities to obtain quartic, quintic, etc., consequences of any space of quadratic
relations R. We denote the space of weight w consequences by R(w).

Proposition 10.2.2.4. The number of distinct consequences of weight w of
one quadratic relation is equal to

(
nw−1
w−2

)
.

Proof. Exercise 10.7.

Every consequence of weight w is a linear combination of the C(n)(w) basis
elements. Thus the consequences of R in weight w can be represented as the
row space of a

(
nw−1
w−2

)
×C(n)(w) matrix. If the number of rows of this matrix

is less than the number of columns, we should expect a generic operad with
one relation to have nonzero elements of any weight, and otherwise, we should
expect that in “most” operads with one relation all elements of weight w
vanish, so that those operads are nilpotent of index at most w. The case of a
square matrix is the first interesting instance. Therefore, we identified some
natural questions to ask: when is the matrix of consequences square, and more
importantly, when is it invertible?

The first question is easy to answer, since for w ≥ 2 we have(
nw − 1
w − 2

)
= 1

(n− 1)w + 1

(
nw

w

)
⇐⇒ w = n+ 1.
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For this weight, the arity is a = 1 +w(n− 1) = n2, which gives the somewhat
amusing conclusion that the matrix is square if and only if the arity is n2.
(Note that this solution is only for a single relation; for two or more relations
we need to multiply the left side of the equation by the number s of relation,
which gives the general solution w = (n+ s)/s.)

The second question of invertibility is harder to resolve: it corresponds to
a zero nullspace and a nilpotent operad.

10.3 Nonsymmetric ternary operads
In this section we consider the simplest case of a non-binary operad: a

nonsymmetric operad with one ternary operation satisfying one quadratic
relation. We will see that even in this restricted setting there are many inter-
esting features, hard problems, and unanswered questions. However, we are
able to obtain some results and state some meaningful conjectures about such
operads.

10.3.1 Preliminary analysis
We shall first handle two extreme (and extremely easy) cases of the quo-

tient operad Q: r = 0, where there are no relations, and r = 3, where every
composition is zero.

Lemma 10.3.1.1. We have the following results for the extreme values of r:

• For r = 0, we have Q = TX .

• For r = 3, Q is nilpotent of index 2.

Proof. Direct inspection.

There remain two possibilities. For the case of one relation (r = 1), we
have three cases,[

1 a b
]
,

[
0 1 a

]
,

[
0 0 1

]
,

corresponding, respectively, to the following quadratic relations:

f ◦1 f + a f ◦2 f + b f ◦3 f = 0, (R1.1)
f ◦2 f + a f ◦3 f = 0, (R1.2)

f ◦3 f = 0. (R1.3)

As we discussed in the previous section, each quadratic relation R produces
several cubic consequences. For n = 3, there are eight cubic consequences:

R ◦1 f, R ◦2 f, R ◦3 f, R ◦4 f, R ◦5 f,
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f ◦1 R, f ◦2 R, f ◦3 R.

The number of ternary tree monomials operations of weight w is the
ternary Catalan number 1

2w+1
(3w
w

)
, and the number of distinct consequences

of weight w of a single quadratic ternary relation is the binomial coefficient(3w−1
w−2

)
. This gives the following sizes of matrices representing consequences

of one relation in weights 1, . . . , 10:

w consequences monomials
1 0 1
2 1 3
3 8 12
4 55 55
5 364 273
6 2380 1428
7 15504 7752
8 100947 43263
9 657800 246675

10 4292145 430715

For w ≥ 2, these two quantities are equal if and only if w = 4, in which case
the common value is 55.

For two relations (r = 2) we have three cases,[
1 0 a
0 1 b

]
,

[
1 a 0
0 0 1

]
,

[
0 1 0
0 0 1

]
,

corresponding respectively to the following pairs of quadratic relations:

f ◦1 f + a f ◦3 f = 0, f ◦2 f + b f ◦3 f = 0,
f ◦1 f + a f ◦2 f = 0, f ◦3 f = 0,

f ◦2 f = 0, f ◦3 f = 0.

For both r = 1, 2, the three cases have, respectively, 2, 1, 0 parameters.

10.3.2 Relation rank 1
10.3.2.1 Cubic consequences

In the case of relation rank 1, we have just one defining relation R, and
dimQ(5) = 2. Let us discuss the three possible row canonical forms individu-
ally. We give as many explicit details as possible in this case: for higher arities,
the matrices are almost always too large and the entries too complex for us
to be able to display the results.
Case 1: In this case, R = f ◦1 f +a f ◦2 f + b f ◦3 f . There are no duplications
among the 8 consequences of this relation:

(f ◦1 f) ◦1 f + a (f ◦2 f) ◦1 f + b (f ◦3 f) ◦1 f,
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(f ◦1 f) ◦2 f + a (f ◦2 f) ◦2 f + b (f ◦3 f) ◦2 f,
(f ◦1 f) ◦3 f + a (f ◦2 f) ◦3 f + b (f ◦3 f) ◦3 f,
(f ◦1 f) ◦4 f + a (f ◦2 f) ◦4 f + b (f ◦3 f) ◦4 f,
(f ◦1 f) ◦5 f + a (f ◦2 f) ◦5 f + b (f ◦3 f) ◦5 f,
f ◦1 (f ◦1 f) + a f ◦1 (f ◦2 f) + b f ◦1 (f ◦3 f),
f ◦2 (f ◦1 f) + a f ◦2 (f ◦2 f) + b f ◦2 (f ◦3 f),
f ◦3 (f ◦1 f) + a f ◦3 (f ◦2 f) + b f ◦3 (f ◦3 f).

Converting these into a matrix, we obtain an 8×12 relation matrix M(a, b) is
the first matrix in Figure 10.1. We need to determine the rank of this matrix
as a function of the parameters a, b. We consider instead the inverse problem:
given an integer 0 ≤ r ≤ 8, determine the subset of F2 consisting of the
ordered pairs (a, b) for which rankM(a, b) = r.

We first observe thatM(a, b) contains 7 orthogonal 1s for all a, b: every row
has a leading 1, and these leading 1s occur in columns 1–6 and 10. We therefore
start by computing the partial Smith form (PSF) by using elementary row and
column operations to create a block diagonal matrix with the identity matrix
I7 in the upper left corner; we obtain the second matrix in Figure 10.1.

M(a, b) =



1 a b . . . . . . . . .
1 . . a b . . . . . . .
. 1 . . . a . . b . . .
. . 1 . . . a . . b . .
. . . 1 . . . a . . b .
. . . . 1 . . . a . . b
. . . . . 1 a b . . . .
. . . . . . . . . 1 a b


partial Smith form−−−−−−−−−−−−→

PSF



1 . . . . . . . . . . .
. 1 . . . . . . . . . .
. . 1 . . . . . . . . .
. . . 1 . . . . . . . .
. . . . 1 . . . . . . .
. . . . . 1 . . . . . .
. . . . . . 1 . . . . .
. . . . . . . a3 − ab a2b+ a2 ab2 + ab b3 + b2 .


FIGURE 10.1: Rank 1, case 1: original and reduced cubic relation matrices.

From the second matrix we see that dimR(3) = 7 if and only if all the
polynomials in the following ordered set vanish:

G =
[

a3 − ab, a2b+ a2, ab2 + ab, b3 + b2
]
. (10.5)
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In fact G is a glex Gröbner basis of the ideal I(G) ⊂ F[a, b] that it generates.
The first and last elements of G have powers of the parameters as leading
monomials, and hence I(G) is zero-dimensional and there are only finitely
many ordered pairs (a, b) for which every element of G vanishes. Factoring
the elements of G gives

I(G) =
(

a(a2 − b), a2(b+ 1), ab(b+ 1), b2(b+ 1)
)
. (10.6)

If b = −1 then the last 3 elements are 0 and the fourth is a(a2 + 1); hence
a ∈ {0,±i} for i =

√
−1. If b 6= −1 then we cancel b + 1 from the last 3

elements to obtain a2, ab, b2; hence a and b must both be 0. Thus the only
solutions are the following four:

(a, b) =
(

0, 0
)
,
(

0, −1
)
,
(
± i, −1

)
.

The ideal I(G) is not radical; the glex Gröbner basis for
√
I(G) is[

a(b+ 1), b(b+ 1), a(a2 + 1)
]
.

The structure of these ideals becomes clearer if we consider the primary de-
composition of I(G) and the prime decomposition of

√
I(G):

I(G) = ( a, b+ 1 ) ∩ ( a+ i, b+ 1 ) ∩ ( a− i, b+ 1 ) ∩ ( a2, ab, b2 ),√
I(G) = ( a, b+ 1 ) ∩ ( a+ i, b+ 1 ) ∩ ( a− i, b+ 1 ) ∩ ( a, b ).

All these ideals are maximal except for ( a2, ab, b2 ) which is primary but not
prime.



. 1 a . . . . . . . . .

. . . 1 a . . . . . . .

. . . . . 1 . . a . . .

. . . . . . 1 a . . . .

. . . . . . 1 . . a . .

. . . . . . . 1 . . a .

. . . . . . . . 1 . . a

. . . . . . . . . . 1 a


HNF−−−→



. 1 a . . . . . . . . .

. . . 1 a . . . . . . .

. . . . . 1 . . . . . −a2

. . . . . . 1 . . . . a3

. . . . . . . 1 . . . −a2

. . . . . . . . 1 . . a

. . . . . . . . . a . −a3

. . . . . . . . . . 1 a


FIGURE 10.2: Rank 1, case 2: original and reduced cubic relation matrices.

Case 2: In this case R = f ◦2 f+a f ◦3 f . There are no duplications among the
8 consequences in O(7): thus R(3) is the row space of the first matrix in Figure
10.2, where we have sorted the rows to make the matrix as upper triangular as
possible. Since there is only one parameter, we calculate the Hermite normal
form (HNF) of this matrix, and obtain the second matrix in Figure 10.2. From
this it is clear that dimR(3) = 7 if and only if a = 0; otherwise dimR(3) = 8.
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Case 3: In this case R = f ◦3 f . We leave this case as an easy exercise for the
reader.

Summarizing, we obtain the following result describing the arity 7 compo-
nents of quotients by one quadratic relation.

Proposition 10.3.2.1. Let Q = TX /(R) be the quotient by an ideal generated
by one quadratic relation R. Then dimQ(7) = 4 except for the following six
relations R for which dimQ(7) = 5:

f ◦1 f = 0, f ◦1 f − f ◦3 f = 0
f ◦2 f = 0, f ◦1 f + i f ◦2 f − f ◦3 f = 0
f ◦3 f = 0, f ◦1 f − i f ◦2 f − f ◦3 f = 0

(here i =
√
−1).

Using operadic Gröbner bases, it is possible to compute dimensions of all
components of the six exceptional operads that we found.

Theorem 10.3.2.2. Let Q be one of the six operads listed in Proposition
10.3.2.1. Then for each (odd) arity m the dimension of the m-th component
of Q is a Catalan number:

dimQ(2m+ 1) = 1
m+ 1

(
2m
m

)
.

Proof. First of all, a direct computation shows that for the gpathlex order
of tree monomials, each of these operads has a quadratic Gröbner basis of
relations. In four of the cases, the leading term of R is f ◦1 f , in one case
it is f ◦2 f , and in one case it is f ◦3 f . Thus, normal monomials in each
case may be described as all planar rooted ternary trees where we can only
use two prescribed slots out of three for each vertex v such that Parent−1(v)
is non-empty. Clearly, the set of such trees is in bijection with the set of all
complete binary trees of the same weight, which is the corresponding Catalan
number.

10.3.2.2 Cubic consequences using rational functions

In this section, we show how the results of the previous section could
be obtained in a different way, using computations over the field of rational
functions. We give as many explicit details as possible in this case, since for
higher arities the matrices are almost always too large and the entries too
complex to display the results.
Case 1: The relation f ◦1 f + a f ◦2 f + b f ◦3 f = 0.

The matrix whose rows are the coefficient vectors of the consequences in
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arity 7 of the original relation in arity 5:

A =



1 a b · · · · · · · · ·
1 · · a b · · · · · · ·
· 1 · · · a · · b · · ·
· · 1 · · · a · · b · ·
· · · 1 · · · a · · b ·
· · · · 1 · · · a · · b
· · · · · 1 a b · · · ·
· · · · · · · · · 1 a b


(10.7)

We compute RCF(A): columns 1–7 are the unique 8 × 7 matrix of rank 7 in
RCF (the diagonal entries are 1 and the others are 0). Columns 8–12 are as
follows:

1
a(a2−b)



−a3(a2−b) −a2b(a2−b) · −a2b(a2−b) −ab2(a2−b)
a2(a2+b2) ab(a2−b) · a3b(b+1) a2b2(b+1)
−a3(b+1) · · −a2b(a2+1) −ab2(a2+1)
a2(a2−b) · · ab(a2−b) ·
· a2(a2−b) · · ab(a2−b)

−a(a2+b2) · · −a2b(b+1) −ab2(b+1)
a2(b+1) · · ab(b+1) b2(b+1)
· · a(a2−b) a2(a2−b) ab(a2−b)


For future reference, we collect the factors which are irreducible over Q:

a, b, b+ 1, a2 + 1, a2 − b, a2 + b2.

Since the rows of A are linearly independent, the transform matrix U is
uniquely determined. The LCM of the denominators of U is a(a2 − b), and so
we write:

U = 1
a(a2−b)



· a(a2−b) · · −a2(a2−b) −ab(a2−b) · ·
a2 −a2 −ab −a2b a3 a2b a2b a2b2

−a a a2 a3 −a2 −ab −a3 −a3b

· · · · a(a2−b) · · ·
· · · · · a(a2−b) · ·
−a a a2 ab −a2 −ab −ab −ab2

1 −1 −a −b a b a2 b2

· · · · · · · a(a2−b)


From the irreducible factors of the LCM of the denominators of the entries
of U , namely a and a2 − b, we see that there are two special cases, a = 0 and
b = a2, both of which reduce the problem to a matrix over polynomials in one
variable. Except for these two subcases, the matrix A has rank 8. (We obtain
the same LCM from the denominators of the matrix R, but this does not hold
in general. For example, if we compute the RCF of the 1 × 1 matrix [a] we
obtain R = [1] and U = [1/a].)



318 Algebraic Operads: An Algorithmic Companion

Subcase 1.1 : a = 0.
We set a = 0 in the matrix A from Equation (10.7) to obtain a matrix over

the Euclidean domain F[b]. We compute the Hermite normal form (HNF) of
this matrix and see that its rank is 8, except for the values b = 0 and b = −1
for which its rank is 7:

1 · · · · · · · · · · −b2
· 1 · · · · · · b · · ·
· · 1 · · · · · · · · −b2
· · · 1 · · · · · · b ·
· · · · 1 · · · · · · b
· · · · · 1 · b · · · ·
· · · · · · · · · 1 · b
· · · · · · · · · · · b2(b+1)


Subcase 1.2 : b = a2.

We set b = a2 in the matrix A from Equation (10.7) to obtain a matrix
over F[a]. We compute the HNF of this matrix and see that its rank is 8,
except for the values a = 0 and b = ±i (i =

√
−1) for which its rank is 7:

1 · · · · · · −a2 −a3 · −a3 −a4

· 1 · · · · −a2 −a3 a2 · · ·
· · 1 · · · a · · · −a3 −a4

· · · 1 · · · a · · a2 ·
· · · · 1 · · · a · · a2

· · · · · 1 a a2 · · · ·
· · · · · · · a2(a2+1) · · a3(a2+1) a4(a2+1)
· · · · · · · · · 1 a a2


Case 2: The relation f ◦2 f + a f ◦3 f = 0.

One variable, standard HNF over F[a] (without transform matrix), gives
rank 8 except for a = 0 which gives rank 7:

· 1 a · · · · · · · · ·
· · · 1 a · · · · · · ·
· · · · · 1 · · a · · ·
· · · · · · 1 a · · · ·
· · · · · · 1 · · a · ·
· · · · · · · 1 · · a ·
· · · · · · · · 1 · · a
· · · · · · · · · · 1 a


HNF−−−−→



· 1 a · · · · · · · · ·
· · · 1 a · · · · · · ·
· · · · · 1 · · · · · −a2

· · · · · · 1 · · · · a3

· · · · · · · 1 · · · −a2

· · · · · · · · 1 · · a
· · · · · · · · · a · −a3

· · · · · · · · · · 1 a


Case 3 : The relation f ◦3 f = 0.

No variables, standard RCF over F (without transform matrix), in fact
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7× 8 matrix is already in RCF:

· · 1 · · · · · · · · ·
· · · · 1 · · · · · · ·
· · · · · · · 1 · · · ·
· · · · · · · · 1 · · ·
· · · · · · · · · 1 · ·
· · · · · · · · · · 1 ·
· · · · · · · · · · · 1


Remark 10.3.2.3. Even though the polynomial ring F[a, b] is not a Eu-
clidean domain, it is still possible that a matrix with entries in F[a, b] has
a generalized Hermite normal form (GHNF); this happens if the pivot ideal
is principal at every step of the row reduction. (By the pivot ideal we mean
the ideal generated by the entries at and below the pivot.) In this case, at
every step elementary row operations suffice to make the pivot entry equal to
the generator of the pivot ideal and to eliminate the entries below the pivot.
The matrix A of Equation (10.7) provides a very simple example. We reduce
columns 1–6 using their leading 1s, multiply row 7 by −1 so that its leading
entry (column 7) becomes monic (a3 − ab), use this leading entry to reduce
the other entries in column 7 with respect to the chosen monomial order, and
finally use the leading 1 in row 8 (column 10) to eliminate the entries above
it. This gives the GHNF; factoring its entries we obtain:

1 · · · · · · −a2 −ab · −ab −b2

· 1 · · · · −a2 −ab b · · ·
· · 1 · · · a · · · −ab −b2

· · · 1 · · · a · · b ·
· · · · 1 · · · a · · b

· · · · · 1 a b · · · ·
· · · · · · a(a2−b) a2(b+1) · · ab(b+1) b2(b+1)
· · · · · · · · · 1 a b


The only non-trivial leading entry a(a2 − b) coincides with the LCM of the
denominators of the transform matrix U that we obtained when computing
the RCF. Hence this computation of the GHNF has identified the same two
special cases, a = 0 and b = a2. Furthermore, the nonzero entries of row 7 of
the GHNF form a Gröbner basis of the ideal that they generate, and powers
of the variables (a3 and b3) occur as leading monomials of these generators.
It follows that this ideal vanishes only for a finite set of solutions, and these
are the ordered pairs (a, b) obtained above.

10.3.2.3 Quartic consequences

We shall only consider here Case 1 of a quadratic relation, leaving Case 2
and Case 3 as (easy) exercises for the reader (Exercise 10.11).
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The relation matrix for one quadratic relation in weight 4 (arity 9) is
square of size 55. After using row swaps to make this matrix as close to
upper-triangular as possible, we obtain the matrix on the left in Figure 10.3,
where black, dark gray, light gray represent, respectively, 1, a, and b. After
computing the partial Smith form, we obtain the matrix on the right; close
inspection of the lower right block reveals the existence of four zero rows.

The upper left identity matrix has size 41, which is the minimal rank
of both matrices (a = b = 0), and the lower right block has size 14. After
removing 4 zero rows, we are left with a 10 × 14 block B with no nonzero
scalar entries and no zero rows or columns; see Figure 8.2 in Chapter 8.

Already at this point we can see that the rank of the original relation
matrix over the rational function field F(a, b) is no more than 41 + 10 = 51,
and so the 55×55 matrix is not invertible. To determine the precise rank over
F(a, b) we need to study the structure of the F[a, b]-module generated by the
rows of [R(4)], as in Example 8.4.3.4 of Chapter 8. The calculations in that
example imply the following result.

Proposition 10.3.2.4. The rows of [R(4)] generate a free module of rank 50.

Proof. We give a brief description of the algorithm used in Example 8.4.3.4
from Chapter 8. We consider an m× n matrix B over F[x1, . . . , xk]. Let (i, j)
be the current position of the pivot. Suppose that for some j′ ≥ j the entries in
rows i, . . . ,m of column j′ generate a principal ideal I = (f) ⊆ F[x1, . . . , xk].
If no such j′ exists, then the algorithm fails; otherwise, we swap columns j
and j′ so that I = (bij , . . . , bmj). If f = 0 then we increment j but not i and
continue to the next iteration; otherwise, we make bij = f and bi′j = 0 for
i′ = i + 1, . . . ,m. For that, we can use an algorithm that is very similar to
the standard algorithm applied to all columns during the computation of the
Hermite normal form (HNF) of a matrix over a PID. We find the minimal
(nonzero) entry among the entries at and below the pivot, and then swap that
entry up to the pivot by a row operation. We then use row operations of the
add-multiple type to replace the entries below the pivot by their remainders
modulo the pivot entry. (We do not care what is happening in the other
columns to the right; to the left the affected entries are already zero.) We then
repeat the process until it converges: find the minimal entry among those at
and below the pivot, swap it into the pivot, and use it to reduce the remaining
nonzero entries below the pivot. This algorithm, which is almost identical to
the Euclidean algorithm for the GCD of a set of polynomials in one variable,
eventually converges with a generator of the principal ideal in the pivot and
zeros below the pivot. We then complete this step of the reduction of the
matrix with a row operation of scalar-multiple type to make the pivot entry
monic.

We then increment i and j and continue to the next iteration.

The reduced form of the lower right block makes it much easier to compute
the determinantal ideals, since so many more entries are zero. We also found
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FIGURE 10.3: The relation matrix for one quadratic relation in weight 4
(top), and its partial Smith form (bottom).
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to our surprise that these computations illustrate the remarkable effectiveness
of the plex order in certain cases. We computed Gröbner bases for both the
ideal and its radical, and the zero sets in both cases, for all ranks r ≤ 9, using
a Lenovo ThinkCentre. The sets of original generators of the determinantal
ideals, namely the r × r minors, had the following sizes, after removing zero
polynomials and making remaining polynomials monic:

minors: 18, 123, 560, 1821, 4069, 5951, 5297, 2473, 420.

Using the plex order, the Gröbner bases of ideal and radical have these sizes:

order ideal radical
a ≺ b 3, 5, 7, 9, 11, 12, 13, 12, 12 3, 2, 2, 2, 2, 2, 2, 1, 2
b ≺ a 4, 6, 8, 11, 13, 14, 15, 14, 14 3, 3, 3, 3, 3, 2, 2, 1, 2

(Using the glex order took so much longer that we stopped waiting.)
We summarize the computational results about the radicals of the determi-

nantal ideals, writing r (rank) for the size of the minors under consideration.
The following list gives the plex order Gröbner bases (b ≺ a) and zero sets
for the radicals of the determinantal ideals of the 9 × 14 reduced block in
arity 9. The horizontal lines separate the different zero sets, which increase
(for inclusion) from top to bottom:

r Gröbner basis of
√
DIr(U) Zero set of

√
DIr(U)

1 b(b+ 1), a(b+ 1), a(a2 + 1) (a, b) = (0, 0), (0,−1), (±i,−1)
2 b(b+ 1), a(b+ 1), a(a2 + 1) (a, b) = (0, 0), (0,−1), (±i,−1)
3 b(b+ 1), a(b+ 1), a(a2 + 1) (a, b) = (0, 0), (0,−1), (±i,−1)
4 b(b+ 1), a(b+ 1), a(a2 + 1) (a, b) = (0, 0), (0,−1), (±i,−1)
5 b(b+ 1), a(b+ 1), a(a2 + 1) (a, b) = (0, 0), (0,−1), (±i,−1)
6 a(b+ 1), a(a2 + 1) (a, b) = (0, b), (0,−1), (±i,−1)
7 ab(b+ 1), a(a− 1)(a+ 1)(b+ 1) (a, b) = (0, b), (a,−1), (±1, 0)
8 ab(b+ 1) (a, b) = (0, b), (a,−1), (a, 0)
9 ab(b+ 1)(b2 + b+ 1), (a, b) = (0, b), (a,−1), (a, 0),

ab(b+ 1)(a2 − b) (γ, γ2) for γ2 ± γ + 1 = 0

For the solutions in row r the upper triangular block U has rank ≤ r, and
conversely, so the differences between the zero sets imply the following result:

Proposition 10.3.2.5. The following quadratic relations produce the indi-
cated operadic dimensions in arity 9. All other quadratic relations define op-
erads which have dimension 5 in arity 5. None of these quadratic relations
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defines operads which become nilpotent in arity 9:

dimQ(9) quadratic relation
14 ρ = f ◦1 f
14 ρ = f ◦1 f − f ◦3 f
14 ρ = f ◦1 f ± if ◦2 f − f ◦3 f
9 ρ = f ◦1 f + b f ◦3 f (b ∈ F \ {0,−1})
8 ρ = f ◦1 f + a f ◦2 f − f ◦3 f (a ∈ F \ {0,±i})
8 ρ = f ◦1 f ± f ◦2 f
7 ρ = f ◦1 f + a f ◦2 f (a ∈ F \ {0,±1})
6 ρ = f ◦1 f + γ f ◦2 f + γ2 f ◦3 f (γ2 ± γ + 1 = 0)
5 all other quadratic relations for a ternary operation

Altogether there are ten individual operads and three one-parameter families
(with exceptional points).

The proof is computational; we provide some indication of the complexity
of the intermediate results. Let us consider only the last case, rank 9: alto-
gether there are

(14
9
)

= 2002 minors, but only 420 of them are nonzero and
distinct up to scalar multiples. These polynomials have degrees between 28
and 35, between 22 and 71 terms, and coefficients between −798 and 777.

Exercise 10.15 suggests an open-ended research problem extending the
results of this section.

10.3.2.4 Conjecture on dimension sequences

We shall conclude the discussion of nonsymmetric ternary operads with
one quadratic relation with a discussion of how various methods of this book
allow one to form a plausible conjecture about the set of all possible Hilbert
series of such operads.

The approach we utilized in the previous sections is not feasible for weights
higher than 4 (and arities greater than 9): the numbers of rows and columns
in the relation matrix become too large, and so it is impractical to reduce the
matrix using polynomial arithmetic with rational coefficients. One possibility
to go further is to switch to modular arithmetic for the coefficients. Over the
field Fp with p elements, the entire set of operads we consider becomes finite,
consisting of p2 elements. This means that if we are prepared to wait a few
hours or perhaps days for the computation to finish, then we can obtain a
comprehensive survey of the entire landscape formed by the operads that we
wish to classify. We can do the same computations using different primes and
compare the results; this allows us to recognize patterns that we can confirm
using independent calculations with rational arithmetic.

As long as p is not too large, for each pair a, b we can compute the di-
mension of the operad in arity n = 11, 13, 15, . . . . This gives a sequence of
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dimensions for each pair a, b and we discover empirically that there is a very
small number of distinct dimension sequences.

The first question that arises is: which prime(s) should we use? The smaller
the prime, the fewer the cases, the less information, but the faster the com-
putation. Obviously using too small a prime such as 2 or 3 would lead to too
much compression of information, but using too large a prime such as 1009
would create a large amount of redundant information and waste a great deal
of computer time. One hint is given by considering the symmetrizations of the
corresponding operads, for which there is an action of the symmetric group
Sn on each homogeneous space Q(n). The regular representation of Sn over
Fp is semisimple if and only if p > n. The largest arity we are interested in is
n = 15, and the smallest prime bigger than that is p = 17. We computed the
results for p = 17, 19, 23, 29, 31 but we present them only for p = 17, 19:

p = 17, p2 = 289

arity
count % 3 5 7 9 11 13 15

196 67.82 1 2 4 5 2 1 0
30 10.38 1 2 4 5 3 2 1
14 4.84 1 2 4 5 6 7 8
14 4.84 1 2 4 7 13 24 44
16 5.54 1 2 4 8 16 32 64
15 5.19 1 2 4 9 21 51 127
4 1.38 1 2 5 14 42 142 429

p = 19, p2 = 361

arity
count % 3 5 7 9 11 13 15

258 71.47 1 2 4 5 2 1 0
30 8.31 1 2 4 5 3 2 1
14 3.88 1 2 4 5 6 7 8
4 1.11 1 2 4 6 7 8 9

16 4.43 1 2 4 7 13 24 44
20 5.54 1 2 4 8 16 32 64
17 4.71 1 2 4 9 21 51 127
2 0.55 1 2 5 14 42 142 429

For p = 17 there are 7 distinct dimension sequences, but for p = 19 there are
8: every sequence for p = 17 occurs for p = 19, but the sequence 1,2,4,6,7,8,9
occurs for p = 19 and not for p = 17. Note that according to our results in
Section 10.3.2.3, the only way to obtain dimQ(9) = 6 is for the values of
parameters (γ, γ2), where γ2 ± γ + 1 = 0. Such elements γ are 6th roots of
unity which are not square roots of unity. A field Fp has sixth roots of unity
if and only if p ≡ 1 (mod 6), and this explains why we miss some information
for p = 17. Our computations show that the results for p = 23, 29 resemble
those for p = 17 but the results for p = 31 resemble those for p = 19.

Let us consider the operads corresponding to the dimension sequence
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1,2,4,5,3,2,1. By a direct inspection, we note that all the corresponding so-
lutions modulo p satisfy one of the two conditions b = a− 1 and b = −a− 1,
and we conjecture that in characteristic zero these are precisely the condi-
tions required to obtain that dimension sequence (excluding the solutions
corresponding to dimQ(9) > 5; see Section 10.3.2.3 for the classification of
those). Moreover, computer experiments in characteristic zero suggest that in
this case we have dimQ(2k + 1) = 1 for k ≥ 6. In case b = −a − 1, it some-
what easy to furnish an informal justification as to why this should be the
case. Since 1 + a+ (−a− 1) = 0, for each element of the operadic ideal gener-
ated by our relations, the coefficients must add up to zero. If dimQ(15) = 1,
then the cosets of any two tree monomials of arity 15 are proportional, and
the condition that the coefficients of consequences of relations add up to zero
imply that all these cosets are equal. This of course implies that all cosets in
each subsequent arity are equal.

Considering the other dimension sequences for p = 19, starting at the
bottom and moving up, we are now able to form an educated guess about all
the integer sequences that emerge here:

1. Catalan numbers [236, Seq. A000108]: 1, 2, 5, 14, 42, 132, 429, 1430,
4862, 16796, 58786, 208012, . . . .

2. Motzkin numbers [236, Seq. A001006]: 1, 2, 4, 9, 21, 51, 127, 323, 835,
2188, 5798, 15511, . . . .

3. Powers of two: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, . . . .

4. Tribonacci numbers [236, Seq. A000073]: 1, 2, 4, 7, 13, 24, 44, 81, 149,
274, 504, 927, . . . .

5. All natural numbers 6= 3, 5: 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, . . . .

6. All natural numbers 6= 3: 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, . . . .

7. Dimensions stabilizing at 1: 1, 2, 4, 5, 3, 2, 1, 1, 1, 1, . . . .

8. Nilpotent: 1, 2, 4, 5, 2, 1, 0, 0, 0, 0, 0, 0, . . . .

Overall, we we expect that the situation over an algebraically closed field
of characteristic 0 will resemble that for p ≡ 1 (mod 6). In particular, a large
majority of the operads are nilpotent; in characteristic 0 this suggests that
nilpotent operads form a Zariski open subset of the parameter space.

Characteristic 0 reconstruction of the modular results simply by inspection
of the pairs of parameter values corresponding to each dimension sequence,
paired with numerous characteristic zero experiments, supports the following
conjecture.

Conjecture 10.3.2.6. Over an algebraically closed field F of characteris-
tic zero, there are eight possible sequences of dimensions of components of
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quadratic nonsymmetric ternary operads defined by a relation of the form

f ◦1 f + a f ◦2 f + b f ◦3 f = 0;

these eight sequences correspond to the following choices of parameters:

1. Catalan X1 = {(0, 0), (0,−1), (±i,−1)}
2. Motzkin X2 = {(0, b)} \X1
3. 2weight−1 X3 = {(a,−1)} ∪ {(±1, 0)} \X1
4. Tribonacci X4 = {(a, 0)} \ (X1 ∪X3)
5. N \ {3, 5} X5 = {(a, a2) : a6 = 1, a 6= ±1}
6. N \ {3} X6 = {(a, a2)} \ (X1 ∪X5)
7. Stable dim = 1 X7 = {(a, a− 1)} ∪ {(a,−a− 1)} \ (X1 ∪X3 ∪X5)
8. Nilpotent F2 \ (X1 ∪X2 ∪X3 ∪X4 ∪X5 ∪X6 ∪X7)

Over any field F, nilpotent operads form a Zariski open subset

N = {ab(b− a2)(b+ 1)(b+ a+ 1)(b− a+ 1) 6= 0}

in the parameter space F2 for all nonsymmetric ternary quadratic operads
with one generator. Each such operad is nilpotent of the same index 7 (all
monomials of weight 7 and higher vanish).

The first three sequences featured in this conjecture and the corresponding
values of parameters are discussed in detail in Theorem 10.3.2.2 and Exercises
10.13, 10.14.

10.3.3 Relation rank 2
In this case, we shall see that it is possible to obtain a complete under-

standing of how the corresponding operads behave: all of them except finitely
many are nilpotent, and the finitely many non-nilpotent ones behave in a
somewhat similar way.

We have dimR = 2 and dimQ(5) = 1. Let us discuss the three possible
row canonical forms individually.
Case 1: A basis for R consists of these two relations:

f ◦1 f + a f ◦3 f, f ◦2 f + b f ◦3 f.

There are no duplications among the 16 = 2·8 consequences of these; the corre-
sponding 16×12 relation matrixM(a, b) is the first matrix in Figure 10.4. We
need to determine the rank of this matrix as a function of the parameters a, b.

We first observe that M(a, b) contains 11 orthogonal 1s for all a, b: every
row has a leading 1, and these leading 1s occur in columns 1–11. We therefore
start by computing the PSF of M(a, b) by using elementary row and column
operations to create a block diagonal matrix with the identity matrix I11 in
the upper left corner; we obtain the second matrix in Figure 10.4.
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

1 . a . . . . . . . . .
1 . . . a . . . . . . .
. 1 b . . . . . . . . .
. 1 . . . . . . a . . .
. . 1 . . . . . . a . .
. . . 1 b . . . . . . .
. . . 1 . . . . . . a .
. . . . 1 . . . . . . a
. . . . . 1 . a . . . .
. . . . . 1 . . b . . .
. . . . . . 1 b . . . .
. . . . . . 1 . . b . .
. . . . . . . 1 . . b .
. . . . . . . . 1 . . b
. . . . . . . . . 1 . a
. . . . . . . . . . 1 b



PSF−−−→



1 . . . . . . . . . . .
. 1 . . . . . . . . . .
. . 1 . . . . . . . . .
. . . 1 . . . . . . . .
. . . . 1 . . . . . . .
. . . . . 1 . . . . . .
. . . . . . 1 . . . . .
. . . . . . . 1 . . . .
. . . . . . . . 1 . . .
. . . . . . . . . 1 . .
. . . . . . . . . . 1 .
. . . . . . . . . . . a3 + a2

. . . . . . . . . . . a2b + ab

. . . . . . . . . . . ab2 + b2

. . . . . . . . . . . b3 + ab

. . . . . . . . . . . .


FIGURE 10.4: Rank 2, case 1: original and semi-reduced cubic relation
matrices.

Since the weight 3 component of the free operad is 12-dimensional, and
the matrix we obtained has 11 pivots, the corresponding operad is nilpotent
of index 3 unless all the polynomials in the following ordered set vanish:

G =
[

a3 + a2, a2b+ ab, ab2 + b2, b3 + ab
]
. (10.8)

In fact G is a Gröbner basis of the ideal I(G) ⊂ F[a, b] that it generates with
respect to the glex order with a ≺ b. Since two elements of G have powers of
the parameters as leading monomials, we know that I(G) is zero-dimensional
and so there are only finitely many ordered pairs (a, b) for which every element
of G vanishes. Factoring the elements of G gives

I(G) =
(

a2(a+ 1), ab(a+ 1), b2(a+ 1), b(b2 + a)
)
. (10.9)

If a = −1 then the first 3 elements are 0 and the fourth is b(b2 − 1); hence
b ∈ {0,±1}. If a 6= −1 then we cancel a+1 from the first 3 elements to obtain
a2, ab, b2; hence a and b must both be 0. Thus the only solutions are:

(a, b) =
(
− 1, −1

)
,
(
− 1, 0

)
,
(
− 1, 1

)
,
(

0, 0
)
.

The ideal I(G) is not radical; the glex Gröbner basis for
√
I(G) is√

I(G) =
(

a(a+ 1), b(a+ 1), b(b− 1)(b+ 1)
)
.

We record the primary and prime decompositions of I(G) and
√
I(G):

I(G) = ( a+ 1, b+ 1 ) ∩ ( a+ 1, b ) ∩ ( a+ 1, b− 1 ) ∩ ( a2, ab, b2 ),
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I(G) = ( a+ 1, b+ 1 ) ∩ ( a+ 1, b ) ∩ ( a+ 1, b− 1 ) ∩ ( a, b ).

The four ideals in these decompositions correspond in order to the solutions.
All these ideals are in fact maximal except for 〈 a2, ab, b2 〉 which is primary
but not prime. The two decompositions differ only in the fourth ideal: the first
three solutions have multiplicity 1, but (a, b) = (0, 0) has multiplicity 2.
Case 2: A basis for R consists of these two relations:

R1 = f ◦1 f + af ◦2 f, R2 = f ◦3 f.

There is only one duplication among the 16 consequences: R2 ◦5 f = f ◦3 R2.
Thus R(3) is the row space of the first matrix in Figure 10.5, where we have
sorted the rows to make the matrix as upper triangular as possible. Since there
is only one parameter, we calculate the HNF of this matrix, and obtain the
second matrix in Figure 10.5. Since the weight 3 component of the free operad
is 12-dimensional, and the matrix we obtained has 11 pivots, the corresponding
operad is nilpotent of index 3 unless a = 0.



1 a . . . . . . . . . .
1 . . a . . . . . . . .
. 1 . . . a . . . . . .
. . 1 . . . a . . . . .
. . 1 . . . . . . . . .
. . . 1 . . . a . . . .
. . . . 1 . . . a . . .
. . . . 1 . . . . . . .
. . . . . 1 a . . . . .
. . . . . . . 1 . . . .
. . . . . . . . 1 . . .
. . . . . . . . . 1 a .
. . . . . . . . . 1 . .
. . . . . . . . . . 1 .
. . . . . . . . . . . 1



HNF−−−−→



1 . . . . . . . . . . .
. 1 . . . . . . . . . .
. . 1 . . . . . . . . .
. . . 1 . . . . . . . .
. . . . 1 . . . . . . .
. . . . . 1 . . . . . .
. . . . . . a . . . . .
. . . . . . . 1 . . . .
. . . . . . . . 1 . . .
. . . . . . . . . 1 . .
. . . . . . . . . . 1 .
. . . . . . . . . . . 1
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .


FIGURE 10.5: Rank 2, case 2: original and reduced cubic relation matrices.

Case 3: A basis for R(2) consists of these two monomial relations:

f ◦2 f, f ◦3 f.

Considering this case is left as an exercise for the reader.
Summarizing, we obtain the following result describing the arity 7 compo-

nents of quotients by two quadratic relations:

Proposition 10.3.3.1. Let Q = TX /(R) be the quotient by an ideal generated
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by a set R = {R1, R2} of two quadratic relations. Then dimQ(7) = 0 except
for the following six pairs of relations R for which dimQ(7) = 1:

R1 = f ◦1 f, R2 = f ◦2 f,
R1 = f ◦1 f − f ◦3 f, R2 = f ◦2 f + f ◦3 f,
R1 = f ◦1 f − f ◦3 f, R2 = f ◦2 f − f ◦3 f,
R1 = f ◦1 f − f ◦3 f, R2 = f ◦2 f,
R1 = f ◦1 f, R2 = f ◦3 f,
R1 = f ◦2 f, R2 = f ◦3 f.

In fact, we can progress much further, and use operadic Gröbner bases to
understand the structure of the six exceptional operads we just found.

Theorem 10.3.3.2. Let Q be one of the six operads of Proposition 10.3.3.1.
Then dimQ(m) = 1 for all (odd) arities m. If Q is any other ternary quadratic
non-symmetric operad for which dimQ(5) = 1, then Q(m) = 0 for all (odd)
arities m ≥ 7.

Proof. A direct computation shows that for each of those six operads, the
defining relations form a Gröbner basis for the gpathlex order. Hence,
it suffices to check that for each of these operads there is exactly one
normal tree monomial of each weight, which is clear by direct inspec-
tion: for the first four operads, ((· · · (f ◦3 (f ◦3 f)) · · · )) is normal, for
the fifth one, ((· · · (f ◦2 (f ◦2 f)) · · · )) is normal, and for the last operad,
((· · · (f ◦1 (f ◦1 f)) · · · )) is normal.

The second statement is trivial: we already established that for all other
operads Q(7) = 0, and hence all the subsequent components vanish.

10.4 Further directions
In this section, we outline some further directions of study in case of non-

symmetric operads with d generators of given arities a1, . . . , ad and r relations
of given weights w1, . . . , wr; we hope that the last two chapters of the book
would encourage some readers to obtain further results of the same kind.

10.4.1 Hilbert series
The first coarse approximation to classifying operads with the given types

of generators and relations is classifying possible Hilbert series of those oper-
ads.

Conjecture 10.4.1.1. For given arities of generators a1, . . . , ad and weights
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of relations w1, . . . , wr, the set of possible Hilbert series of operads with these
types of generators and relations is always finite.

A closely related problem is to determine if there exists the “generic Hilbert
series”, that is if there exists a Zariski open subset in the parameter space for
which all the operads have the same Hilbert series.

For Hilbert series that appear as Hilbert series of a nonsymmetric operad,
it is an interesting question to determine a natural class of power series where
these series belong. It is known that for nonsymmetric operads with a finite
Gröbner basis, the Hilbert series is an algebraic function [148]. Algebraicity of
Hilbert series seems, in the case of nonsymmetric operads, to replace rational-
ity of Hilbert series observed in the context of graded associative algebras; for
example, according to Theorem 2.5.1.5, a graded algebra with a finite Gröbner
basis has a rational Hilbert series. In the case of graded algebras, it is known
that the Hilbert series of an algebra with one relation is rational [9]. This
suggests the following conjecture.

Conjecture 10.4.1.2. For each nonsymmetric operad with one relation, its
Hilbert series is an algebraic function.

10.4.2 Nilpotency
One natural question arising when attempting classification results for

operads with the given types of generators and relations is to find the set
Wa1,...,ad;w1,...,wr

of all numbers N for which there exists an operad of that
type which is nilpotent of index N . Our results and conjectures would imply
that W3;2 = {7}, W3;2,2 = {3}, W3;2,2,2 = {2}. Whenever the corresponding
set is not empty, for each of its elements N we can further ask for the subset of
the parameter space consisting of those parameter values which produce op-
erads which are nilpotent of index N . This is where computational commuta-
tive algebra enters the picture, providing another application of commutative
Gröbner bases to the classification of operads.

10.5 Exercises
Exercise 10.1.

(i) Suppose that A is an associative algebra with the product

a1, a2 7→ µ(a1, a2) = a1a2.

Then the operation (−,−,−)µ : A⊗A⊗A→ A, (a1, a2, a3) := a1a2a3,
makes A into a tAs3

0-algebra.
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(ii) Suppose that A is a tAs3
0-algebra with the structure map

(−,−,−) : A⊗A⊗A→ A,

and suppose that it has a “unit element” 1 for which

(a, 1, 1) = (1, a, 1) = (1, 1, a) = a.

Then the operation a1 ? a2 := (a1, a2, 1) is associative, and
(a1, a2, a3) = a1 ? a2 ? a3.

(iii) Suppose that A is a tAs3
0-algebra with the structure map

(−,−,−) : A⊗A⊗A→ A.

Consider the vector space Ã := (A⊗A)/U , where

U = span((a1, a2, a3)⊗ a4 − a1 ⊗ (a2, a3, a4) : a1, a2, a3, a4 ∈ A).

Then the vector space B := A ⊕ Ã has an associative product µ, for
which (A, (−,−,−)) is a tAs3

0-subalgebra of (B, (−,−,−)µ).

Exercise 10.2. Compute the Gröbner basis for the operad tAs(3)
0 for an

ordering of your choice, and use it to prove that this operad is Koszul.

Exercise 10.3. Show that in the case of the free nonsymmetric operad gener-
ated by several operations of the same arity n, the arity of each tree monomial
is uniquely determined by its weight: ar(T )− 1 = (n− 1) wt(T ). Show that it
is not true for a free nonsymmetric operad with generators of different arities.

Exercise 10.4. Show that the order of Definition 10.2.1.6 is a monomial order
of the free operad TX .

Exercise 10.5. Given a positive integer n ≥ 2, classify all operads O with
one generator of given arity n for which all components O(k(n − 1) + 1) are
one-dimensional for k ≥ 1. (Do it by hand for small n, form a conjecture, and
prove it.)

Exercise 10.6. Prove Lemma 10.2.1.5. Explain the meaning of this recur-
rence formula in terms of composition of operations.

Exercise 10.7. Fix n ≥ 2, and consider the operation alphabet X with
X (n) = {f1}, X (2n− 1) = {f2}, and X (k) = ∅ otherwise.

(i) Show that TX (k) = 0 unless k ≡ 1 (mod n− 1).

(ii) The operad TX is weight bi-graded: to each tree monomial, we can as-
sociate two numbers, the number of occurrences of f1 and the number
of occurrences of f2. Consider the three-variable generating function
f(s, t, x) for which the coefficient of sktlxm is the number of tree mono-
mials of weight (k, l) and arity m. Show that

f(s, t, x) = x+ sf(s, t, x)n + tf(s, t, x)2n−1.
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(iii) Explain why the two-variable generating function

g(s, x) = ∂

∂t
f(s, t, x)

∣∣∣∣
t=0

has, as the coefficient of skxm the number of weight k+ 2 consequences
of a quadratic relation R in the free nonsymmetric operad generated
by one n-ary operation, and show that this coefficient is equal to the
binomial coefficient

(
n(k+2)−1

k

)
.

Exercise 10.8. Perform the row/column reduction outlined in Figure 10.1.

Exercise 10.9. Compute the glex Gröbner basis for the radical in rank 1,
case 1.

Exercise 10.10. Suppose that Q is a nilpotent operad defined by the follow-
ing relation:

ρ = a f ◦1 f + b f ◦2 f + c f ◦3 f.

Prove that a 6= 0.

Exercise 10.11. Determine possible sequences of dimensions of components
for all operads for rank 1, case 2, and rank 1, case 3.

Exercise 10.12. Let Gn = GLn(F[a, b]) be the group of invertible n × n
matrices over F[a, b]: the determinant must be invertible in F[a, b], so it is a
nonzero scalar. Construct matricesX ∈ G10 and Y ∈ G14 such thatXBY = C
where B and C are, respectively, the matrices of Figures 8.2 and 8.3. Follow
the proof of Proposition 10.3.2.4.

Exercise 10.13. Show that for each b 6= 0,−1 the dimensions of components
of the operad Q with one ternary generator f and one relation

f ◦1 f + b f ◦3 f

are Motzkin numbers: dimQ(2n+ 1) = an, where

a1 = 1, an+1 = an +
∑

p+q=n
apaq.

Exercise 10.14.

(i) Show that for each a 6= 0,±i the dimensions of components of the operad
Q with one ternary generator f and one relation

f ◦1 f + a f ◦2 f − f ◦3 f

are powers of two: dimQ(2n+ 1) = 2n−1.

(ii) Show the same for the operads with one relation f ◦1 f ± f ◦2 f .
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Exercise 10.15. For arity 11 (weight 5), determine the possible ranks and
the corresponding parameter values for the 364 × 273 relation matrix [R(5)]
where R is a single quadratic relation.

Exercise 10.16. Explore Conjecture 10.3.2.6 further. Attempt to incorporate
Gröbner bases for nonsymmetric operads in your investigation.

Exercise 10.17. Compute the Koszul dual of the operad with the defining
relations f ◦1 f − f ◦3 f , f ◦2 f + f ◦3 f . (This Koszul dual operad appears in
representation theory for the celebrated Tamari lattice [54].)





Appendix A
Maple Code for Buchberger’s
Algorithm

What follows is very basic Maple code designed solely to illustrate Buch-
berger’s algorithm to compute a Gröbner basis using S-polynomials. This code
has not been optimized in any way whatsoever, but minimal comments are
included (both inside and outside the code) to explain its structure.

The basic idea is to start by generating random polynomials using Maple’s
randpoly function and then convert each polynomial to a list of terms, in
which each term in a list of two items, a coefficient and a list of exponents.
All remaining computations are done using this list structure to represent
polynomials, and only very basic Maple operations are used (for instance, we
never call any of the procedures from the Groebner package).

A.1 First block: Initialization
The first block of code sets various parameters, and includes the procedures

to convert from polynomial to list and from list to polynomial. It also generates
the original list flistlist of pseudorandom polynomials in list form.

# parameters for creating pseudorandom polynomials to test code

VARS := [x,y,z]: # ordered set of variables
SIZE := 3: # number of polynomials to be generated
TERMS := 4: # number of terms in each polynomial
RANGE := -2..2: # range of coefficients in each polynomial

# procedure to convert Maple polynomial to list format in which
# each item has form term = [ coefficient, [ exponent list ] ]

polylist := proc( f )
global VARS: local c, e, g, m, t:
g := []:
if f <> 0 then
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for t in convert(f,list) do
c := coeffs(t): m := t/c:
e := [ seq( degree(m,v), v in VARS ) ]:
g := [ op(g), [ c, e ] ]

od
fi:
return( g )

end:

# procedure to convert polynomial in list format to Maple format

listpoly := proc( f )
global VARS:
add( t[1] * mul( VARS[k]^t[2][k], k=1..nops(VARS) ), t in f )

end:

# generate pseudorandom polynomials using Maple’s "randpoly"
# and convert pseudorandom polynomials to list format

flistpoly :=
[seq( randpoly(VARS,terms=TERMS,coeffs=rand(RANGE)),i=1..SIZE)]:
flistlist := map( polylist, flistpoly ):

A.2 Second block: Monomial orders
The second block of code includes the three procedures for the three stan-

dard monomial orders, and chooses one of them, called ORDER, for the rest of
the worksheet.

# define three standard monomial orders (strict precedence)

pplex := proc( v, w ) # pure lex order
global VARS: local i, ii:
ii := 0:
for i from nops(VARS) to 1 by -1 do

if v[i] <> w[i] then ii := i fi
od:
if ii=0 then return false else return evalb(v[ii]<w[ii]) fi

end:

ddlex := proc( v, w ) # degree lex order
global VARS: local i, ii, vd, wd:
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vd := add( v[i], i=1..nops(VARS) ):
wd := add( w[i], i=1..nops(VARS) ):
if vd < wd then return true fi:
if vd > wd then return false fi:
if vd = wd then

ii := 0:
for i from nops(VARS) to 1 by -1 do

if v[i] <> w[i] then ii := i fi
od:
if ii=0 then return false else return evalb(v[ii]<w[ii]) fi

fi
end:

gglex := proc( v, w ) # degree reverse lex order
global VARS: local i, ii, vd, wd:
vd := add( v[i], i=1..nops(VARS) ):
wd := add( w[i], i=1..nops(VARS) ):
if vd < wd then return true fi:
if vd > wd then return false fi:
if vd = wd then

ii := 0:
for i to nops(VARS) do

if v[i] <> w[i] then ii := i fi
od:
if ii=0 then return false else return evalb(v[ii]>w[ii]) fi

fi
end:

# choose monomial order to be used in this worksheet

ORDER := gglex:

A.3 Third block: Sorting polynomials
The third block of code includes the procedures for sorting a polynomial

by decreasing order of its monomials, to compare to polynomials using the
natural inductive extension of the monomial order, and to sort a list of poly-
nomials by increasing order. It concludes by sorting the original list flistlist
of pseudorandom polynomials, obtaining the same polynomials in the new
double-sorted form fsortsort,

# procedure to sort terms of a polynomial (decreasing)
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polysort := proc( f )
global ORDER:
sort( f, proc(x,y) not ORDER( x[2], y[2] ) end )

end:

# procedure to compare two polynomials using monomial order

polyorder := proc( f, g )
global ORDER: local lcf, lcg, lmf, lmg:
# consider 0 as basis of recursion, 0 precedes everything
if f = [] then return true
else

if g = [] then return false
else

lcf, lmf := op( polysort( f )[ 1 ] ):
lcg, lmg := op( polysort( g )[ 1 ] ):
if lmf = lmg then

return polyorder( f[2..nops(f)], g[2..nops(g)] )
else

return ORDER( lmf, lmg )
fi

fi
fi

end:

# procedure to sort list of sorted polynomials (increasing)

polylistsort := proc( flist )
sort( flist, proc(f,g) polyorder( f, g ) end )

end:

# sort original generators

flistsort := map( polysort, flistlist ):
fsortsort := polylistsort( flistsort ):

A.4 Fourth block: Standard forms of polynomials
In order to guarantee that the algorithm works properly, we must make

sure that we retain only one representative of each equivalent class of polyno-
mials. Two polynomials in list format are regarded as equivalent if (1) after
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collecting terms with the same monomial, so that each monomial appears only
once, there are no zero coefficients, (2) either the two resulting polynomials
are both zero, or they have the same monic form (depending on the choice
of monomial order). The two procedures in this block of code implement this
equivalence relation. We use the convenient but non-standard term monicify
to represent this combined process of collecting terms and making monic.

# procedure to collect terms of form [ coefficient, monomial ]

compress := proc( f )
local c, x, i, ff, fff:
ff := copy( f ): fff := []:
while ff <> [] do

x := ff[ 1 ]: c := 0: i := 1:
while i <= nops( ff ) do

if ff[ i ][ 2 ] = x[ 2 ] then
c := c + ff[ i ][ 1 ]:
ff := [ op( ff[1..i-1] ), op( ff[i+1..-1] ) ]

else
i := i + 1

fi
od:
if c <> 0 then fff := [ op( fff ), [ c, x[ 2 ] ] ] fi

od:
return fff

end:

# procedure to make a polynomial monic and sort its terms

monicify := proc( f )
local ff, lc:
ff := compress( f ):
if ff <> [] then

ff := polysort( ff ): lc := ff[1][1]:
ff := [ seq( [ t[1]/lc, t[2] ], t in ff ) ]

fi:
return ff

end:

A.5 Fifth block: Reduce and self-reduce
This block contains two procedures:
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• First, reduce a polynomial f with respect to a setG of other polynomials,
which amounts to eliminating every occurrence of the leading monomials
of elements of G as divisors of monomials in f .

• Second, self-reduce a set of polynomials, which amounts to sorting the
set in increasing order, reducing each polynomial with respect to the
previous ones, resorting the list, and repeating this process until it sta-
bilizes.

# procedure to reduce f using generatorset; do not monicify

reducedformlist := proc( f, generatorset )
global VARS:
local ff,ffm,finished,found,g,generators,i,j,k,lmg,s,t,u:
if f = [] then ff := []
else

ff := polysort( f ):
generators :=

polylistsort( map(polysort,convert(generatorset,list)) ):
finished := false:
while not finished do

i := 0: found := false:
while i < nops( ff ) and not found do

i := i + 1: ffm := ff[i][2]: j := 0:
while j < nops( generators ) and not found do

j := j + 1: g := generators[j]:
lmg := g[1][2]:
found := true:
for k to nops(VARS) do

found := found and evalb( lmg[k] <= ffm[k] )
od

od:
if found then

s := ff[i][1] / g[1][1]:
u := [ seq( ffm[k] - lmg[k], k=1..nops(VARS) ) ]:
ff := [ op(ff), seq(

[ -s*t[1], [ seq(t[2][k]+u[k],k=1..nops(VARS)) ] ],
t in g ) ]:

ff := compress( ff )
fi

od:
finished := not found

od
fi:
return ff

end:
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# procedure to convert set of polynomials to self-reduced form

selfreduce := proc( flistlist )
local ff, iteration, k, newflistreduced, oldflistreduced:
iteration := 0:
oldflistreduced := []:
newflistreduced := polylistsort( map( polysort, flistlist ) ):
while oldflistreduced <> newflistreduced do

iteration := iteration + 1:
oldflistreduced := copy(newflistreduced):
newflistreduced := [ monicify( oldflistreduced[1] ) ]:
for k from 2 to nops(oldflistreduced) do

ff := reducedformlist(
oldflistreduced[k], oldflistreduced[1..k-1] ):

ff := monicify( ff ):
if ff <> [] and not member( ff, newflistreduced ) then

newflistreduced := [ op( newflistreduced ), ff ]
fi

od:
newflistreduced :=

polylistsort( map( polysort, newflistreduced ) ):
od:
return newflistreduced

end:

A.6 Sixth block: Main loop — Buchberger’s algorithm
This block is the main loop of Buchberger’s algorithm for computing Gröb-

ner bases: starting with the original generators, we perform the following steps:

1. Self-reduce the generators.

2. Produce all possible S-polynomials, and reduce them with respect to the
generators.

3. If every S-polynomial reduces to zero then

• Terminate: we have a Gröbner basis.

4. Else

• Add the nonzero S-polynomials to the set of generators, obtaining
a new expanded set of generators, and return to item 1 in the loop.
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# Buchberger’s algorithm for computing a Groebner basis

oldgenerators := copy( fsortsort ):
finished := false: iteration := 0:
while not finished do

iteration := iteration + 1:
oldgenerators := selfreduce( oldgenerators ):
spolynomials := table(): spcount := 0:
for i to nops(oldgenerators) do

gi := oldgenerators[i]: lcgi := gi[1][1]:
for j from i to nops(oldgenerators) do

gj := oldgenerators[j]: lcgj := gj[1][1]:
mgcd := [ seq( min( gi[1][2][k], gj[1][2][k] ),

k=1..nops(VARS) ) ]:
if convert(mgcd,set) <> {0} then

mi := [ seq( gj[1][2][k]-mgcd[k], k=1..nops(VARS) ) ]:
mj := [ seq( gi[1][2][k]-mgcd[k], k=1..nops(VARS) ) ]:
sp := [ seq( [ lcgj*t[1],

[ seq( t[2][k]+mi[k], k=1..nops(VARS) ) ] ],
t in gi ),
seq( [ -lcgi*t[1],
[ seq( t[2][k]+mj[k], k=1..nops(VARS) ) ] ],
t in gj ) ]:

sp := monicify( sp ):
if sp <> [] then

sp := reducedformlist( sp, oldgenerators ):
if sp <> [] and not member( sp, spolynomials ) then

spcount := spcount + 1:
spolynomials[ spcount ] := sp

fi
fi

fi
od

od:
if spcount = 0 then finished := true fi:
oldgenerators := [ op(oldgenerators),

seq( spolynomials[s], s=1..spcount ) ]:
od:
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