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AdS5 x S5 string theory
Starting point is the GS string on AdS5 x S5:

 In (uniform) light-cone gauge

theory is a massive, integrable, non-Lorentz invariant 1+1-dimensional 
theory defined on a cylinder:
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In the de-compactified limit one can define asymptotic incoming states and so 
“in”-scattering states

with                                    and reversed for “out”-scattering states. 

The “in”- and “out”-scattering states are then related by the S-matrix

Combined with a knowledge of the symmetries and bound states this allows for 
a complete determination of the S-matrix which is basic building block for 
determining string energies.

p1 > p2 > · · · > pn

|p1, p2, . . . , pni(in)i1,i2,...,in
⌘ |p1, p2, . . . , pnii1,i2,...,in

World-sheet Scattering

|p1, p2〉
(in) = S12(p1, p2) · |p1, p2〉

(out)

S



World-sheet Form Factors
We are interested in calculating matrix elements of world-sheet operators 
between asymptotic states.

We define auxiliary functions as matrix elements for “in”-scattering state 
(i.e.  with p1 > p2 >... >pn)
 

and for other values of the external momentum by analytic continuation 

Can find other matrix elements by using crossing.           

fO
i (pi) = h⌦|O|p1, . . . , pni(in)i1,...,in



World-sheet Correlation Functions

• In particular they can be used to construct world-sheet correlation functions 
which by the AdS/CFT duality are related to gauge theory higher-point 
functions. 

•We are most interested in the case when the world-sheet operators are related to 
string vertex operators which create some state dual to a “short” gauge theory 
operator while the asymptotic states will correspond to near-BPS operators. 

• In this case world-sheet form factors can be directly related to gauge theory 
structure constants (for certain operators, in certain limits ...).  

•We can see this concretely by considering the spin-chain description of tree-
level structure constants. 



Spin-chain form factors

At weak coupling  we can map the calculation of tree-level 
structure constants to the calculation of spin-chain form factors for 

the case where two operators have the same length.
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Spin-chain form factors
Ex. [Roiban & Volovich] Operators made from single traces of two types of 
complex scalars 

at one-loop the dilatation operator is described by XXX-spin chain 

and eigen-operators can be described by Bethe states.
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For the gauge theory/spin-chain operator 

Consider

Let momenta satisfy B.E. but relax level matching 
a.k.a trace cyclicity

Spin-chain form factors
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Example: in the limit                   so that                                         then for 
generic momenta and to next-to-leading order

Weak-strong matching
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Can this be matched with string theory?

Example: in the limit                   so that                                         then for 
generic momenta and to next-to-leading order
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To see matching explicitly.

Procedure:

•Match spin-chain operator to string theory operator.
• Calculate form factor in the de-compactified limit.
• Re-compactify form factor by 

-  imposing Bethe-Yang equations. 
-  including correct normalisation (c.f. [Pozsgay and Takacs] finite-volume 

form factors).

Weak-strong matching



The string theory object is the two-point function (for               ) which is an 
essential building block for all other higher point form factors. 

Tree-level:

One-loop: 

Note: 
• Y2 operator mixes with a two-derivative Lorentz scalar operator
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To match with the spin-chain we fix the momenta in terms of mode numbers
using the string B.E. for example

We also need to ensure the states are normalised equivalently.  The perturbative 
calculation of the form factor is done for on-shell states with the inner product

whereas to match the spin-chain they should be in terms of mode-number delta-
functions. The Jacobian for the change of variables is 

which is essentially the Gaudin norm for Bethe state. 

Form factor normalisation
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Combining these factors, using the relation between the string length and spin-
chain length in a = 1 gauge, and allowing for the splitting of the spin-chain 
operators we find for the world-sheet form factor
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Matches Spin-Chain

Combining these factors, using the relation between the string length and spin-
chain length in a = 1 gauge, and allowing for the splitting of the spin-chain 
operators we find for the world-sheet form factor
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Combining these factors, using the relation between the string length and spin-
chain length in a = 1 gauge, and allowing for the splitting of the spin-chain 
operators we find for the world-sheet form factor



Do we expect this agreement to persist? No.

This is in the double scaling limit:

So agreement is due to some unknown non-renormalization theorem 
(presumably the same as that which gives matching of anomalous dimensions).
 
To get proper matching one should find all order answers.            

fstring(�, J)|�!1
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This may be possible as due to unitarity, analyticity and locality 
there are a system of functional equations which when combined 
with integrability might allow form factors for this theory to be 
exactly calculable

Integrable Form Factors



Form factor Axioms
Define

Axioms

i) Permutation:

ii) Periodicity:

                                  

fO(z1, . . . , zn) = h⌦|O|p(z1), . . . p(zn)i , p(z1) > · · · > p(zn)

fO(. . . , zj , zi, . . . ) = fO(. . . , zi, zj , . . . )S(zi, zj)

fO(z1, z2, . . . , zn) = fO(z2, . . . , zn, z1 � 2!2)



Form factor Axioms
Define

iii) One-particle poles: for 

iv) Bound state poles: for
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p1(z1) + p2(z2) = 0



Can’t check iv) - existence of bound states - perturbatively but is apparent at 
“strong” coupling in spin-chain description. 

Axioms are for local operators.  Worldsheet symmetries are non-local and so 
decendant states satisfy modified axioms. 

These “axioms” are obviously similar to relativistic case but are they correct? - 
Checked i)-iii) are satisfied by a number of perturbative checks (           ).

p
� � 1



Worldsheet Symmetries
Due to gauge fixing the centally extended psu(2|2)2 symmetries involve a non-
locality

where

This non-locality results in a non-trivial braiding of the currents with worldsheet 
fields       

which implies for the action of charges on products of fields                                                  
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Figure 2: Braiding of currents with local fields. The red vertex corresponds to the worldsheet position of
the local field and the black vertex to the position of the local part of the current.

For the worldsheet theory the explicit form of the braiding can be found from the expressions
for the currents
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Figure 3: Integration contour defining the action of a charge on a field.
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Figure 4: Action of charge on products of fields

the action of the charges on products of fields, represented diagrammatically in Fig. 4, can be
calculated from the braiding of the current with the fields. It is explicitly given by
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Worldsheet Hopf Algebra
This can be interpreted as a non-cocommutative coproduct (and in fact one can 
define an antipode and co-unit). Introducing a linear basis, ea , for the universal 
enveloping algebra we can define the Hopf algebra as 

where the relation to the previous charges and braiding is

From the coproduct we can define the adjoint action of charges on fields 

for example taking one of the psu(2|2) charges on a bosonic worldsheet field 
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J = µaI

J ea
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a eb � s(ec)
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B ,



Form Factor Ward Identity
Using the adjoint action we can derive the axioms for descendant operators from 
those for local operators. Consider 

and the known action of charges on asymptotic states

hence we find 
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Form Factor Ward Identity
Using the adjoint action we can derive the axioms for descendant operators from 
those for local operators. Consider

and the known action of charges on asymptotic states

hence we find 

when the total momentum is zero (natural from string theory p.o.v.). This 
modified axiom is very similar to recently proposed axioms for string vertex 
operator (Bajnok, Janik ’15) where the local operator is replaced by a string 
vertex.
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Exact form factors
We would like to find all order form factors by solving these axioms.

Ex. Consider two-particle form factors in relativistic theory.  Answer can be 
written as 
                                                         

K is a even, periodic function which reproduces the pole structure and N is 
normalisation constant.

Remains to find a minimal solution i.e. one with no poles or zeros in the 
physical strip.

fmin(✓ + 2⇡i) = S(�✓)fmin(✓)fO(✓) = NOKO(✓)fmin(✓) s.t.



For the world-sheet theory, defined on a rapidity torus with periods 2ω1  & 2ω2, 
the minimal solution in a rank-one sector should satisfy:

We will additionally  assume that the form factors satisfy 

which is essentially world-sheet parity (or analogue of CT transformation in 
relativistic model). Hence using                       the equations we want to solve are 

Worldsheet minimal solution

fmin(z1 + 2!2, z2) = S(z1, z2)fmin(z1, z2)

fmin(z1 + !2, z2 + !2) = fmin(z1, z2)

fmin(z+ + 2!2, z�) = fmin(z+, z�)

fmin(z+, z� + 2!2) = S(z+, z�)fmin(z+, z�)

z± = z1 ± z2



As in the relativistic case we can write the formal solution

and as in relativistic case we can perform the sum by Fourier transforming S-
matrix along real axis 

Not particularly useful answer, to be more concrete we can expand and compare 
perturbative answers.  

An exact minimal solution
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Minimal MS-form factors
For the near-flat limit we can write the one-loop S-matrix in the appropriate 
integral form (helps to use the fact that the BDS part in near-flat limit is sG BB)

which gives

which correctly reproduces the discontinuities of the pert. form factor.  The 
remaining “rational” terms are indeed even and periodic but don’t follow from a 
“minimality” condition for Y2 operator and one needs to add higher derivative 
terms.

Similar for the near-BMN one-loop form factor in a=1/2 gauge. 
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Outlook
• We would like to solve the axioms and find exact multi-particle form factors.

• Can we use the form factors to compute all order structure constants?
• Simplest will hopefully be quantum HHL states

• See conjecture of [Bajnok, Janik and Wereszczyński 1404.4556]
• Form factors as a step toward LCSFT for AdS/CFT space and so all 
three-point functions.

• Such solutions would provide part of the string vertex operator 
(Janik/Bajnok).

• Would like to better understand the algebraic structure of the underlying 
symmetries (e.g. the quantum double).


