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AdSs x S° string theory

Starting point is the GS string on AdSs x S~

/

In (uniform) light-cone gauge

F(r,o)=X"=(1—-a)t+ap, py=(1—-a)py,— ap; = constant

theory is a massive, integrable, non-Lorentz invariant 1+1-dimensional
theory defined on a cylinder:

L J=V\T
— =(1-a)J +a
27 (1-a) ’ E =V



World-sheet Scattering

In the de-compactified limit one can define asymptotic incoming states and so
“In”-scattering states

(in) L
|p17p27 <o 7pn>i1,i2,,,,,in — ‘php?a o« 7pn>i1,i2,...,in

with p; > py > --- > p,, and reversed for “out”-scattering states.

The “in”- and “out”-scattering states are then related by the S-matrix

O

1, p2) ™ = S1a(p1, p2) - [p1, p2)

Combined with a knowledge of the symmetries and bound states this allows for
a complete determination of the S-matrix which 1s basic building block for
determining string energies.

(out)



World-sheet Form Factors

We are interested in calculating matrix elements of world-sheet operators
between asymptotic states.

We define auxiliary functions as matrix elements for “in”-scattering state

(e. with p;> p2>... >pn)

2 (p)) = (QOlpy, . .., pn) ™

2 11 5eeeyln

and for other values of the external momentum by analytic continuation

Can find other matrix elements by using crossing.



World-sheet Correlation Functions

e In particular they can be used to construct world-sheet correlation functions
which by the AdS/CFT duality are related to gauge theory higher-point
functions.

e We are most interested in the case when the world-sheet operators are related to
string vertex operators which create some state dual to a “short” gauge theory
operator while the asymptotic states will correspond to near-BPS operators.

* In this case world-sheet form factors can be directly related to gauge theory
structure constants (for certain operators, in certain limits ...).

e We can see this concretely by considering the spin-chain description of tree-
level structure constants.



Spin-chain form factors

(O (1) Op(22) O (3)) = Cabe

|T12| e |xo3|Ye T30 |

At weak coupling we can map the calculation of tree-level
structure constants to the calculation of spin-chain form factors for
the case where two operators have the same length.

Cabe < (WL, (10)|0F[PL,(N))



Spin-chain form factors

Ex. [Roiban & Volovich] Operators made from single traces of two types of
complex scalars

O ~ ZCOS 28 T 1)Tr [Y(Z)SY(Z)LC_2_S]

at one-loop the dilatation operator is described by XXX-spin chain
L.

A L.
= T2 21~ %2 Fot)

r=1

and eigen-operators can be described by Bethe states.



Spin-chain form factors

For the gauge theory/spin-chain operator

L.
Oy = TI'(ZZYY) — Oy = Z S+,js_|_,J_|_1
Consider =1
> OC ~

O~ r(Zb) - @S N Pl zyze)

C
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Cope ~ fopin(P1,12) = £.{0|S+ ; S+ j+1|p1,p2) L.

Let momenta satisfy B.E. but relax level matching
a.k.a trace cyclicity



Weak-strong matching

2mn;
Example: in the limit L. — oo so that p; = Zn + O(1/L?) then for

C

generic momenta and to next-to-leading order
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Weak-strong matching

2mn;
Example: in the limit L. — oo so that p; = Zn + O(1/L?) then for

C

generic momenta and to next-to-leading order

- @~
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Weak-strong matching

2mn;
Example: in the limit L. — oo so that p; = Zn + O(1/L?) then for

C

generic momenta and to next-to-leading order

‘\ > o

Wave-function Phase Wave-function Norm

Can this be matched with string theory?



Weak-strong matching

To see matching explicitly.
Procedure:

e Match spin-chain operator to string theory operator.
e Calculate form factor in the de-compactified limit.
e Re-compactify form factor by
- 1mposing Bethe-Yang equations.
- including correct normalisation (c.f. [Pozsgay and Takacs] finite-volume
form factors).



Two-point form factor

The string theory object is the two-point function (for © = Y ) which is an
essential building block for all other higher point form factors.

pl p1
< . <><
D, Dp.

Tree-level: |
FOpr,p2) =
One-loop: 2,\/€1€2
1 1 0 o 1-—2
£ (01, 02) = ) 2\/@(9 — i) [Coth 5 sinh? 5 -+ % sinh 9}

Note:
e Y2 operator mixes with a two-derivative Lorentz scalar operator



Form factor normalisation

To match with the spin-chain we fix the momenta in terms of mode numbers
using the string B.E. for example

9 4 2 2 2 _ 2
™1 B 74 nq + n5 a(nl n2) 4+ O()\—l)
L, \/XLE ny — na

P1 =

We also need to ensure the states are normalised equivalently. The perturbative
calculation of the form factor is done for on-shell states with the inner product

(p3,palp1,p2) = (2m)*[6(p1 — p3)d(p2 — pa) + crossed channel]

whereas to match the spin-chain they should be in terms of mode-number delta-
functions. The Jacobian for the change of variables 1s

a(plap2)
a(nhnz)

N, = (27)?

which is essentially the Gaudin norm for Bethe state.



Combining these factors, using the relation between the string length and spin-
chain length in @ = 1 gauge, and allowing for the splitting of the spin-chain
operators we find for the world-sheet form factor

2 n?+n3
Lg (n1 — ’I”LQ)2

2 20T ( 27117?,2

fws(nl,ng) — I + L% — (m + n2)) =

ny —Nng



Combining these factors, using the relation between the string length and spin-
chain length in @ = 1 gauge, and allowing for the splitting of the spin-chain
operators we find for the world-sheet form factor

2 ng+n3
Lg (n1 — n2)2

AN a

Matches Spin-Chain

fws(nla 7?,2) —

2 20T 27117?,2
ny —nz

Lc -+ Lg — (711 o[ nz)) +



Combining these factors, using the relation between the string length and spin-
chain length in @ = 1 gauge, and allowing for the splitting of the spin-chain
operators we find for the world-sheet form factor

2 n?+n3
Lz (n1 —n2)?

2 20T < 27217?,2

fws(n17n2) — L. + Lg — (’nl —I—n2)> -+

ny — Ny

|

Corresponds to a wave-function

~ e_2rb.(pl—|_pQ)Xspin (pl , p2)



Do we expect this agreement to persist? No.

This 1s in the double scaling limit:

?
fstring(Aa J)‘A—)oo — fspin()\a J)‘ A—0
J—00 J—00
A—0 A—0

So agreement 1s due to some unknown non-renormalization theorem
(presumably the same as that which gives matching of anomalous dimensions).

To get proper matching one should find all order answers.



Integrable Form Factors

This may be possible as due to unitarity, analyticity and locality
there are a system of functional equations which when combined
with integrability might allow form factors for this theory to be
exactly calculable



Define

Oz,

Axioms

1) Permutation:

i1) Periodicity:

Y

Form factor Axioms

zn) = (Q|O|p(z1), -

.p(zn)) , p(21) >+ > p(2n)
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Form factor Axioms
Define

fO(Zh ooy 2n) = (Q|O0[p(21), .. p(2n)) ,  p(21) >+ > p(2n)

111) One-particle poles: for p1(2z1) + p2(22) =0

- (-

Res fo(zl,... )_2’1,012f 23, ... — Son ... S23)

iv) Bound state poles: for Res./ ./ S12(21,22) = R(12)

Res fO(Zl, By e v ny Zn) — Z’iR(lg)fO(Zlg, 3 e vy Zn)



These “axioms” are obviously similar to relativistic case but are they correct? -
Checked i)-iii) are satisfied by a number of perturbative checks (V) > 1).

Can’t check iv) - existence of bound states - perturbatively but is apparent at
“strong” coupling in spin-chain description.

Axioms are for local operators. Worldsheet symmetries are non-local and so
decendant states satisfy modified axioms.



Worldsheet Symmetries

Due to gauge fixing the centally extended psu(2|2)? symmetries involve a non-
locality

QI:/CZJJ], with J; = e*’% Q

1 ,
where X =—- / do Py XM + fermions .
C

9
This non-locality results in a non-trivial braiding of the currents with worldsheet

fields
e

J;(0)®a(00) = ©[®al(00)T5(0) , for o> g
which implies for the action of charges on products of fields

Q;[®4, (01)P a, (09)] = Q;[® 4, (01)]Pa, (02) + OL[@ 4, (01)]Q [P 4, (0)] .



Worldsheet Hopt Algebra

This can be interpreted as a non-cocommutative coproduct (and in fact one can
define an antipode and co-unit). Introducing a linear basis, €. , for the universal
enveloping algebra we can define the Hopf algebra as
eaty =morec , Aley) = ,ugceb R e,
where the relation to the previous charges and braiding is
I

Qr=er, O;=ufeq

From the coproduct we can define the adjoint action of charges on fields

ad, (®) = il ey P s(c.)

for example taking one of the psu(2|2) charges on a bosonic worldsheet field

adQAB(X) — QABX — eiEABPXG_iEABP@AB :



Form Factor Ward Identity

Using the adjoint action we can derive the axioms for descendant operators from
those for local operators. Consider

RO (p(z1), -, p(za)) = (Oladgz (O)lp1,- -, pn)

and the known action of charges on asymptotic states

n

. 1—1 )
QAB’plv S 7pn> — Z erLGAB Zj:l P (QAB)i‘pla S 7pn>
=1
hence we find Z

fQﬁO(zl + 2w, ..y 2n) = eieABplfo\O(@ ey Zny 21)

—I_(l _ eiEAB 2oi=1 pi)(Qi)lfO(Z% ceey Zmy Zl)



Form Factor Ward Identity

Using the adjoint action we can derive the axioms for descendant operators from
those for local operators. Consider

RO (p(z1), -, p(za)) = (Oladgz (O)lp1,- -, pn)

and the known action of charges on asymptotic states

n

. 1—1 '
QAB’plv S 7pn> — Z erLGAB Zj:l P (QAB)i‘pla S 7pn>
=1
hence we find Z

fQEO(zl + 2w, .y 2y) = eieABplf@EO(@ ey 2y 21)

when the total momentum is zero (natural from string theory p.o.v.). This
modified axiom 1s very similar to recently proposed axioms for string vertex
operator (Bajnok, Janik *15) where the local operator is replaced by a string
vertex.



Exact form factors

We would like to find all order form factors by solving these axioms.

Ex. Consider two-particle form factors in relativistic theory. Answer can be
written as

FOO) = NOK©(0) fuuin(0) st fuin(0 + 270) = S(—0) frnin(0)

K 1s a even, periodic function which reproduces the pole structure and N 1s
normalisation constant.

Remains to find a minimal solution 1.e. one with no poles or zeros in the
physical strip.



Worldsheet minimal solution

For the world-sheet theory, defined on a rapidity torus with periods 2m1 & 22,
the minimal solution in a rank-one sector should satisfy:

fmin (21 + 2we, 22) = S(21, 22) frmin (21, 22)

We will additionally assume that the form factors satisfy

fmin(zl + W2, 22 + WQ) — fmin(Zh ZQ)

which 1s essentially world-sheet parity (or analogue of CT transformation in
relativistic model). Hence using 2+ = 21 T 22 the equations we want to solve are

fmin(z—i— + 2CU2, Z_) — fmin(z—l—a Z—)

fmin(z—i-az— T 2&)2) — S(z—l-vz—)fmin(z—|—a Z—)



An exact minimal solution

As 1n the relativistic case we can write the formal solution

log fmin(z1,2_) = Z log S(z1,2_ — 2won)

n=1

and as in relativistic case we can perform the sum by Fourier transforming S-
matrix along real axis

log S(z_, z+) Z h(zy, m o=
= log fumin(z_,24) = Z (24,m) cos (mr(z_ — w2)> esch (mnwg)
= Wi w1

Not particularly useful answer, to be more concrete we can expand and compare
perturbative answers.



Minimal MS-form factors

For the near-flat limit we can write the one-loop S-matrix in the appropriate
integral form (helps to use the fact that the BDS part in near-flat limit is sG BB)

~2 o0
InS(7,0) = ——/ dt cothtsmhﬁ + 2% dt t (3 — tanh? )Smhﬁ +O(7%) .
T T )y 2 LT
which gives
) 0 7 0 37 0
fmin(0) =1 — %(9 — 47) coth 5 + %(9 — im)? coth? = 5 + %csc:hQ5

-2
_ %(9 —im)[2 — (0 — im) coth ] cschd + O(F°)

which correctly reproduces the discontinuities of the pert. form factor. The
remaining “rational” terms are indeed even and periodic but don’t follow from a
“minimality” condition for Y? operator and one needs to add higher derivative
terms.

Similar for the near-BMN one-loop form factor in a=1/2 gauge.



Outlook

* We would like to solve the axioms and find exact multi-particle form factors.

* Can we use the form factors to compute all order structure constants!?
* Simplest will hopefully be quantum HHL states
* See conjecture of [Bajnok, Janik and Wereszczynski 1404.4556]
* Form factors as a step toward LCSFT for AdS/CFT space and so all
three-point functions.

* Such solutions would provide part of the string vertex operator
(Janik/Bajnok).

* Would like to better understand the algebraic structure of the underlying
symmetries (e.g. the quantum double).



