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Twistor Theory

Starting point is the twistor equation
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e A, A’= 0,1 are two-component spinor indices.

e VA4 = Vg is the covariant derivative where we make use of the
bi-spinor notation for vectors.The metric is: Jab = €AB€A’ B’

. . . . A 2
e Equation is conformally invariant. Under gop — Gab = () Jab
~A A
we have W' = W’ so that
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W= W
e Only consistent for: \IJABCDwD — 0 where
Cabed = VY aBepea B €c'p +VYa B oD €ABECD

* The space of solutions form a four dimensional vector space over the
complex numbers.



Flat Twistor Space

In Minkowski space the twistor equation has non-trivial solutions:
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o wA, T A’ are constant spinor fields defining a four complex-

dimensional vector space of solutions called twistor space, T, ~ OF

* We denote elements of this solution space W, and we can represent
them in a non-conformally invariant fashion by the pair of fields

 Wa=(ranw®)

, A" B’
* We can similarly define dual twistors as solutions of Vfél I ) = 0
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Twistor Theory

Projective Twistor space PT 2 CIP° corresponds to the identification
2% ~tZY, teCH

We identify points in CM with complex projective lines in PT via the
incidence relation

S

W"\
e




Twistor Theory

One application of twistor theory gives an identification between complex
data on Twistor space and solutions of linear massless equations [Hitchen ‘80,
Eastwood et al ’81]

50‘ =0 < > vAllAl ¢A1...A2h =0
a \
@ is a (0,])-form with values DA,... Ay, is a space-time field
in O(—2h — 2). ) of helicity 2h.
via the Penrose transform
1
= — AA, - A A DA
DAr..don = 5 L M Agp, O

where DX = e*B )\ 4d\g = (Ad)) is the volume form on CP*.
Can prove [Hitchen ‘80, Atiyah *79]

space of solutions on CM of
VA A Ay =0
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Self-dual Actions

Generalized Weyl CZ(S) v(s) Curvature tensors can be decomposed as:

(s) _ U
CA(S)A’(S)B(S)B’(S) — CAIB; \IJA}B} T €A B Vs

For YM and Weyl Gravity (and linearized HS)

1 ~ ~ Al 1/
S°l¢] = 5.2 /d437 (‘PAIBI pATBr ‘I’A;B;‘PAIBI)
Schematically we can write this as

1
S| = = /d4x VW + Boundary term

or introducing Lagrange multiplier

2
Ss[gb,G] :/d4$GAIBI gArBr _ %/d4$GAIBI GArBr

which has EoM.: U, 5, =2Ga,5,, VY%G4 5 =0.

Provides an expansion about self-dual sector: ¢ =0
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Penrose/Ward Self-dual space-times:

> Vapecp =0

Form curved twistor spaces 7 by deforming the complex structure

0=dz®
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where the deformation is a (1,0)-vector valued (0,1)-form

f=7f2dZ%® 0,

To be well-defined on projective space, P7, /“must have homogeneity 1
under coordinate rescalings. Also has the invariance

The condition for the deformation to give rise to an integrable complex

structures is

07 = (0" + [P NOs[")0a =0



Write an action, [Berkovits/Witten '04], by introducing a Lagrange multiplier
field

07 = (O + [P N0z )00 =0



Write an action, [Berkovits/Witten *04], by introducing a Lagrange multiplier
field

Ssp.= [ QAga NS+ 17 N 0sF)
PT



Write an action, [Berkovits/Witten *04], by introducing a Lagrange multiplier
field .
Ss0. = [ [@hgan @05+ 1 n0ss)
P

Holomorphic (3,0) volume
form of homogeneity 4. In terms of homogeneous
coordinates

D37 = €n,anana, 2 22 2% d 7>



Write an action, [Berkovits/Witten *04], by introducing a Lagrange multiplier
field
Sso.= [0 Agalh 05+ 1 n055)
PT

(0, l)-form with homogeneity -5
satisfying constraint goZ° = 0



Write an action, [Berkovits/Witten *04], by introducing a Lagrange multiplier
field

Ssp.= [ QAga NS+ 17 N 0sF)
PT

Equation of motion for tensor field
- P.T.
[ afga =0 J < > [ V%V%GAB(;D =0 J

Describes a helicity-(-2) particle moving in a self-dual background.
Corresponds to self-dual sector of Weyl gravity

Ss.p. = /d4$\/ —g GAPCPW 4 pep




Write an action, [Berkovits/Witten *04], by introducing a Lagrange multiplier
field

Ssp.= [ QAga NS+ 17 N 0sF)
PT
Equation of motion for tensor field

— P.T.
[ afga =0 j < > [ V%V%GAB(;D =0 J

Describes a helicity-(-2) particle moving in a self-dual background.
Corresponds to self-dual sector of Weyl gravity

Ss.p. = /d4$\/ —g GAPCPW 4 pep

To include the anti-self-dual interactions we add term
[SA.S.D. — —6/61437\/ —4g GABCDGABCDJ

This is equivalent to usual Weyl action up to topological terms.




Write an action, [Berkovits/Witten *04], by introducing a Lagrange multiplier
field

SS.D.:/ QA ga AOF* + [P NOsfY)
PT

Equation of motion for tensor field
- P.T.
{ afga — O ] < > [ vg/vg/GABC'D — O J

Describes a helicity-(-2) particle moving in a self-dual background.
Corresponds to self-dual sector of Weyl gravity

Ss.p. = /d4$\/ —g GAPCPW 4 pep

To include the anti-self-dual interactions we add twistor term constructed
by using the Penrose transform involving the deformation which gives rise
to a MHV vertex like expansion.

Can be used to very efficiently calculate all Einstein gravity MHV scattering
amplitude.



Following Maldacena’s argument for truncating conformal gravity to
Einstein gravity with a non-zero cosmological constant, Adamo and Mason

gave a twistor prescription for extracting EG amplitudes by restricting the
fields to a “Unitary” sector :

é )

f& =17"0gh _ | B |
Go = Ins 787, h, h describe £2 helicity gravitons

Use infinity twistor for AdS space,

IQB - (AEAB 0 >
— 0 EA/B/

plane-wave wave-functions for / and h and produces AdS analogue of
scattering amplitudes which in the flat limit reproduce Hodges formula for
MHYV amplitudes after accounting for overall powers of A.

Can we generalise this to Higher Spin Fields?




Higher Spin Deformations

Consider deformations of Dolbeault operator for a curved twistor
space corresponding to an arbitrary self-dual space time

5:d20‘82a — éf:5+f




Higher Spin Deformations

Consider deformations of Dolbeault operator for a curved twistor
space corresponding to an arbitrary self-dual space time

Or =D+ [ ® g, ‘Spin-(|[}+1)

using a multi-index notation.

for1 is a rank-n symmetric tensor valued (0, 1)-form
of homogeneity n on 7. In order to be defined on P
it must have the invariance

fOél---CVn N fOél---Otn 4+ Z(alAag...an)



Higher Spin Deformations

Consider deformations of Dolbeault operator for a curved twistor
space corresponding to an arbitrary self-dual space time

Or =D+ [ ® g, ‘Spin-(|[}+1)

using a multi-index notation.

for1 is a rank-n symmetric tensor valued (0, 1)-form
of homogeneity n on 7. In order to be defined on P
it must have the invariance

fOél---Oén N fOél---Oén 4+ Z(alg\ag...aa}

T

Ale1--an—1) symmetric
tensor of homogeneity
n-1




Higher Spin Deformations

Consider deformations of Dolbeault operator for a curved twistor
space corresponding to an arbitrary self-dual space time

Or =D+ [ ® g, ‘Spin-(|[}+1)

using a multi-index notation.

We impose the equation of motion
(OfT + fP1 N, f*T) =0# 0% =0

and can write an action function by introducing a Lagrange multiplier
field

SS.D. :/ Q/\goq A\ (5faf 4+ fBI /\aﬁjfaj)
PT



Higher Spin Deformations

Consider deformations of Dolbeault operator for a curved twistor
space corresponding to an arbitrary self-dual space time

Or =D+ [ ® g, ‘Spin-(|[}+1)

using a multi-index notation.

We impose the equation of motion
(OfT + fP1 N, f*T) =0# 0% =0

and can write an action function by introducing a Lagrange multiplier

field
Ss.D. :/ Q/\/\ (5faf + fﬁl /\aBIfoq)
PT

T

Jar = Y(ay...an) is a (0,1)-form of
homogeneity -n-4 s.t. ga;...a, Z° =0



Linearized Deformations

At a linearized level the deformation and the Lagrange multiplier define
elements of cohomology groups

HY ' (PT;0(—n — 4))

& HY'(PT;0(n))

Via the Penrose transform for homogeneous tensors [Eastwood, Mason] we

have
_ PT. , , R
[ 8ga1...ozn =0 ) > vAlAl °'°vAnAnGA1...AnBl...Bn = ()
\_ J
3
A xd1...0n All Afn, .
of =0 |~ | Vi ...Vip . B)ap.a, =0
N Y




Linearized Deformations

At a linearized level the deformation and the Lagrange multiplier define
elements of cohomology groups

H"Y(PT;0(-n—-4)) & H"'(PT;0(n))

Straightforward to calculate flat-space on-shell spectrum 4 la Witten &
Berkovits : e.g. spin-3

4 )

+1 12 2

= 12 on-shell
states

_1 _2 _2




Linearized Conserved Charges

There is a nice trick for calculating conserved charges in a linearised
spin-n/2 massless theory. Given a field satisfying

VANGA a4, =0
and a solution of the twistor equation

wBi1(B1 \B1...Bn-2) _
we can form a solution to Maxwell equation

Aa. A,
XA Ay = QA .. A, A3

and so a complex charge
~ i F 4+ xF

1 / :
p+iq = _%XABGA’B’diUAA A dz®P
47'(' g

Hence for every solution of the twistor equation we find two conserved
charges (half are actually zero).



Linearized Conserved Charges

For conformal higher-spin theory we can do a similar construction.

. . . a1...0s—-1
Given a conformal higher-spin field G Bi...Bsyt1

we can use a symmetric trace-free || -twistor

W /31"'58—1
x1...005_1

to form a solution of the Maxwell equation

o]...00_ Bs...Bg
XB]_B2 — G ! 1BlBQ...BS_|_1WCM1...O{S_1 ? +

Each charge corresponds to a solution of the twistor equation. Easy to

count in flat-space that there are

Ls?(s+1)%(25s +1)°

This is essentially the number of conformal Killing tensors and matches

with the calculation of Eastwood. Here it is easy to generalise to
arbitrary self-dual backgrounds.



At linearized level twistor action appears to describe conformal higher-
spin theory.

What about non-linear terms?



Infinite-Spin Deformations

We define a deformed Dolbeault operator involving all spins

af =0+ Z fﬁjaﬁJ
|.J|=0
then demand that each term vanishes

éa )
Il oo
0 =0 0f*+ ), ) CunfP N f4=7) =0
\ 71=0 | K|=0 )

Lower-spin fields source higher-spin fields and can’t truncate to just e.g.
spin-3 fields. Self-dual action is simply the sum of constraints.

Defines a holomorphic structure on the infinite jet bundle of symmetric
product of dual tangent bundles of twistor space.

Can straightforwardly write an action by introducing Lagrange multiplier
fields.



Unitary Self-Interactions

On-shell flat space spectrum forms a non-diagonalizable representation
of Poincare algebra.We can identify a “unitary” sub-sector analogous to

EGin CG
2 )
frLOn = [P ...15”0‘”6’51 ...0g hsg
Jor..on = Io, 8, ... 0P ZP1  ZPrp,
\ J

h. & h.

describe helicity

- S states.

Choose AdS background, evaluate action on plane-wave solutions to find
the AdS analogue of 3-pt MHV-bar “am

Ms,—1(—81, S2,

o) = pm1 A

dlitudes”

9 3]81 +S2+53

[1 2]814-83—82- [3 1]81-!—82—83 (1

P)S23|1 54(P)

Thus accounting for powers of A we reproduce the unique flat space
answer consistent with Poincaré symmetry and helicity constraints.



ASD interactions

So far we have only considered the self-dual sector to motivate the
interactions consider the quadratic case

Sepin_n = / drz GMT 4, — A / d*z GA1Gy,
P.T.

P.T.

M

It is convenient to picture real, Euclidean space-times. In this case P77 is
fibered over the space-time M thus we see the action corresponds to a

fibre wise product of twistor spaces Pl X 57 T



ASD interactions

We can use the twistor formulation to propose a full ASD action but it’s
rather involved. The interaction term for arbitrary negative helicity CHS
fields on a conformal gravity background is relatively pleasing

-

S [f@, g] = QANQ Y 291 21 g5.(Z) gay (Z)

U

and can be expanded to compute arbitrary (-s,-s, 2, 2, 2,...) MHV
amplitudes in a flat-space limit:

(I)ZJ:M fOI'Z#]

M 1222 L, "
/1\12% A X 6*(P) )2 (21)2 1®15| , where _ —Z 5 7] (€7)2 |
T2 i) (€2

However here it is defined for arbitrary self-dual backgrounds and so
provides a general quadratic coupling of CHS fields to conformal gravity.



Conclusions/Outlook

Described a twistor action to describe higher-spin fields on arbitrary
self-dual backgrounds.

Flat space-time action/spectrum is that of conformal higher-spin theory
and produces linearised charges.

Interactions involve one copy of all spins s>0. Have interpretation of
holomorphic structure for infinite jet bundle of homogeneous tensors.

ldentified a “unitary” sub-sector, analogues of EG inside CG, which can
be used to reproduce MHV and MHV-bar 3-pt amplitudes up powers of
cosmological constant. Can be used to calculate n-point (-s, -s, 2, 2, 2, ...)

MHYV amplitude.

What is the full non-linear interacting theory. CHS theory of Segal?
What is the “unitary” subsector?

Can we calculate something interesting? All MHV “amplitudes™?
Correlation functions? Partition functions?
Classical solutions? Instantons? Black Holes!?



