
MA3432 Sample Exam

Sample Exam

Policy

Credit will be given for the best three out of four. All problems have equal weight.

Problem 1 (SI)

(i) Show that Maxwell’s equations in vacuum imply that the E and B fields satisfy the wave
equation.
Soln: The Maxwell equations in vacuum are:

∇ ·E = 0 , ∇ ·B = 0 , (1)

∇×E +
∂B

∂t
= 0 , ∇×B− 1

c2
∂E

∂t
= 0 . (2)

Taking the time derivative of the first equation on the second line we find

∇× ∂E

∂t
+
∂2B

∂t2
= 0 (3)

which implies that

∇× (c2∇×B) +
∂2B

∂t2
= 0 . (4)

We now use the identity

∇× (∇×B) = ∇(∇ ·B)−∇2B (5)

which can be derived in component form using the identity εkijεklm = (δilδjm− δimδjl) so
that [

∇× (∇×B)
]
i

= εkinεklm∂j∂lBm (6)

= ∂i∂mBm − ∂j∂jBi (7)

=
[
∇(∇ ·B)−∇2B

]
i
. (8)

Using∇ ·B = 0 we have

∇2B− 1

c2
∂2B

∂t2
= 0 . (9)

To find the corresponding equation for the E field we start from

∇× ∂B

∂t
− 1

c2
∂2E

∂t2
= 0 (10)

which implies

−∇× (∇×E)− 1

c2
∂2E

∂t2
= 0 , (11)

from which the result follows as above.
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(ii) The angular momentum for electromagnetic fields in vacuum is given by

L =
1

µ0c2

∫
d3x

[
x× (E×B)

]
. (12)

Assuming that the fields are localized in space, i.e. vanish at spatial infinity, show that

L =
1

µ0c2

∫
d3x

[
E×A +

3∑
j=1

Ej(x×∇)Aj

]
(13)

where A is the usual vector potential.
Soln: Consider the i-th component of the vector L and, using the relation B = ∇×A, the
integral[ ∫

d3x {x× (E× (∇×A)}
]
i

=

∫
d3x εijkεklmεmrsxjEl∂rAs (14)

=

∫
d3x (εijrxjEl∂rAl − εijsxjEr∂rAs) (15)

(16)

where we use the ε tensor identity above. Integrating the second term by parts, dropping
the boundary term, using ∂rEr = 0 and rearranging we find∫

d3x
[
εirsErAs − El(εijrxj∂r)Al

]
=

∫
d3x

[
E×A +

∑
j

Ej(x×∇)Aj

]
i

(17)

as required.

(iii) Consider a monochromatic plane wave moving along the z-axis:

E = Re
{
E0e

ikz−iωt
}

(18)

with

E0 = (E0xx̂+ E0yŷ) . (19)

Find the direction and magnitude of the polarisation ellipse (i.e. the semi-axis and the tilt
angle).
Soln: Consider writing the polarisation vector as

E0 = beiα (20)

where b = b1 + ib2 with b1,b2 ∈ R2 and b1 ⊥ b2. This is completely general as it is only
the relative phase of the two components that is physical (see fig.). If we choose our axis
such that b1 = b1x̂

′ and b2 = b2ŷ
′ then

Ex′ = b1 cos(kz − ωt− α) (21)
Ey′ = −b2 sin(kz − ωt− α) (22)

and

E2
x′

b21
+
E2
y′

b22
= 1 (23)
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Figure 1: Polarization Ellipse

i.e. b1 and b2 describe the semi-major and semi-minor axis. The tilt angle is the angle
between b1 and the x-axis.

If we write

E0x = Aeiδ1 , E0y = Beiδ2 (24)

then

E0 ·E∗0 = b21 + b22 = A2 +B2 (25)

and

E0 ×E∗0 = −2iAB sin δ = −2ib1 × b2 = −2ib1b2 (26)

where δ = δ1 − δ2. Hence we can solve for say b2

b1 =
AB sin δ

b2
⇒ A2B2 sin2 δ + b42 = b22(A

2 +B2) (27)

and so

b22 =
1

2
((A2 +B2)±

√
(A2 +B2)2 − 4A2B2 sin2 δ) (28)

where we take the − sign for b2 and the solution with the + sign for the b1. This gives the
semi-minor and semi-major axis of the ellipse.

Now we want to find the tilt angle. To this end let us consider

Re {(E0 · b1)(E
∗
0 · b2)} = 0 . (29)

This can be seen by plugging in the expression for E0 in terms of b and α.

Re {(E0 · b1)(E
∗
0 · b2)} = Re {i} (30)

We can now write this as

Re
{

(E0xx̂ · b1 + E0yŷ · b1)(E
∗
0xx̂ · b2 + E∗0yŷ · b2)

}
(31)

= Re
{

A2x̂ · b1x̂ · b2 + B2ŷ · b1ŷ · b2) + ABe−iδx̂ · b1ŷ · b2

}
(32)

Now using the facts that x̂ ·b1 = b1 cos θ, x̂ ·b2 = −b2 sin θ, ŷ ·b1 = b1 sin θ, ŷ ·b2 = b2 cos θ
we have

0 = −A2b1b2 cos θ sin θ +B2b1b2 cos θ sin θ −ABb1b2eiδ sin2 θ +ABb1b2e
−iδ cos2 θ (33)

and hence

tan 2θ =
2AB cos δ

A2 −B2
. (34)
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Problem 2 (SI)

(i) Find the differential equation satisfied by the Green function G(x, t;x′, t′) that gives

ψ =

∫
d3x′dt′ G(x, t;x′, t′)f(x′, t′) (35)

as a solution to

2ψ(x, t) = −4πf(x, t) . (36)

Soln: If we consider

2ψ =

∫
d3x′dt′2(x,t)G(x, t;x′, t′)f(x′, t′) (37)

this will be equal to −4πf((x, t) if

2(x,t)G(x, t;x′, t′) = −4πδ(3)(x− x′)δ(t) . (38)

(ii) If we assume that the Green function is only a function of r = x − x′ and τ = t − t′ and
that it vanishes for τ < 0 i.e. the retarded Green function, show that it is given by

Gr(r, τ) =
c

r
δ(r − cτ) . (39)

Soln: We want to find a solution to

2(r,τ)G(r, τ) = −4πδ(3)(r)δ(τ) . (40)

We perform a Fourier transform in all the spatial and the time direction

G(r, τ) =

∫
d3kdω ei(k·r−ωτ)g(k, ω) (41)

and use

δ(3)(r)δ(τ) =

∫
d3kdω

(2π)4
ei(k·r−ωτ) (42)

to find (
ω2

c2
− k2

)
g = − 4π

(2π)4
⇒ g = − 1

4π3
1(

ω2

c2
− k2

) . (43)

Hence

G(r, τ) =
1

4π3

∫
d3kdω

1(
ω2

c2
− k2

)ei(k·r−ωτ) . (44)

Due to the singularities along the integration contour (taken as the real line) we must
specify how to compute the integral. This can be either done by moving the contour
around the poles or, equivalently, shifting the poles off the real axis. Here we take the
later approach and define

G(r, τ) =
c2

4π3
lim
ε→0+

∫
d3k eik·r

∫
dω

e−iωτ

((ω + iε)2 − c2k2)
. (45)
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In this case the poles are now at ω = −iε ± ck. This choice of shifting the poles into the
lower half of the complex ω plane corresponds to choosing the Green function to vanish
for τ < 0, i.e. we are computing the retarded Green function. We can close the contour
in the lower half plane for τ > 0 as e−iωτ vanishes along a semi-circular arc with infinite
radius in the lower half plane. The ω integral can thus be done by evaluating the residues
of the poles (note the contour is clockwise and so gives an extra minus sign). Thus we
have

lim
ε→0+

∫
dω

e−iωτ

2ck

[ 1

(ω + iε)− ck
− 1

(ω + iε) + ck

]
= −

(
2πi

2ck

)[
e−ickτ − eickτ

]
= −

(
πi

2ck

)
sin ckτ . (46)

Hence for the retarded Green function

Gr =
c

2π2

∫
k2dkdΩ

k
eik·r sin(ckτ) (47)

=
c

π

∫ ∞
0

dk
eikr − e−ikr

ir
sin(ckr)

=
c

2πr

∫ ∞
−∞

[
eik(r−cτ) − eik(r+cτ)

]
=

c

r

[
δ(r − cτ)− δ(r + cτ)

]
. (48)

Now if we remember that we have assumed that τ > 0, or put differently there is a
Heaviside Θ-function in front of the above expression, we see that the second δ-function
can never contribute hence

Gr(r, τ) =
c

r
δ(r − cτ) , (49)

as required.

(iii) Write down an expression for the scalar potential due to an arbitrary charge distribution.
Expand the result to show that to first order in |x′|/r where |x| = r the electric dipole
potential for arbitrary time variation is

Φ(x, t) =
1

4πε0

[ 1

r2
n · pret +

1

cr
n · ∂pret

∂t

]
, (50)

with pret = p(t′ = t− r/c).
Soln: The general expression for the scalar field is

Φ(x, t) =
1

4πε0

∫
d3x′

1

R
[ρ(x′, t′)]ret (51)

with R = x− x′. We can use the expansion

R ' r − n̂ · x′ (52)

and

t′ = t−R/c ' t− r/c+ n̂ · x′/c = tret + n̂ · x′/c (53)

so that

ρ(x′, t′) = ρ(x′, tret) +
n̂ · x′

c

∂ρret
∂t

, (54)
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where we use the notation ρ(x′, t = tret) = ρret. Hence we find

Φ(x, t) =
1

4πε0

∫
d3x′

1

r

(
1 +

n̂ · x′

r

)[
ρret +

n̂ · x′

c

∂ρret
∂t

]
=

1

4πε0

[ ∫
d3x′

ρret
r

+

∫
d3x′

n̂ · x′

r2
ρret +

1

r

∫
d3x′

n̂ · x′

c

∂ρret
∂t

]
(55)

If we drop the leading term (this is the monopole term which doesn’t contribute to the
radiation potential) the dipole terms are

Φ(x, t) =
1

4πε0

[ n̂ · pret

r2
+

1

cr
n̂ · ∂pret

∂t

]
(56)

where

pret =

∫
d3x′ x′ρret . (57)

Problem 3 (G)

A charged particle, e, follows a trajectory rµ(τ) parameterised by the invariant time τ with
four-velocity V µ. The retarded Green function is given by

Dr(x− x′) =
θ(x0 − x′0)

2π
δ[(x− x′)2] . (58)

(i) Write down an expression for the charge’s four-current and show that the electromagnetic
field strength can be written as

Fαβ =
e

V · (x− r)
d

dτ

[(x− r)αV β − (x− r)βV α

V · (x− r)

]
. (59)

(ii) Show that in a particular frame where (x− r)α = (R,Rn) i.e. where the relative location
of the charge e is given by

R = x− r(τ) = Rn ,

and V α = (γc, γcβ) i.e. cβ = −dR/dt is the 3-velocity and the derivatives denoted by the
dot are taken with respect to the coordinate time, t, that

V · (x− r) = γcR(1− β · n) (60)

dV α

dτ
= (cγ4β · β̇, cγ2β̇ + cγ4(β · β̇)β) (61)

d
[
V · (x− r)

]
dτ

= −c2 +
dV

dτ
· (x− r) . (62)

(iii) Show that the radiative part of the magnetic field can be written in this particular frame
as

B =
e

c

[n× n× {(n− β)× β̇}
(1− β · n)3R

]
ret
. (63)

Soln:
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(i) The four current is given by

Jα(x′) = ec

∫
dτV α(τ)δ(4)[x′ − r(τ)] (64)

so that the gauge potential is given by

Aα(x) =
4π

c

∫
d4x′ Dr(x− x′)Jα(x′)

⇒ Aα(x) = 2e

∫
d4x′ V α(x′)Θ(x0 − r0(τ))δ[(x− r(τ))2] . (65)

One can perform the integration by using

δ[(x− r(τ))2] = δ(f(τ)) =
∑
τ∗i

1∣∣∣ dfdτ ∣∣∣ τ=τ∗i
δ(τ − τ∗i ) (66)

where the sum is over the zeros of the functions f(τ∗i ) = 0. The two solutions correspond
to x0 = r0± |x− r|, however because of the Θ-function only one solution contributes and
we use

df

dτ
= −2V α(x− r)α . (67)

Hence one can show that

Aα(x) =
eV α(τ)

V · (x− r(τ))

∣∣∣∣
τ=τ0

where (x− r(τ0))2 = 0 and x0 > r0(τ0). To find Fαβ = ∂αAβ − ∂βAα it is more efficient to
start with

∂αAβ = 2e

∫
dτ V β(τ)

[
∂αΘ(x0 − r0(τ))δ[(x− r(τ))2] + Θ(x0 − r0(τ))∂αδ[(x− r(τ))2]

]
.

The term ∂αΘ gives rise to an additional delta-function which results in this term only
having support on the world-line of the radiating charge, this term we exclude by hand
from our considerations. The second term we can evaluate with the aid of

∂αδ(f(τ)) = ∂αf.
dτ

df
.
dδ(f)

dτ
(68)

where f = [x− r(τ)]2 so that ∂αf = 2(xα − rα) and

dτ

df
=

1
df
dτ

= [−2ṙα(x− r)α]−1 (69)

so that

∂αAβ = −2e

∫
dτ V β(τ)

(x− r)α

V · (x− r)
Θ(x0 − r0(τ))

d

dτ
δ((x− r(τ))2) . (70)

We can now integrate by parts and neglecting boundary terms and derivatives of the
Θ-function we find that

∂αAβ = 2e

∫
dτ

d

dτ

[(x− r)αV β(τ)

V · (x− r)

]
Θ(x0 − r0(τ))δ[(x− r(τ)2] . (71)
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This integral is again of the form∫
dτ g(τ)Θ(x0 − r0(τ))δ[(x− r(τ))2] (72)

and can be done as above by rewriting the delta-function. This gives

∂αAβ =
e

V · (x− r)
d

dτ

[(x− r)αV β

V · (x− r)

]
τ=τ0

(73)

where τ0 is as above and so

Fαβ =
e

V · (x− r)
d

dτ

[(x− r)αV β − (x− r)βV α

V · (x− r)

]
τ=τ0

, (74)

with (x− r(τ0))2 = 0 and x0 > r0(τ0).

(ii) In the part we consider a specific frame and make use of the parametrisation

(x− r)α = (R,Rn) , V α = (γc, γcβ) .

The first identity follows from the definition of the scalar product and the fact that the
metric is given by ηαβ = diag(1,−1,−1,−1).

V · (x− r) = ηαβV
α(x− r)β = cγR−Rcγn · β

= cγR(1− n · β) . (75)

Next we take the derivative with respect to the invariant time but note that γ which
depends on β = |β| is not a constant so that

dV α

dτ
=
[
c
dγ

dτ
, c
d(γβ)

dτ

]
. (76)

Now using the relation between the coordinate time and the invariant time

dτ =
dt

γ
(77)

and

dγ

dt
=

d

dt

1√
1− β2

=
β · β̇

(1− β2)3/2
= γ3β · β̇ (78)

we have

dV α

dτ
=
[
cγ4(β · β̇), cγ4(β · β̇)β + cγ2β̇

]
. (79)

Finally we can write

d(V · (x− r))
dτ

= −V 2 +
dV

dτ
· (x− r) (80)

and using V 2 = c2 we find the required result.
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(iii) As we want to find only the radiation terms we need only consider those terms which
involve derivatives of V α. Starting from the definition of the Bi component in terms of
Fαβ we have

Brad
i = −1

2
εijkF

jk
rad

=
eεijk

2(V · (x− r))3
[
((x− r)j dV

k

dτ
− (x− r)k dV

j

dτ
)((x− r) · V )

−((x− r)jV k − (x− r)kV j)(x− r) · dV
dτ

]
=

−eεijk
(γcR(1− β · n))3

[
Rnj(cγ2β̇k + cγ4βk(β · β̇)(γcR(1− β · n))

−(Rnjγcβk)(Rcγ4β · β̇ −Rcγ2n · β̇ −Rcγ4n · ββ · β̇)
]

=
−eεijk

cR(1− β · n)3
nj
[
β̇k + βkn · β̇ − β̇kn · β

]
(81)

this can be written as

Brad =
e

cR(1− β · n)3

[
β̇ × n + (n× β̇)(n · β)− (n× β)(n · β̇)

]
. (82)

Note that

n× (n× {(n− β)× β̇}) = n× (n× {n× β̇})− n× (n× {β × β̇})
= −n× β̇ − n× ((n · β̇)β − (n · β)β̇)

= β̇ × n + (n× β̇)(n · β)− (n× β)(n · β̇) (83)

so that

Brad =
e

cR(1− β · n)3

[
n× (n× {(n− β)× β̇})

]
(84)

as required and where all fields are naturally evaluated at the retarded time. This is
exactly of the form

Brad = n×Erad (85)

where Erad was calculated in class by essentially similar means.

Problem 4 (G)

(i) Show that the total power per unit solid angle radiated by a non-relativistic particle of
charge e and acceleration a is

dPNR

dΩ
=

e2

4πc3
|a|2 sin2 Θ (86)

where Θ is the angle between a and the unit radial vector n.

(ii) The Lorentz invariant generalization of Larmor’s formula for the total power radiated by
an non-relativistic charge is

P = −2

3

e2

m2c3

(
dpµ
dτ

dpµ

dτ

)
(87)

where m is the rest mass, τ is the proper time, and pµ is the particles four-momentum.
Show that this does correctly reduce to Larmor’s result.
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(iii) A relativistic particle moves past a fixed charge Ze along an approximately straight-line
path at impact parameter b, and approximately constant speed v (but nonetheless non-
zero acceleration). Show that the total energy radiated is

∆W =
πZ2e6

4m2c4βb3

(
γ2 +

1

3

)
. (88)

You may use the result:∫ ∞
1

1

y3

(
1 +

A

y2

)
dy√
y2 − 1

=
1

16
(4 + 3A)π . (89)

Soln:

(i) In the non-relativistic approximation the fields (as found in Question 3 above) become

Brad =
e

cR

[
n× (n× {n× β̇})

]
, Erad =

e

cR

[
n× {n× β̇}

]
. (90)

The Poynting vector (in Gaussian units) is

S =
c

4π
E×B =

c

4π
|Erad|2n . (91)

Hence the power radiated per unit solid angle is

dP

dΩ
= R2S · n

=
c

4π
|RErad|2

=
e2

4πc
|n× (n× β̇)|2 .

We denote the angle between β̇ and n as Θ and use β̇ = a/c so that

dP

dΩ
=

e2

4πc3
|a|2 sin2 Θ . (92)

(ii) To find the expression for the total power radiated into all angles we integrate over all
angles. In this case it no longer matters in what direction β̇ points and so we can choose
it to be along the z-axis, so that Θ = θ where θ is the usual polar coordinate. Using∫ 2π

0
dφ

∫ 1

−1
d(cos θ) sin2 θ =

8π

3
(93)

we find that the Larmor formula is

P =
2e2

3c3
|a|2 . (94)

We now consider the relativistic version

P = − 2e2

3m2c3

(
dpµ
dτ

dpµ

dτ

)
(95)

where

pµ = (γmc, γmv) . (96)
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Figure 2: Particle trajectory

Using the fact that

dpµ

dτ
= γ

dpµ

dt
(97)

and as γ = (1− β2)−1/2

dγ

dt
= γ3β · β̇ (98)

we have

dpµ

dτ
= mcγ(γ3β · β̇, γ3β(β · β̇) + γβ̇) . (99)

Thus

dpµ

dτ

dpµ
dτ

= −m2c2γ6((β · β̇) + γ−2(β̇)2) . (100)

To take the non-relativistic limit we drop the β terms and set γ → 1 and so

P = − 2e2

3m2c3
(−m2c2(β̇)2) (101)

which is the same as above. It is worthwhile to note that

(β · β̇) + γ−2(β̇)2 = (β̇)2 − β2(β̇)2 + (β · β̇) = (β̇)2 − (β × β̇)2 (102)

so that the relativistic formula can be written as

P =
2e2

3c

[
(β̇)2 − (β × β̇)2

]
. (103)

(iii) In this problem we wish to calculate the power radiated by a relativistic particle which
is in the field of target charge Ze. We assume that the particle is sufficiently far from the
target and rapidly moving that we may treat its velocity as constant i.e. it moves along a
straight line trajectory (Fig. 2), with x =

√
r2 − b2. To find the total energy radiated we

integrate the power over all time

∆W =

∫ ∞
−∞

dt P = 2

∫ ∞
b

dr

dr/dt
P (104)

where in the last step we change variables from the particle time t to it’s radial position
and we use the fact that it’s motion is symmetric about it’s point of closest approach. To
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calculate the power we need to find the rate of change of the particle momentum. The
particle experiences a Coulomb force

dp

dt
=
Ze2

r2
r̂ . (105)

Now we can write pµ = (E/c,p) where E = γmc2 =
√
m2c4 + |p|2c2 so that

−dp
µ

dτ

dpµ
dτ

= γ2
(
dp

dt

)2

− β2γ2
(
d|p|
dt

)2

. (106)

Hence (
dp

dt

)2

=
Z2e4

r4
,

(
d|p|
dt

)
=

p

|p|
· dp
dt

=
v

|v|
· r̂ Ze

2

r2
. (107)

Plugging these expressions into the formula for the power radiated we have

P =
2e2

3m2c3

[
γ2
Z2e4

r4
− β2γ2

(
v · r̂
|v|

)2 Z2e4

r4

]
=

2Z2e6

3m2c3
γ2

r4

[
1− (β · r̂)2

]
.

Using simply trigonometry, from Fig. 2, we have

β · r̂ =
v

c

√
1− b2

r2
(108)

so that

P =
2Z2e6

3m2c3
1

r4

(
1 +

v2b2γ2

c2r2

)
. (109)

Thus we have for the energy radiated

∆W = 2

∫ ∞
b

P
dr

dr/dt
(110)

where r2 = (vt)2 + b2 (choosing the particle to be at its closest point at t = 0) so that

dr

dt
=
v

r

√
r2 − b2 (111)

which can simplified to

∆W =

(
4

3

Z2e6

m2c3v

)∫ ∞
b

1

r3

(
1 +

v2b2γ2

c2r2

)
dr√
r2 − b2

. (112)

After substituting r = by and using the result given in the question, with A = v2

c2
γ2, we

find

∆W =

(
Z2e6π

12m2c3vb3

)
(4 + 3

v2

c2
γ2)

=

(
Z2e6π

4m2c4βb3

)
(
1

3
+ γ2) (113)

as required.


