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Vector in Space

Every vector v can be drawn as an arrow starting from the origin (0, 0, 0)
and it is then uniquely determined it by the coordinates of its terminal
point.

We can thus write three-dimensional vectors are 3-tuples: v = (v1, v2, v3).
Alternatively we can write them in terms of orthonormal (orthogonal and
normalised to have unit length) basis vectors: v = v1i + v2j + v3k.

The length of a vector is given by

‖v‖ =
√
v21 + v22 + v23 .



Question

Consider vectors in R3 with norm 3 in the canonical position i.e. with their
end points at the origin.

What is the geometrical set of end points of such vectors?

A. A plane.

B. A line.

C. A sphere.



Dot product

The dot product of two 3-dimensional vectors v and w is given in terms
of the components v = v1i + v2j + v3k and w = w1i + w2j + w3k to be

v ·w = v1w1 + v2w2 + v3w3

i.e. the number you get by multiplying the first component of v by the first
component of w, the second by the second, the third by the third and
then adding these numbers together.

So if (say) v = 11i− 2j + 5k and w = 3i + 4j, we get

v ·w = 11(3) + (−2)(4) + 5(0) = 25

The geometric interpretation is the same as in two-dimensions

v ·w = ‖v‖‖w‖ cos θ



Rules for scalar product

This scalar product satisfies all the same properties as the two-dimensional
case. For example

u · (v + w) = u · v + u ·w.

Check the others! Also the Cauchy-Schwarz inequality holds and so the
Triangle inequality.

We can also easily see that as in the plane, the scalar product of a vector
with itself is the norm of the vector squared:

‖v‖2 = v · v .

As the norm of a vector has a geometric interperation as the length
between its start and finish points hence we can derive a formula for the
distance between two points in space.



Projection of a vector along another vector

Consider vectors v and w. Dropping a perpendicular line from the end of v
to the line along w gives the end point of the projection.

The “length” of the projection will be ‖v‖ × | cos θ| where θ is the angle
between the two vectors.



Projection of a vector along another vector

To find the projection vector, we need to multiply w by the right factor to
make its length ‖v‖ cos θ. Start by making a unit vector with the same
direction as w by dividing by its length. So

ŵ =
w

‖w‖

is the unit vector in the direction of w. Then the projection is

‖v‖ cos θ ŵ =
v ·w
‖w‖

(
w

‖w‖

)
This formula is also correct in the case of obtuse angles θ, when cos θ < 0,
when the projection will be in the opposite direction to w.

Tidying up the above, we get that the projection along w of v is the vector

projw(v) =
v ·w
‖w‖2 w



An examples of the scalar product in physics

We will take an example from physics:

As we have described forces and displacement are both described by vectors
in space.

What is the work done by a constant force F on an object that undergoes a
displacement d?

The answer

W = F · d = Fd cos θ .

So if a particle moves perpendicular to an external force no work is done on
it by that force.



An example of the scalar product in computer graphics

Colours in computer graphics are commonly based on the RGB colour
model whereby arbitrary colours are created by adding together
percentages of the primary colours Red, Green and Blue.

We can identify each of the primary colours with one of the basis vectors

and then every colour, c, corresponds to a vector in this colour space

c = (c1, c2, c3) .



An example of the scalar product in computer graphics

By taking the scalar product of our colour vector c with the reference vector

g =
1

3
(1, 1, 1)

we find the component of the colour vector lying along the “grey diagonal”
and so the grey-scale intensity can be defined

I = c · g .

In fact the human eye is more sensitive at frequencies corresponding to
green light and less to red and blue so the reference vector is sometimes
take to be

g′ = (0.3, 0.59, 0.11) .



Distance formula in space

If P = (x1, y1, z1) and Q = (x2, y2, z2) are two points in space, we consider

their position vectors (represented by the arrows from the origin to P ,
−−→
OP

and to Q,
−−→
OQ). We saw before that Q−P is the vector represented by the

arrow from P to Q,
−−→
PQ.

But we can see then that the length ‖Q−P‖ of the vector Q−P must be
exactly the distance from P to Q. So we get

dist(P,Q) = ‖Q−P‖
= ‖(x2 − x1)i + (y2 − y1)j + (z2 − z1)k‖
=

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2



An Example



Cross products

We previously described the the scalar product which takes two vectors and
forms a number or a scalar:

(v,w) ∈ V × V 7→ v ·w ∈ R .

In three dimensions there is notion of a product of two vectors which gives
back a vector.

Definition: The cross product v ×w of two vectors

v = v1i + v2j + v3k,

w = w1i + w2j + w3k,

is

v ×w = (v2w3 − v3w2)i + (v3w1 − v1w3)j + (v1w2 − v2w1)k



There is a sort of ‘easy’ way to remember the formula. Write a table

v1 v2 v3
w1 w2 w3

i j k

and extend it by repeating the first two columns to the right, like this

v1 v2 v3 v1 v2
w1 w2 w3 w1 w2

i j k i j

Then take ‘forward diagonal’ products with plus signs and backwards
diagonals with minus in front

v1 v2 v3 v1 v2
↘ ↘ ↘↙ ↙ ↙

w1 w2 w3 w1 w2

↙ ↘ ↘ ↘↙ ↙
i j k i j

↙ ↙ ↙ ↘ ↘ ↘
−v3w2i −v1w3j −v2w1k v1w2k v2w3i v3w1j

and add these vectors.



There is actually a pattern here: The first component of v ×w

(v2w3 − v3w2) =

∣∣∣∣ v2 v3
w2 w3

∣∣∣∣
depends on the components of v and w other than the first. Starting with
this first component we can get to the next component by adding 1 to the
subscripts and interpreting 3 + 1 as 1 i.e. thinking of cycling the subscripts
around 1→ 2→ 3→ 1 to get the next component:

v2w3 − v3w2 7→ v3w1 − v1w3

Repeating again we get the third component.

So you only have to remember the first component and the others are
automatic.



Properties of cross products

(i) v ×w is a vector in space.



Properties of cross products

(i) v ×w is a vector in space.

(ii) w × v = −v ×w

Proof.
Recall that:

v ×w = (v2w3 − v3w2)i + (v3w1 − v1w3)j + (v1w2 − v2w2)k

from this we can see the antisymmetry property.



Properties of cross products

(i) v ×w is a vector in space.

(ii) w × v = −v ×w

(iii) v ×w is perpendicular to both v and w.



Proof.

v · (v ×w)

= (v1i + v2j + v3k) · ((v2w3 − v3w2)i + (v3w1 − v1w3)j + (v1w2 − v2w1)k)

= v1(v2w3 − v3w2) + v2(v3w1 − v1w3) + v3(v1w2 − v2w1)

= v1v2w3 − v1v3w2 + v2v3w1 − v2v1w3 + v3v1w2 − v3v2w1

= 0

because if you look carefully everything cancels with something else.
So v ⊥ v ×w.
To show w ⊥ v ×w, we can either repeat a similar calculation or we can
use v ×w = −w × v ⊥ w.



Properties of cross products

(i) v ×w is a vector in space.

(ii) w × v = −v ×w

(iii) v ×w is perpendicular to both v and w.

(iv) ‖v ×w‖2 = ‖v‖2‖w‖2 − (v ·w)2.



Proof.
The proof starts with the definition of the norm of cross-product:

‖v ×w‖2 = (v2w3 − v3w2)2 + (v3w1 − v1w3)2 + (v1w2 − v2w1)2

and that of the rhs

‖v‖2‖w‖2− (v ·w)2 = (v21 + v22 + v23)(w2
1 +w2

2 +w2
3)− (v1w1 + v2w2 + v3w3)2

multiply out both sides and compare.

It is interesting to note that as (v ·w)2 = ‖v‖2‖w‖2 cos2 θ where θ is the
angle between the v and w by using the identity 1− cos2 θ = sin2 θ we find
that

‖v ×w‖2 = ‖v‖2‖w‖2 − (v ·w)2

= ‖v‖2‖w‖2(1− cos2 θ)

= ‖v‖2‖w‖2 sin2 θ .

Furthermore as 0 ≤ θ ≤ π we have that sin θ ≥ 0 so that we can take the
square-root of both sides

‖v ×w‖ = ‖v‖‖w‖ sin θ .



Area of a Parallelogram

This gives us a geometric interpretation of the magnitude of the
cross-product of two vectors.

As the area of a parallelogram is given by

A = (base)(altitude) = ‖u‖‖v‖ sin θ

we see that the norm of the cross product gives the area of the
parallelogram formed by the two vectors. Also the resultant vector is
normal to the surface of the parallelogram (see in a bit).



Properties of cross products

(i) v ×w is a vector in space.

(ii) w × v = −v ×w

(iii) v ×w is perpendicular to both v and w.

(iv) ‖v ×w‖ = ‖v‖‖w‖ sin θ‖ where θ is the angle between v and w.

(v) The vector v ×w points in a direction that follows from using the
right-hand rule.



If the angle θ between v and w is not 0 and not π, then the vectors v and
w are not in the same direction and also not in exactly opposite directions.
So as long as 0 < θ < π, then we can say that there is one plane through
the origin parallel to both v and w (or containing both vectors if we draw
them from the origin). The cross product is then in one of the two normal
directions to that plane.

In the case 0 < θ < π, we can describe the cross product up to one of the
two normal directions to the plane.

This can be described in terms of the directions of the index finger, middle
finger and thumb on your right hand if you hold them perpendicular to one
another.



Another way is to place a corkscrew (an ordinary right-handed corkscrew)
along the vertical axis and twist from the x-axis towards the y-axis. It
should travel in the direction of the positive z-axis.

counter-clockwise = positive

Also known as

“Righty tighty, lefty loosey”

Imaging a corkscrew placed so it is perpendicular to the plane of v and w.
Turn the screw from v towards w and the direction it travels is the same as
the direction of v ×w.



Basis vectors

It is worth noticing that the standard basis, i, j, k, is right-handed.

What is:

i× j =?
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What is:

i× j = k

j× k = i

k× i = j



Basis vectors
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Basis vectors

It is worth noticing that the standard basis, i, j, k, is right-handed.

What is:

i× j = k

j× k = i

k× i = j

Finally i× i = 0 = j× j = k× k.



Properties of cross products

(i) v ×w is a vector in space.

(ii) w × v = −v ×w

(iii) v ×w is perpendicular to both v and w.

(iv) ‖v ×w‖ = ‖v‖‖w‖ sin θ‖ where θ is the angle between v and w.

(v) The vector v ×w points in a direction that follows from using the
right-hand rule.

(vi) Some algebraic properties of the cross product that are as you would
expect for products:

u× (v + w) = u× v + u×w

(u + v)×w = u×w + v ×w

(kv)×w = k(v ×w)

= v × (kw)

for any vectors u,v,w ∈ R3 and any scalar k ∈ R. (But recall that the
order does matter: v ×w = −w × v.)



Vector triple products

Let us consider the cross-product of three vectors. Now the order in which
we carry out the two products is important. That is

u× (v ×w)

make sense, but that is usually not the same as (u× v)×w.
For example

i× (i× j) = i× k

= −j

(i× i)× j = 0× j

= 0



Equations of lines

Recall the general equation of a line in two-dimensions R2 has the form

Ax+By = C

where A and B can’t be both zero.

The y intercept is at x = 0 and is C/B while the x intercept is at y = 0 and
is C/A. A line through the origin is given by the equation

Ax+By = 0 .

Essentially a line is specified by its slope and one point on the line.



Equations of lines

An alternative way to specify the slope of a line is to specify a vector which
is orthogonal to the vector connecting any two points on the line.

This vector is called the normal vector. In fact given a reference point on
the line P0 with coordinates (x0, y0) the complete line can be described as

the set of all points P with coordinates (x, y) such that the vector
−−→
P0P

satisfies

n ·
−−→
P0P = 0 .

Or if give the components of the normal vector: n = (n1, n2) the set of
solutions to the equation

n1(x− x0) + n2(y − y0) = 0 .



Equations of planes

We consider first the question of how we might describe the orientation of a
plane in space.

As for lines we could perhaps attempt to think about the slope of a plane
as the slope of the steepest line up the plane, but this will not tell us the
orientation of our plane in space. We can move the plane around (say
rotating it around a vertical direction), keeping the same largest slope, but
changing the way the plane is oriented in space.



Equations of planes

A better method is the analogue of second method used for the line above
i.e picking a normal vector perpendicular to the plane.

Consider a plane with a normal vector

If we move the plane around parallel to itself the normal points constant
direction (or to be more precise, you could also turn the handle around the
other way, so that it will reverse direction completely, and still have the
board in the same plane.)



Equations of planes

Picking a vector perpendicular to the plane allows you to say which way a
it is tilted in space.

The normal vector is not unique — multiplying the vector by a positive or
negative (but not zero) scalar will not change the orientation of a
perpendicular plane.

Now if we think about all the planes perpendicular to a given (or fixed)
normal vector, then we can see that we could pick out one of these many
planes by knowing one point on the plane.



Equations of planes (through the origin)

Say n is a normal vector to our plane. How do we come up with an
equation that is satisfied by all the points on the plane?

The answer to this is a little easier to understand if we think about the case
where the origin (0, 0, 0) is one point on the plane. Say n = n1i + n2j + n3k
is the normal vector and we think of any point P = (x, y, z) on the plane.

In terms of position vectors, you should be able to see fairly easily that the
position vector P = xi + yj + zk should lie in the plane. So it should be
perpendicular to n. But a way to express that by an equation is

n ·P = 0.



Equations of planes (through the origin)

Writing that out n ·P = 0 using components we get

n1x+ n2y + n3z = 0

for the equation of a plane through the origin (0, 0, 0). You can see that
x = 0, y = 0, z = 0 is one solution of this equation.

We can think of this in reverse given any linear equation (actually a
homogeneous linear equation because of the constant term being 0)

ax+ by + cz = 0

i.e. no terms with x2, xy, z3, etc. this is the equation for a plane through
the origin with normal n = (a, b, c).



Equations of planes

To deal with a plane that does not go through the origin, we can see what
to do by using projections. Take any plane perpendicular to n, a normal
vector drawn from the origin though the plane,

If you look geometrically, you will see that the vector projection

projn(P)

must be the same no matter what point P in the plane you try.
That means

P · n
‖n‖2 n

is always the same vector for all points P on the plane.



Equations of planes

This translates into a single equation

P · n = n ·P = d ,where d is a constant.

If we write that out in components of P = xi + yj + zk and
n = n1i + n2j + n3k we get the equation

n1x+ n2y + n3z = d .

This equation means that for a given n1, n2, n3 and d that every point
(x, y, z) that satisfies the above equation lies in the plane.

Alternatively given an equation

ax+ by + cz = d

this describes a plane where ai + bj + ck is a (fixed) nonzero vector
perpendicular to the plane and d is a constant related to the incept point of
the plane with the coordinate axes.



An example



Another example



Another example continued



Note also that we were ‘lucky’ here that the points were on the axes and
the 3 simultaneous equations we got were easy to figure out.

We’ll learn later an efficient method to solve linear simultaneous equations
with possibly large numbers of unknowns. When we know that we’ll be able
to do more complicated points. As long as 3 points in space are not
collinear, there will be just one plane that goes through them.



Geometrical Application

How do we find the distance between a point P with coordinate (x0, y0, z0)
and a plane with the equation ax+ by + cz = d?

Let Q(x1, y1, z1) be any point on the plane. Move the normal vector, n,
such that it’s initial point is at point Q. The distance to the point P is the

length of the projection of
−−→
QP = (x0 − x1, y0 − y1, z0 − z1) onto the normal

vector n = (a, b, c).

D = ‖projn
−−→
QP‖ =

∣∣∣−−→QP · n∣∣∣
‖n‖



Geometrical Application

We know that ‖n‖ =
√
a2 + b2 + c2 and

−−→
QP · n = a(x0 − x1) + b(y0 − y1) + c(z0 − z1)

so that

D =
|a(x0 − x1) + b(y0 − y1) + c(z0 − z1)|√

a2 + b2 + c2

As the point Q lies in the plane we have the relation:

ax1 + by1 + cz1 = d

so that ...



Geometrical Application

How do we find the distance between a point P with coordinate (x0, y0, z0)
and a plane with the equation ax+ by + cz = d?

Answer : D =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.



Lines in space

Returning to the case of lines we note that we can describe a line in space,
R3, by giving a (nonzero) vector b parallel to the line which describes its
orientation and one reference point P0 = (x0, y0, z0) on the line.

the lineb

P

bt

0

One can quite easily see that the points with position vectors

x = P0 + tb

all lie on the line through the point P0 in the direction parallel to b. As t
varies through all of R (positive, zero and negative values) we get all the
points on that line and we get each point only once.



We refer to t as a parameter and the above equation x = P0 + tb as a
parametric equation for the line in vector form.

If P0 = x0i + y0j + z0k is the position vector of the point P0 = (x0, y0, z0)
on the line, if b = b1i + b2j + b3k, and if we write x = xi + yj + zk then
what we have is in components

xi + yj + zk = (x0i + y0j + z0k) + t(b1i + b2j + b3k)

or we can write this as

(x, y, z) = (x0 + tb1, y0 + tb2, z0 + tb3)

which is common form for plotting in computer packages.
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Lines in Space
Here we want to plot a line parametrically. We pick a starting point  and a vector 

 and a parameter . In SAGE we must specify that  is a variable. 

t=var('t') 

       

The SAGE command is parametric_plot. We will let the parameter run from -2 to 2 and
imagine the rest. We will also choose the line to be red and make it thick enough to see. 

parametric_plot((1+0.5*t, 1-0.3*t, 1+1.3*t),
(t,-2,2),color="red",thickness=3) 

       

Sleeping... Make Interactive

(1, 1, 1)
(0.5, −0.3, 1.3) t t



Parametric equations of a line

The vector relation

(x, y, z) = (x0 + tb1, y0 + tb2, z0 + tb3)

can be thought of as 3 scalar equations
x = x0 + b1t
y = y0 + b2t
z = z0 + b3t

We call these the parametric equations for the line.

Notice that the right hand side is linear in t, the constant terms come from
the coordinates (x0, y0, z0) of a point on the line, and the coefficients of t
give the components of a vector b1i + b2j + b3k parallel to the line.



Example



Another example



Parametric Planes

Previously we gave a point-normal equation for a plane i.e. by specifying a
point on the plane and a normal vector. Alternatively we can specify a
point on the plane with position vector x0 and two parallel, non-collinear
vectors v1 and v2.

Then every other point on the plane with position vector x can be written
as

x = x0 + t1v1 + t2v2 ,

in terms of the two parameters t1 and t2.



Parametric Planes: Example



Cartesian equations of lines

Starting with parametric equations for a line
x = x0 + b1t
y = y0 + b2t
z = z0 + b3t

we can solve each of the three equations for the parameter t in terms of all
the rest of the quantities. We get

t =
x− x0
b1

, t =
y − y0
b2

, t =
z − z0
b3

.

(At least we can do this if none of b1, b2 or b3 is zero.) If (x, y, z) is a point
on the line, there must be one value of t that gives the point (x, y, z) from
the parametric equations, and so the 3 values for t must coincide. We get

x− x0
b1

=
y − y0
b2

=
z − z0
b3

.

These equations are called cartesian equations for the line.



You might wonder what sort of equation we have with two equalities in it?
Well it is two equations

x− x0
b1

=
y − y0
b2

and
y − y0
b2

=
z − z0
b3

.

Each of these two equations is a linear equation, and so the equation of a
plane. So we are representing the line as the intersection of two particular
planes when we write the cartesian equations.



The first plane
x− x0
b1

=
y − y0
b2

could be rewritten
1

b1
x− 1

b2
y + 0z =

x0
b1
− y0
b2

so that it looks like ax+ by + cz = d.

We see that there is no z term in the equation, or the normal vector
(1/b1,−1/b2, 0) is horizontal. This means that the plane is parallel to the
z-axis and is the vertical plane that contains the line with which we started.

We could similarly figure out that the second plane

y − y0
b2

=
z − z0
b3

is the plane parallel to the x-axis that contains our line.



Now, there is an aspect of this that is a bit untidy. From the cartesian
equations we can see that

x− x0
b1

=
z − z0
b3

follows immediately, and this is the equation of the plane parallel to the
y-axis that contains our line.

It is arbitrary that we pick out the two planes parallel to the z-axis and the
x-axis as those that contain our line, while discriminating against the y-axis.

We could take the two planes to be any two of the planes containing the
line and parallel to the x, y and z-axes.



Example



Another Example



Another Example



Scalar triple product

We can combine the two products for vectors, the dot product and the
cross product:

Given three vectors u, v and w we can form

u · (v ×w) = u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1)

This has a different interpretation as the determinant of a 3× 3 matrix

u · (v ×w) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣



Geometrically we can think of the scalar triple product as the volume of the
parallelepiped formed by the three vectors u, v and w.

The area of the base is given from before by the norm of the cross product
v×w. The height of parallelepiped is the length of the projection of u onto
to the vector perpendicular to the base i.e. v ×w. This is

h = ‖projv×wu‖

=
|u · (v ×w)|
‖v ×w‖ .

Now the volume is h× (area of base) or

V = |u · (v ×w)| .



Higher dimensions

We have used the notation R as a special symbol to signify the set of all
real numbers. We are used to picturing R as the set of all points on an axis
or number line.

1 2 30−1−2
1
2

√
2 π−1.75

You should realise that the idea is that the line is all filled up by the real
numbers (no gaps). Each real number has its point on the line to represent
it and each point corresponds to some number. This is one dimension. We
know how to add and multiply numbers.

We can think of this as a one dimensional vector space.



By R2 we mean the set of all ordered pairs (x, y) of real numbers and we
have a graphical (or pictorial) way of looking at this as the set of all points
in a plane.

(x, y)

1 x

1

y

We can alternatively think of vectors xi + ij in two dimensions (as a picture
of R2). Using mathematical set notation

R2 = {(x, y) : x, y ∈ R}

(which reads as “R two equals the set of all ordered pairs (x, y) such that x
and y are elements of the set R, the set of real numbers”).



By R3 we mean the set of ordered triples (x, y, z) or real numbers. That is

R3 = {(x, y, z) : x, y, z ∈ R}

and we are now used to the idea that these triples can be pictured by either
looking at points (x, y, z) in space, or looking at vectors (arrows)
xi + yj + zk in space.

We can think in terms of coordinates of points, or of the components of
vectors, and we have on several occasions realised that it can be convenient
to switch from a point to its position vector. When we manipulate vectors,
we can think graphically about what we are doing, but it is usually much
easier to calculate via components.



When you look at the progression from R to R2 to R3 formally, from real
numbers to ordered pairs of real numbers to ordered triples, there does not
seem to be anything to stop us going on to ordered 4-tuples (x1, x2, x3, x4)
of real numbers, or to ordered 5-tuples (x1, x2, x3, x4, x5).

Mathematically we can just define

R4 = {(x1, x2, x3, x4) : x1, x2, x3, x4 ∈ R}

and
R5 = {(x1, x2, x3, x4, x5) : x1, x2, x3, x4, x5 ∈ R}

In fact, for any n = 2, 3, 4, . . . we let Rn be the set of all n-tuples of real
numbers. By an n-tuple (x1, x2, . . . , xn) we mean a list of n numbers where
the order matters. So

(1, 2, 3, 4, 5) ∈ R5

is different from
(2, 1, 3, 4, 5) ∈ R5.



In general then, two n-tuples

(x1, x2, . . . , xn)

and
(y1, y2, . . . , yn)

are to be considered equal only when they are absolutely identical. That
means only when

x1 = y1, and x2 = y2, etc, up to . . . , and xn = yn.

Points in different dimensions should not be compared. So (1, 2) ∈ R2 and
(1, 2, 0) ∈ R3 are not the same.



Question: Why do we need R4, R5, and so on?

There is no good way to picture them. We can’t really draw or even think
in 4 dimensions, not in any satisfactory way. And 5 dimensions is even
worse from that point of view. Nevertheless, there are many practical
reasons why Rn is useful even when n is very large.

One example is in computer graphics as we previously discussed. Each pixel
has an x and y position, but also a RGB coordinate parameterised by three
coordinates (sometimes hue, saturation, and brightness). Thus each pixel
is a point in R5: (x, y, h, s, b).



As a different example suppose you are working for the consumer protection
agency and you want to make sure that the milk sold in the shops is in
accordance to what it claims to be on the label. What you might do is
gather up a number of cartons of milk (say we stick to one size and brand)
and do various measurements on each of those you collected. So one
measures:

• volume of milk in the carton

• fat content

• calcium content

• temperature of the milk in the shop

• vitamin D

So, you would end up with 5 numbers for each carton of milk. It is not a
big step to consider these numbers as giving one point in R5 for each
sample. The kinds of techniques you would use to analyse the data are
most naturally described in terms of manipulating points in R5.



Indeed experimental data will often be described a vector in some high
dimensional space.

We are now going to describe some of the basic kinds of manipulation we
can do on points in Rn (including n = 5). They will be exact parallels to
what we did for vectors in R2 and R3.

It may seem strange to treat points like vectors, but remember we already
got into the habit of changing from points to their position vectors. And we
do most calculations with the numbers, the components of the vectors.
Finally, we can’t see what we are doing in higher dimensions and so there is
no reason to distinguish between points and vectors.



Arithmetic in Rn

In Rn we define the sum of two n-tuples

x = (x1, x2, . . . , xn) ∈ Rn, y = (y1, y2, . . . , yn) ∈ Rn

to be
x + y = (x1 + y1, x2 + y2, . . . , xn + yn).

If k ∈ R is a scalar and x = (x1, x2, . . . , xn) ∈ Rn then we define kx by the
rule

kx = (kx1, kx2, . . . , kxn).



Example: If x = (1, 2, 3, 4) and y = (7, 8, 9, 10) are in R4, then

5x = (5, 10, 15, 20)

2y = (14, 16, 18, 20)

5x + 2y = (5 + 14, 10 + 16, 15 + 18, 20 + 20)

= (19, 26, 33, 40)

We can see that there is no real problem following the rules to calculate
these operations.

It is possible to check out that the operations on Rn that we have defined
obey the ‘standard’ rules (or axioms) of algebra. Example:

(u + v) + w = ((u1, u2, . . . , un) + (v1, v2, . . . , vn)) + (w1, w2, . . . , wn)

= (u1 + v1, u2 + v2, . . . , un + vn) + (w1, w2, . . . , wn)

= ((u1 + v1) + w1, (u2 + v2) + w2, . . . , (un + vn) + wn)

= (u1 + (v1 + w1), u2 + (v2 + w2), . . . , un + (vn + wn))

= (u1 + (v1 + w1), u2 + (v2 + w2), . . . , un + (vn + wn))

= u + (v + w)



Dot products in Rn

We define the dot product of two elements (vectors or points as you like)

x = (x1, x2, . . . , xn) ∈ Rn, y = (y1, y2, . . . , yn) ∈ Rn

to be the number

x · y = x1y1 + x2y2 + · · ·+ xnyn.

So this is the same rule as we know from R2 and R3 extended to take in all
the coordinates.

This scalar or dot product satisfies all the properties we discussed
previously. E.g.

(u + v) ·w = u ·w + v ·w .

Which can easily be seen by using the definition. Furthermore if we define
the zero vector

0 = (0, 0, · · · , 0)

then we have the properties 0 · v = v · 0 = 0.



Norms and distances

We define the norm or magnitude of x = (x1, x2, . . . , xn) ∈ Rn as

‖x‖ =
√

x · x

=
√
x21 + x22 + · · ·+ x2n

This also allows us to define the notion of a distance in n-dimensional
space. We define the distance between two points in n-dimensional space
x,y ∈ Rn as

distance(x,y) = ‖y − x‖
=

√
(y1 − x1)2 + (y2 − x2)2 + · · ·+ (yn − xn)2



Basis vectors

In R3 we defined the basis vectors

i = (1, 0, 0) , j = (0, 1, 0) , k = (0, 0, 1) .

We can generalise this to n-dimensions

e1 = (1, 0, . . . , 0) , e2 = (0, 1, . . . , 0) , . . . , en = (0, 0, . . . , 1) .

Now any vector in n-dimensions can be written as

v = v1e1 + v2e2 + · · ·+ vnen .

Note that e1 · e1 = 1 but e1 · ej = 0 for j = 2 or 3 or . . . .



We’ve seen that there is a geometric meaning behind the scalar product
which is one of the reasons it plays such an important role in the physical
world. But what about the scalar product in higher dimensions, a key use
is in defining the projection of one vector onto another.

Here is a second example:
The Universal Product Code is the code associated to the bar code scanned
at many shop’s checkout counter. The code is a vector of length 12. In this
case all the entries are integer so it corresponds to a vector u in Z12. The
first 11 digits correspond to manufacturer and product information, but the
last digit is a check digit chosen so that c · u = 0 where

c = (3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1) .

The idea is that if there is an error in the code, a transposition or
alteration, the vector will likely no longer be orthogonal to c and so the
error will be caught.



Theorem (Cauchy-Schwarz inequality)

For x,y ∈ Rn,
−‖x‖‖y‖ ≤ x · y ≤ ‖x‖‖y‖

always holds. We can state this as

(x · y)2 ≤ ‖x‖2‖y‖2

Proof.
Let us square the left hand side use the component notation:

(x · y)2 = (x1y1 + x2y2 + · · ·+ xnyn)2 = x21y
2
1 + 2x1x2y1y2 + · · ·+ x2ny

2
n

= x21y
2
1 + x21y

2
2 − x21y22 + 2x1x2y1y2 + x21y

2
3 − x21y23 · · ·+ x2ny

2
n

= (x21 + x22 + · · ·+ x2n)(y21 + y22 + · · ·+ y2n)

−x21y22 + 2x1x2y1y2 − x22y21 + . . .

= ‖x‖2‖y‖ − (x1y2 − x2y1)2 + . . .

where in the last line every term in . . . is the negative of a square of a
similar form e.g. (x1y3 − x3y1)2 or (x2y5 − x5y2)2. As all these squares are
greater than or equal to zero we have that

|x · y|2 ≤ ‖x‖2‖y‖



Note that in R2 and R3 we showed that

x · y = ‖x‖‖y‖ cos θ

where θ is the angle between the vectors x and y. We can’t use that in Rn

when n ≥ 4 because we can’t see anything in higher dimensions. So we
need proofs of theorems like the above that don’t rely on imagining
triangles in higher dimensional space.



Now that we have the inequality, we can make a definition of an angle.

Definition
For x,y ∈ Rn, we define the angle θ between x and y to be that θ ∈ [0, π]
where

cos θ =
x · y
‖x‖‖y‖

There is a snag in this definition. It really says as there is a potential
problem of division by 0 when one of the points x or y is the origin and so
has all coordinates 0 i.e. is the point

0 = (0, 0, . . . , 0) ∈ Rn

As before this is just to say we must treat the zero vector as a special case

x · 0 = 0 .



Example.



Definition
We call x ∈ Rn perpendicular (or orthogonal) to y ∈ Rn if x · y = 0.

Note that this definition is the same as having angle θ = π/2 except for the
case of the origin which we define to be perpendicular to every other vector.
Proceeding still further by analogy with the case of planes in space, we now
make a terminology for ‘hyperplanes’ in Rn.

Definition
If N = (N1, N2, . . . , Nn) is a nonzero vector in Rn, and if c ∈ R is a
constant, then the set of solutions x ∈ Rn to the equation

N · x = c

is called a hyperplane in Rn.



Definition
If we write out the equation using coordinates for the point
x = (x1, x2, . . . , xn) on the plane, the equation becomes

N1x1 +N2x2 + · · ·+Nnxn = c

We call N a normal vector to the hyperplane.

We won’t go any further with Rn for now, but it will arise again.


