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Vectors - Review

We introduced the notion of a vector, a quantity with magnitude and
direction. Two dimensional vectors can be represented by arrows in the
plane.

v =

We further defined the components of a vector as the coordinates of the end
of the vector when its initial point is at the origin.

v = (v1, v2) , also written as v =

(
v1
v2

)



Axioms for vectors

A complete set of defining properties for vectors are:

If u, v and w are vectors and a and b are scalars, then

(i) u + v = v + u

(ii) u + (v + w) = (u + v) + w

(iii) u + 0 = 0 + u = u

(iv) u− u = 0

(v) a(u + v) = au + av

(vi) (a+ b)u = au + bu

(vii) a(bu) = (ab)u

(viii) 1u = u

These are quite general and make no reference to the dimension of space
and we can in fact consider higher dimensional vectors.



Basis vectors

Another useful way to write a vector is as the sum of basis vectors. We
introduce two unit vectors i and j pointing along the x- and y-axes
respectively.

Now any arbitrary vector can be written as the sum of multiples of these
basis vectors. For example

v = v1i + v2j =



Vectors

• We can add and subtract vectors in component notation: if
v = (v1, v2) and u = (u1, u2) then

v + u = (v1 + u1, v2 + u2) .

• We can multiply vectors by scalars: if v = (v1, v2) and k is a scalar

kv = (kv1, kv2) .

• How do we write the basis vectors i, j as 2-tuples?

i ≡ (1, 0) , and j ≡ (0, 1).

• Hence we see

v = v1i + v2j ≡ v1(1, 0) + v2(0, 1) = (v1, v2) .

• We defined the zero-vector 0 ≡ (0, 0) which satisfies

0v = 0 , v + 0 = 0 + v = v



Vector lengths

We defined the length or norm of a vector v = (v1, v2) as

‖v‖ =
√
v21 + v22

Example 1: v = (3, 2)

‖v‖ =
√

32 + 22 =
√

9 + 4 =
√

13 = 3.61...

Example 2: if v = −3i + 4j and w = 0i + 5j what is the length of v + w?

v + w = (−3 + 0)i + (4 + 5)j⇒ ‖v + w‖ =
√

(−3)2 + 92 =
√

90 ' 9.5

http://www.sagenb.org/home/pub/5036
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Vectors
In this note book we will plot the arrows corresponding to the vectors  and . We
first plot them in the default color and size. 

plot(arrow2d((0, 0),(-3,4))+arrow2d((0, 0),(0,5))+arrow2d((0, 0),
(-3,9)),figsize=4) 

       

Now we plot them with a variety of colors and sizes:  and  as thin black lines and  as a thick red
line. We also shift  away from the origin so the end coincides with the start of . 

plot(arrow2d((0, 0),(-3,4),color=(0,0,0),width=1)+arrow2d((-3, 4),
(-3,9),color=(0,0,0),width=1)+arrow2d((0, 0),(-3,9),color=
(0.6,0,0.2),width=5),figsize=4) 

       

v = −3i + 4j w = 5i

v w w + v
w v



Vector lengths

We defined the length or norm of a vector v = (v1, v2) as

‖v‖ =
√
v21 + v22

Example 1: v = (3, 2)

‖v‖ =
√

32 + 22 =
√

9 + 4 =
√

13 = 3.61...

Example 2: if v = −3i + 4j and w = 0i + 5j what is the length of v + w?

v + w = (−3 + 0)i + (4 + 5)j⇒ ‖v + w‖ =
√

(−3)2 + 92 =
√

90 ' 9.5

Note: the length of the sum of vectors is not the sum of lengths
‖v‖ =

√
25 = 5 , ‖w‖ =

√
25 = 5, so

‖v‖+ ‖w‖ = 10 > ‖v + w‖ ' 9.5 .



Dot product

We now define the dot product (also know as the scalar product or
inner product) of two vectors v and w. It is denoted v ·w and it is a
scalar or numerical quantity (not another vector). In terms of the
components of v = v1i + v2j and w = w1i + w2j we define

v ·w = v1w1 + v2w2

i.e. the number you get by multiplying the first component of v by the first
component of w, the second by the second and then adding these
numbers together.

So if (say) v = 11i− 2j and w = 3i + 4j, we get

v ·w = 11(3) + (−2)(4) = 25

It is really useful to keep in mind that the dot product has a scalar value.
Obviously then, if you get a vector answer, it could not possibly be right.



Rules for scalar product

The dot product satisfies some nice algebraic rules. Here are the basic
rules, satisfied by any vectors u, v and w and any scalar k

(i) u · v = v · u
(ii) (u + v) ·w = u ·w + v ·w and u · (v + w) = u · v + u ·w

(iii) (kv) ·w = k(v ·w) = v · (kw)

(iv) v · v = ‖v‖2

You might be tempted to take these for granted but let us check that our
definition of the scalar product for 2-tuples satisfy the second rule:
u = (u1, u2), v = (v1, v2) and w = (w1, w2) so

(u + v) = (u1 + v1, u2 + v2) ,

so that

(u + v) ·w = (u1 + v1)w1 + (u2 + v2)w2

= u1w1 + v1w1 + u2w2 + v2w2

= (u1w1 + u2w2) + (v1w1 + v2w2)

= u ·w + v ·w .

Try the other three!



Vectors II - Review

We considered two-dimensional vectors which can be graphically
represented as arrows e.g.

Given an coordinate system such vectors can be written as either two tuples
v = (v1, v2) or in terms of basis vectors v = v1i + v2j.
We defined the scalar (or dot or inner) product of two two-dimensional
vectors

u = u1i + u2j , v = v1i + v2j

to be

u · v = u1v1 + u2v2 .



Vectors - Question

Consider the vector v = (v1, v2)

Which diagram shows the vector w = v1i ?

(A)

(B)

(C)

(D) None of the above.



Geometric scalar product

Recall that for a triangle with sides of length a, b, c and angles α, β, γ:

the triangle cosine rule gives the length of the third side in terms of the
other two sides and the opposite angle:

c2 = a2 + b2 − 2ab cos γ

Now take two vectors u and v and place them end-to-end. Let θ be the
angle (such that 0 ≤ θ ≤ π where the angle is measured in radians and not
degrees1).

From the triangle cosine rule we have the length of the vector u− v

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ

1180o corresponds to π radians



Geometric scalar product

We can also write the length of the vector u− v as

‖u− v‖2 = (u− v) · (u− v)

= u · u + v · v − 2u · v
= ‖u‖2 + ‖v‖2 − 2u · v

Comparing this with the previous result

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ

we see that

u · v = ‖u‖‖v‖ cos θ .

This gives us a trigonometric way to calculate the scalar product. However,
we can view it the other way and calculate the angle between two vectors in
terms of there components:

cos θ =
u · v
‖u‖‖v‖ =

u1v1 + u2v2√
u2
1 + u2

2

√
v21 + v22

.



An Example

Find the angle between the vectors v = 2i− 3j and w = 5i + 2j
We calculate everything in the formula v ·w = ‖v‖‖w‖ cos θ except cos θ.
We get

‖v‖ =
√

22 + (−3)2

=
√

13

‖w‖ =
√

52 + 22

=
√

29

v ·w = (2)(5) + (−3)(2)

= 10− 6

= 4

⇒ cos θ =
4√

13
√

29

and so θ = ArcCos(0.21) = 1.3633 (radians).



Orthogonal vectors

We can see from the scalar product formula that if two vectors u and v are
perpendicular, i.e the angle between them is π/2 and so cosπ/2 = 0, they
have vanishing scalar product: u · v = 0.

To be more accurate, we can conclude this only when u and v are both
non-zero vectors. If u and/or v is the zero vector then they will have length
zero. So that

0 = ‖u‖‖v‖ cos θ.

This formula is true regardless of the value of θ as ‖0‖ = 0. In fact, the
problem is that we can’t talk about the angle between the zero vector and
any other vector because we agreed that the zero vector should have no
particular direction.

To get around this we make the convention that the zero vector is to be
considered perpendicular (or orthogonal is another word for the same idea)
to every other vector (including itself!).

With this convention in place we can say that two vectors u and v are
orthogonal exactly when u · v = 0.



Vectors - Question

Consider the vectors v and w:

What is v ·w?

(A)
√

2

(B) 0

(C) 1

(D) Can’t tell from the diagram.



Vectors - Question

Consider the vectors

v =

(
4
2

)
, w =

(
−1
3

)
Which of the following is not a linear combination of v and w of the form
v + tw for some t?

(A)

(
3
5

)
(B)

(
5
−1

)
(C)

(
2
7

)
(D)

(
1
11

)



Vectors

Consider the vectors

v =

(
4
2

)
, w =

(
−1
3

)
What does v + tw mean geometrically



Vectors

Consider the vectors

v =

(
4
2

)
, w =

(
−1
3

)
What does v + tw mean geometrically

We find all such linear combinations form a line. That is a one-dimensional
subspace.



Vectors

Consider the vectors

v =

(
4
2

)
, w =

(
−1
3

)
Question: Is there any vector

u =

(
u1

u2

)
that we can’t write as av + bw?

A Yes.

B No.



Vectors

Consider the vectors

v =

(
4
2

)
, w =

(
−1
3

)
Question: Is there any vector

u =

(
u1

u2

)
that we can’t write as av + bw?
Answer: Need to solve

av1 + bw1 = u1

av2 + bw2 = u2

where we have been given v1, w1, u1, v2, w2, u2 and we need to find a and b.
Do these equations alway have solutions?



Vectors

Need to solve

av1 + bw1 = u1

av2 + bw2 = u2.

⇒ a =
w2u1 − u2w1

v1w2 − v2w1
, b =

v1u2 − v2u1

v1w2 − v2w1

So there is a solution as long as v1w2 − v2w1 6= 0, that is

v1
v2
6= w1

w2

i.e. the vectors are not parallel.



Vectors

What about our problem

v =

(
4
2

)
, w =

(
−1
3

)
There is a solution as long as v1w2 − v2w1 6= 0.
Check: 4.3− 2(−1) = 14 6= 0



Axioms for vectors

A complete set of defining properties for vectors is:
If u, v and w are vectors and a and b are scalars, then

(i) u + v = v + u

(ii) u + (v + w) = (u + v) + w

(iii) u + 0 = 0 + u = u

(iv) u− u = 0

(v) a(u + v) = au + av

(vi) (a+ b)u = au + bu

(vii) a(bu) = (ab)u

(viii) 1u = u

and for the scalar product

(a) u · v = v · u
(b) (u + v) ·w = u ·w + v ·w
(c) (av) ·w = a(v ·w) = v · (aw)

(d) ‖v‖2 = v · v ≥ 0, and ‖v‖2 = 0 if and only if v = 0.

These are quite general and make no reference to the dimension of space
and we can in fact consider higher dimensional vectors.



Vectors in space
These same rules work if we consider vectors are geometric arrows living in
three-dimensional space.

The geometric rules (the triangle rule or the parallelogram rule) for vector
addition still hold we now simply think of the vectors as in space, however
they still form the edges of a two-dimensional triangle or parallelogram.



Vectors in space

Let us see how the associativity of addition works. We have 3
three-dimensional vectors u, v, and w which we place end to end forming
the edges of a parallelepiped

The resultant vector is the diagonal of this three-dimensional volume. As it
doesn’t matter in what order we go around the edges of the parallelepiped
to reach the far corner the geometric picture should make it clear that it
doesn’t matter in what order we add the vectors i.e.

(u + v) + w = u + (v + w)



Vectors in space

We are used to using two coordinates (x, y) to locate points in a plane
(with reference to two fixed perpendicular axes). For points in space we
need 3 coordinates and 3 axes. Tricky to draw on the screen!
One way to think about how coordinates work in space is to imagine 3
perpendicular axes meeting at the corner of a room (an ordinary boxy
shaped room)

Look at the blue bit as the floor and the brown and purple as walls. So we
are looking down and to the left into this corner.
We think of 3 axes meeting at the corner, one along the floor to the left
which we will call the x-axis, one along the floor at the back called the
y-axis and the third vertical (where the walls meet) and we call that the
z-axis.



3-space coordinates

We are more often going to draw just the 3 axes like this

You can see we need to imagine the x-axis as coming out of the picture
towards us. And we have a scale on each axis.



3-space coordinates

To describe where a point is with our room, we do it in two steps. First we
describe a point on the floor directly below our point. For this we need just
two coordinates (x, y). Here is an example where x = 2, y = 4 and z = 3



3-space coordinates

Then we use a third coordinate z to give a height (or altitude) of our point
above the floor. For our example x = 2, y = 4 and z = 3 we have

In this picture you can see a box outlined which has its corner at the corner
of our “room” and the point P we are describing is at the corner of the box
farthest away from where the origin is (which is at the corner of the room).



3-space coordinates

You see that we can describe points in space by 3 coordinates (x, y, z).
Given a point you can find coordinates for it, and given coordinates you can
locate the point precisely. (All this is supposing you know where your axes
are.)

One additional thing to realise is that coordinates can be negative as well as
positive. For example, when z = 0 we are at height 0, or on the floor, or on
the horizontal x-y plane and when z < 0 we mean a depth below the floor.



Vector components

Every vector v can be drawn as an arrow starting from the origin (0, 0, 0)
and it is then uniquely determined it by the coordinates of its terminal
point.

We thus associate to each 3d vector a point in a 3d coordinate system. We
can then write the vector as a row of three numbers (a row vector) or
3-tuple

v = (v1, v2, v3)



Vector components

Every vector v can be drawn as an arrow starting from the origin (0, 0, 0)
and it is then uniquely determined it by the coordinates of its terminal
point.

We thus associate to each 3d vector a point in a 3d coordinate system. Or
equivalently in the form of a column (a column vector)

v =

 v1
v2
v3





Vector components

Every vector v can be drawn as an arrow starting from the origin (0, 0, 0)
and it is then uniquely determined it by the coordinates of its terminal
point.

Conversely, to each point, P , in a 3d coordinate system we can associate a

vector (its position vector) which is often denoted
−−→
OP , which extends from

the origin, O, to the point P .



Vector length
For a vector in 3 dimensions, v = (v1, v2, v3), you need to use Pythagoras’
theorem twice as there are two right-angled triangles.

We know from the one use of the theorem that the length of the diagonal
x-y is √

v21 + v22 .

We can now use the second right-angled triangle to calculate the length of
the vector.

‖v‖2 = (
√
v21 + v22)2 + v23

In summary then we have

‖v‖ =
√
v21 + v22 + v23

(a very similar formula to the familiar one in two dimensions, with just the
extra component v3).



Vectors in space - example

Consider the vectors in three-dimensional space u = (2, 3, 4) and
w = (−1, 2,−5).
We can easily calculate the length of these vectors using the general
formula: for v = (v1, v2, v3) the norm is

‖v‖ =
√
v21 + v22 + v23

so that

‖u‖ =
√

22 + 32 + 42 =
√

29

‖w‖ =
√

(−1)2 + 22 + (−5)2 =
√

30 .

The length of the sum is

‖u + w‖ =
√

(2− 1)2 + (3 + 2)2 + (4− 5)2 =
√

27 ≤
√

29 +
√

30



Basis vectors in space

Consider the vectors i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1). These point
along the three-coordinate axes of the x-y-z coordinate system in the
positive directions and have unit length, ‖i‖ = ‖j‖ = ‖k‖ = 1.

This is the obvious generalisation of the two basis vectors we had in the
plane.



Basis vectors in space

As every vector v in space can be drawn as an arrow starting from the
origin (0, 0, 0) and its end point at some position, say (v1, v2, v3) we can
write it as a linear combination of the basis vectors.

To start we write v as a sum of a horizontal and a vertical vector parallel to
the z-axis. Then we can write the horizontal one (in the horizontal plane)
as a sum of two perpendicular (still horizontal) vectors parallel to the x-
and y-axes. The end result is that we can write

v = v1i + v2j + v3k .



The following picture illustrates this when v ends at (1, 2, 5) and so

v = 1i + 2j + 5k = i + 2j + 5k

�
�
�

�
�

-
j

6
k

�
�	
i 2 3

2

3

4

5

2

.....

P P = (1, 2, 5)
.....

.....

��
��
��
��
��
��
��
��

���
v

�
�	1i

-
2j

65k



So we can go from a point P = (x, y, z) to its position vector

xi + yj + zk

and from a vector back to the point for which it is the position vector.

We can also do computations for e.g. 7v + 6w with components. It is really
no harder than in 2 dimensions although there is one extra component to
each vector, and that adds to the amount of arithmetic.


