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Counting

Normally we use decimal or base 10 when we count. That is we count by
tens, hundreds = tens of tens, thousands = tens of hundreds, etc.

We see this in the SI units we are familiar with in science (kilometres = 103

metres, kilogrammes, centimetres = 10−3 metres).

When we write the number 5678, we learned in the primary school that the
8 means 8 units, the 7 is 7 tens, while the remaining digits are 6 hundreds
= 6 × 102 and 5 × 103. So the number 5678 means

5 × 103 + 6 × 102 + 7 × 10 + 8



Counting in different bases

Although base 10 is the most common, we do see some traces of other bases
in every day life.

For example, we normally buy eggs by dozens, and we can at least imagine
shops buying eggs by the gross (meaning a dozen dozen or 122 = 144). So
we use base 12 to some extent.

We can see some evidence of base 60 in angles and in time. In time units,
60 seconds is a minute and 60 minutes (= 602 seconds) is an hour.
Logically then we should have 60 hours in a day? Since we don’t we stop
using base 60.



Binary

In binary or base 2 we count by pairs. So we start with zero, then a single
unit, but once we get to two units of any size we say that is a pair or a
single group of 2.

So, when we count in base 2, we find:

• 1 is still 1

• 2 becomes a single group of 2 (a single pair)
Using positional notation as for decimal, we write this as 10. To make
clear which base we are using, we may write a subscript 2 e.g. (10)2

• 3 is (11)2 = one batch of 2 plus 1 unit.

• 4 is (100)2 = one batch of 22 + (0 batches of 2) + (0 units)



Using a more succinct format, we can explain how to count in binary as
follows:

Decimal # in binary Formula for the binary format

1 (1)2 1

2 (10)2 1 × 2 + 0

3 (11)2 1 × 2 + 1

4 (100)2 1 × 22 + 0 × 2 + 0

5 (101)2 1 × 22 + 0 × 2 + 1

6 (110)2 1 × 22 + 1 × 2 + 0

7 (111)2 1 × 22 + 1 × 2 + 1

8 (1000)2 1 × 23 + 0 × 22 + 0 × 2 + 0

So we can figure out what number we mean when we write something in
binary by adding up the formula. Tedious, but the principle is not
complicated.



At least for small numbers, there is a way to find the binary digits for a
given number (i.e., given in base 10) by repeatedly dividing by 2. For very
small numbers, we can more or less do it by eye.

Say for the number 21, we realise that it is more than 16 = 24 and not as
big as 32 = 25. In fact

21 = 16 + 5 = 16 + 4 + 1 = 24 + 22 + 1 = (10101)2

We can in fact go from the other end. . .



Suppose we are starting with a positive integer number

n

(recall that an integer is a whole number, no fractional part). We want to
know it in binary and in order to discuss what we are doing we will write
down the units digit as n0, the next digit from the right (multiples of 2) as
n1, etc.

That is we represent the number as

n = (nknk−1 · · ·n2n1n0)2 = nk2k + nk−12k−1 + · · · + n222 + n121 + n0

where the digits n0, n1, . . . , nk are each either 0 or 1 and k is big enough so
that 2k ≤ n < 2k+1.)



From base 10 to base 2

We can give an algorithm to calculate the binary representation:

• If we divide n by 2 we get

quotient = whole number part of
n

2
= nk2k−1+nk−12k−2+· · ·+n221+n1

and remainder n0. The remainder is 1 if n is odd and 0 if n is even.

• Now if we divide again by 2 we get remainder n1 and new quotient

quotient = nk2k−2 + nk−12k−3 + · · · + n2

• If we divide again by 2 we get remainder n2 and new quotient

quotient = nk2k−3 + nk−12k−4 + · · · + n3

and so on.

Thus at each step we can find the j-th digit of the binary representation as
the remainder after dividing by 2.



An Example

Look again at the case n = 21 as an example.

• We have 21
2

= 10+ remainder 1. So the last binary digit is 1 = that
remainder.

• Now 10/2 = 5+ no remainder. That makes the digit in the 2’s place 0.

• Continuing we have 5/2 = 2+ remainder 1. So there third digit is 1.
2/2 = 1+ no remainder and the fourth digit is 0 and finally 1/2 = 0+
remainder 1 so the fifth digit is 1 i.e. (10101)2

Each time (even when the remainder is zero) we discover the binary digits
one at a time from the units place up.

One thing to notice about binary is that we only ever need two digits, 0
and 1. We never need the digit 2 because that always gets ‘carried’ or
moved to the next place to the left.



Octal

In octal or base 8 we count by 8’s so we need 8 digits now: 0, 1, 2, 3, 4, 5, 6
and 7. Now zero is still 0 in octal, 1 is 1, 2 is 2, etc. 7 is still 7 in octal, but
eight becomes (10)8. In base 8 (10)8 means 1 × 8 + 0.

Using a layout similar to the one used before we can explain how to count
in octal as follows:

Decimal # in octal Formula for
the octal
format

1 (1)8 1

2 (2)8 2

7 (7)8 7

8 (10)8 1 × 8 = 0

9 (11)8 1 × 8 + 1

10 (12)8 1 × 8 + 2

16 (20)8 2 × 8 + 0

17 (21)8 2 × 8 + 1



Hexadecimal

Another base that is commonly used in computer systems is base 16, also
called hexadecimal.

We can go ahead as we did before, just counting in groups and batches of
16. However, we run into a problem with the notation caused by the fact
that the (decimal) number 10, 11, 12 13, 14 and 15 are normally written
using two adjacent symbols. If we write 11 in hexadecimal, should we mean
ordinary eleven or 1 × 16 + 1?

To get around this difficulty we need new symbols for the numbers ten,
eleven, . . . , fifteen. What we do is use letters a, b, c, d, e and f (or
sometimes the capital letters A, B, C, D, E and F).

Thus the number ten becomes a single digit number (a)16 in hexadecimal.
Eleven becomes (b)16, and so on. But sixteen becomes (10)16.



Hexadecimal

Using a layout similar to the one used before we can explain how to count
in hex as follows:

Decimal # in hex Formula for the hexadecimal
format

1 (1)16 1

9 (9)16 9

10 (a)16 10

15 (f)16 15

16 (10)16 1 × 16 = 0

17 (11)16 1 × 16 + 1

26 (1a)16 1 × 16 + 10

32 (20)16 2 × 16 + 0

165 (a5)16 10 × 16 + 5

256 (100)16 1 × 162 + 0 × 16 + 0



Converting Octal or Hex to binary

We did already discussed how to convert between base 10 integers and base
2 between different bases using repeated division and keeping track of
remainders. We can also use this to convert from decimal to octal, to hex,
or to binary.

Alternatively if we write out the formula corresponding to a number in
binary, octal or hex, we can compute the number in decimal by evaluating
the formula.

These methods involve quite a bit of work, especially if the number is large.
However there is a very simple way to convert between octal and binary. It
is based on the fact that 8 = 23 is a power of 2 and so it is very easy to
convert base 8 to base 2.

(541)8 = 5 × 82 + 4 × 8 + 1

= (1 × 22 + 0 × 2 + 1) × 26 + (1 × 22) × 23 + 1

= 1 × 27 + 0 × 26 + 1 × 26 + 1 × 25 + 1

= (101100001)2



Converting Octal or Hex to binary

If we look at how this works, we see that we can convert from octal to
binary by converting each octal digit to binary separately but we must write
each digit as a 3 digit binary number.

Redoing the above example that way we have 5 = (101)2 (uses 3 digits
anyhow), 4 = (100)2 (again uses 3 digits) and 1 = (1)2 = (001)2 (here we
have to force ourselves to use up 3 digits) and we can say

(541)8 = (101 100 001)2 = (101100001)2

This method works with any number of octal digits and we never have to
really convert anything but the 8 digits 0-7 to binary. In reverse we can
convert any binary number to octal very quickly if we just group the digits
in 3’s starting from the units. For example

(1111010100001011)2 = (001 111 010 100 001 011)2 = (172413)8



Converting Octal or Hex to binary

A similar method works for converting between binary and hex, except that
now the rule is “4 binary digits for each hex digit”. It all works because
16 = 24.
For example

(a539)16 = (1010 0101 0011 1001)2 = (1010010100111001)2

Or going in reverse

(1111010100001011)2 = (1111 0101 0000 1011)2 = (f50b)16

We can use these ideas to convert octal to hex or vice versa by going via
binary. We never actually have to convert any number bigger than 15.



If we wanted to convert a number such as 5071 to binary, it may be easier
to find the octal representation (by repeatedly dividing by 8 and keeping
track of all remainders) and then converting to binary at the end via the “3
binary digits for one octal” rule.

5071

8
= 633 + remainder 7

633

8
= 79 + remainder 1

79

8
= 9 + remainder 7

9

8
= 1 + remainder 1

1

8
= 0 + remainder 1

(5071)10 = (11717)8

= (001 001 111 001 111)2

= (001001111001111)2

= (1001111001111)2



Relation with computers

Although computers are very sophisticated the basic works are essentially
many rows of on/off switches. Clearly a single on/off switch has only 2
possible settings of or states, but a row of 2 such switches has 4 possible
states.

on on on off off on off off

A row of 3 switches has twice as many possible setting because the third
switch can be either on or off for each of the 4 possibilities for the first two.
So 23 possibilities for 3 switches. In general 28 = 256 possibilities for 8
switches, 2n possible settings for a row of n switches.



Computers generally work with groups of 32 switches (also called 32 bits,
where a ‘bit’ is the official name for the position that can be either on or
off) and sometimes now with groups of 64. With 32 bits we have a total of
232 possible settings.

How big is 232?
We could work out with a calculator that it is
4294967296 = 4.294967296× 109 but there is a fairly simple trick for finding
out approximately how large a power of 2 is. It is based on the fact that

210 = 1024 ∼= 103

Thus
232 = 22 × 230 = 4 × (210)3 ∼= 4 × (103)3 = 4 × 109

You can see that the answer is only approximate, but the method is fairly
painless (if you are able to manipulate exponents).



Integer format storage

Computers use binary to store everything, including numbers.
In general modern computers will use 32 bits to store each integer.
(Sometimes, they use 64 but we will concentrate on a 32 bit system.) How
are the bits used? Take a simple example like 9. First write that in binary

9 = (1001)2

and that only has 4 digits. For this number 9 we can pad it out by putting
zeros in front

9 = (1001)2 = (00 . . . 001001)2

and then we end up filling our row of 32 bits like this:

9 0 0 . . . 0 0 1 0 0 1
Bit position: 1 2 . . . 27 28 29 30 31 32



One practical aspect of this system is that it places a limit on the
maximum size of the integers we can store.

Since we allocate 32 bits we have a total of 232 ∼= 4 × 109 different settings
and so we have room for only that many different integers.

So we could fit in all the integers from 0 to 232 − 1, but that is usually not
such a good strategy because we may also want to allow room for negative
integers. If we don’t especially favour positive integers over negative ones,
that leaves us with space to store the integers from about −231 to 231. To
be precise, that would be 2 × 231 + 1 = 232 + 1 numbers if we include zero
and so we would have to leave out either ±231.

Notice that 231 ∼= 2 × 109 is not by any means a huge number. In a big
company, there would be more Euros passing through the accounts than
that in a year. In astronomy, the number of kilometres between stars would
usually be bigger than that.



Computers are not actually limited to dealing with numbers less than
2 × 109, but they often are limited to dealing in this range for exact integer
calculations. We will return to another method for dealing with numbers
that have fractional parts and it allows for numbers with much larger
magnitudes. However, this is done at the expense of less accuracy. When
dealing with integers (that are within the range allowed) we can do exact
calculations.



Returning to integers, we should explain about how to deal with negative
integers. One way would be to allocate one bit to be a sign bit. So bit
number 1 on could mean a minus sign. In this way we could store

−9 = −(1001)2 = −(0 . . . 001001)2

by just turning on the first bit. However, if you ask your calculator to tell
you −9 in binary, you will get a different answer. The reason is that
computers generally do something more complicated with negative integers.
This extra complication is not so important for us, but just briefly the idea
is that the method used saves having to ever do subtraction.



So −1 is actually stored as all ones:

-1 1 1 . . . 1 1 1 1 1 1
1 0 0 . . . 0 0 0 0 0 1

Bit position: 1 2 . . . 27 28 29 30 31 32

If you add 1 to that in binary, you will have to carry all the time.
Eventually you will get zeros in all 32 allowable places and you will have to
carry the last 1 past the end. Since, only 32 places are allowed, this final
carried 1 just disappears and we get 32 zeros, or 0.


