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Application of matrices to graphs

Graph theory is a subject that is somehow abstract, but at the same time
rather close to applications.

Fairly simple minded examples would be an intercity rail network (nodes
would be stations and the edges would correspond to the existence of a
direct line from one station to another), or an airline route network, or an
ancestral tree graph, or a telecommunications network.

Mathematically a graph is something that has vertices (also known as
nodes) and edges (also called paths) joining some of the nodes to some
others.

For our situation, we consider something more like an airline network
(joining different airports by direct flights), but we will take account of the
fact that some airports might not be connected by flights that go direct in
both directions.



Here is a route network for a start-up airline that has two routes it flies.
One goes Dublin → London and London → Dublin, while another route
makes a round trip Dublin → Galway → Shannon → Dublin.

The arrows on the edges mean that this is an example of a directed graph.
Here we allow one-way edges and bi-drectional edges between nodes (or
vertices) of the graph, which we draw by indicating arrows.



To get the vertex matrix for a graph like this, we first number or order the
vertices, for instance

Dublin 1

London 2

Galway 3

Shannon 4

and then we make a matrix, a 4× 4 matrix in this case since there are 4
vertices, according to the following rules. The entries of the matrix are
either 0 or 1. All diagonal entries are 0. The (i, j) entry is 1 if there is a
direct edge from vertex i to vertex j (in that direction).

That is we form the matrix M with entries:

mij =

{
1, Pi → Pj

0, otherwise
(1)



So in our example graph, the vertex matrix is

M =


0 1 1 0
1 0 0 0
0 0 0 1
1 0 0 0


For instance the first row in 0 1 1 0 because there is a direct link 1→ 2 and
1→ 3, but no direct link 1→ 4 (Dublin to Galway is not directly linked).



In more precise terms: A directed graph is a finite set of elements,
{P1, P2, . . . , Pn} together with a collection of ordered pairs (Pi, Pj) of
distinct elements of this set with no ordered pair being repeated.

The elements of this set are called vertices, and the ordered pairs are called
directed edges. We also use the notation Pi → Pj to indicate a directed
edge in a graph.

In general a graph can have separate components.



In science very complicated graphs and networks commonly appear: e.g.
metabolic pathways

Image from http://www2.ufp.pt/∼pedros/bq/integration.htm



In science very complicated graphs and networks commonly appear: e.g.
metabolic pathways

Image from http://potatometabolicpathways.webs.com



Having a matrix description of graphs is often very useful. Here is one
result that makes a connection to matrix multiplication.

Theorem
If M is the vertex matrix of a directed graph, then the entries of M2 give
the numbers of 2-step (or 2-hop) connections.
More precisely, the (i, j) entry of M2 gives the number of ways to go from
vertex i to vertex j with exactly 2 steps (or exactly one intermediate vertex).
Similarly M3 gives the number of 3-step connections, and so on for higher
powers of M .



Consider again the graph:

with the vertex matrix

M =


0 1 1 0
1 0 0 0
0 0 0 1
1 0 0 0





In our example

M2 =


0 1 1 0
1 0 0 0
0 0 0 1
1 0 0 0




0 1 1 0
1 0 0 0
0 0 0 1
1 0 0 0

 =


1 0 0 1
0 1 1 0
1 0 0 0
0 1 1 0


The diagonal 1’s in the matrix correspond to the fact that there is a round
trip Dublin → London → Dublin (or 1→ 2→ 1) and also London →
Dublin → London. The 1 in the top right corresponds to the connection
Dublin → Galway → Shannon.



If we add M + M2 we get nonzero entries in every place where there is a
conenction in 1 or 2 steps

M + M2 =


1 1 1 1
1 1 1 0
1 0 0 1
1 1 1 0


and the zeros off the diagonal there correspond to the connections that
can’t be made in either a direct connection of a 2-hop connection (which is
Gaway → London and London → Shannon in our example).
Although we don’t see it here the numbers in the matrix M2 can be bigger
than 1 if there are two routes available using 2-hops.



Clique

Definition A subset of a directed graph is called a clique if it satisfies the
following three conditions:

1 The subset contains at least three vertices.

2 For each pair of vertices Pi and Pj in the subset, both Pi → Pj and
Pj → Pi are true.

3 The subset is as large as possible; that is, it is not possible to add
another vertex to the subset and still satisfy condition (ii).

A clique is in some sense the largest possible subgroup of vertices that are
maximally connected to each other.

For simple graphs we can find cliques by inspection but for more
complicated diagrams it is useful to have a tool.



For a graph we can form the matrix S with the entries:

sij =

{
1, Pi ↔ Pj

0, otherwise
(2)

This is similar to the vertex matrix but only has non-zero entries where
both vertices are connected. That is sij = 1 if mij = mji = 1 but sij = 0 if
mij = 0 and/or mji = 0.

We note that this matrix is automatically symmetric as

S = St .

We can then identify cliques by using the fact that if s
(3)
ij are the entries of

the matrix S3, then a vertex Pi belongs to some clique if and only if
s
(3)
ii 6= 0.



Consider the vertex matrix

M =


0 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0

 (3)

we can find the graph corresponding to the with a bit of work or by using
sage ...



21/11/2013 19:23Graphs and Matrices -- Sage

Page 1 of 1http://www.sagenb.org/home/Tristan_McLoughlin/9/print

Graphs and Matrices
M = Matrix([[0, 1, 1, 1, 0],[1, 0, 0, 1, 0],[0, 1, 0, 1, 1],[0, 1, 
1, 0, 0],[0, 1, 1, 1, 0]]); M 

       

[0 1 1 1 0]
[1 0 0 1 0]
[0 1 0 1 1]
[0 1 1 0 0]
[0 1 1 1 0]

G=DiGraph(M)
P = G.plot()
P.show( figsize=5) 

       



Does this matrix have any cliques? The S matrix is

S =


0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 0
0 0 1 0 0

 (4)

and so (can calculate using for example SAGE)

S3 =


0 2 1 0 0
2 0 0 3 1
1 0 0 3 2
0 3 3 0 0
0 1 2 0 0

 (5)

and as there are no non-zero diagonal elements there are no cliques.


