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. . . Introducing the D3-D5 system
One’PO”]t ﬂJnCUOnS n the D37D5 SyStern NF\'TF‘(‘ lt"iﬂf THHCHWHS at ““F‘f"z"\ﬂ;‘

Determinant formulas

The D3-D5 system: description

=4
G
[

In the bulk, the D3-D5 system describes 1B
Superstring theory on AdSs x S® bisected by D5
branes with worldvolume geometry AdS, x S2.

AdS-xS5 5
Bulk 5 AdSgxS

ND3’s

The dual field theory is still SU(N), N/ = 4
SYM in 3 4+ 1 dimensions, that now interacts
with a SCFT that lives on the 241 dimensional
defect.

Ald

—IIIIIIM;IIII_

N4 SYM N=4 SYM @ Due to the presence of the defect, the total
Boundary SU(N) SU(N) bosonic symmetry of the system is reduced
from SO(4,2) x SO(6) to SO(3,2) x SO(3) x

bxY S0(3).
‘—» z>0 o

The corresponding superalgebra psu(2,2|4)
3+1 dim 3+1 dim becomes osp (4|4).

defect (2+1 dim)
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The (D3-D5) system

Bulk = AdSs<s® . AdSgxS® @ Add k units of background U(1) flux
on the S? component of the AdS; x S?
(N-K) D3's D5-brane.
ND3's
s, @ Then k of the N D3-branes (N > k)
= will end on the D5-brane.
2
@ On the dual SCFT side, the gauge
oo 15T group SU(N) x SU(N) breaks to
Boundary :9U(N-k) i su) SU(N — k) x SU(N).
g
:: Lxy @ Equivalently, the fields of N' = 4
% | SYM develop nonzero vevs...
s “>0 (Karch-Randall, 2001b)
3+1 dim 3+1 dim
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The dCFT interface of D3-D5

N=4 SYM
SU(N-k)

everywhere

Vev ~ o
everywhere

N-k
D3-branes

“interface”
N=4 SYM
SU(N-k) —— SU(N)

restored
asymptotically

vev~1/z
Higgs branch

( ke Oksc(n=k) >

Ow-ryxke  O=iyx(n-k)

N
D3-branes

z<0

z>0

@ An interface is a wall between two (different/same) QFTs

@ It can be described by means of classical solutions that are known as

"fuzzy-funnel” solutions (Constable-Myers-Tafjord, 1999 & 2001)

Here, we need an interface to separate the SU (N) and SU (N — k)
regions of the (D3-D5)x dCFT...

For no vectors/fermions, we want to solve the equations of motion
for the scalar fields of N' = 4 SYM:

d?o;
dz?

A#:w3:07 :[¢J7[¢J7¢l]]v I7J:1776

A manifestly SO(3) ~ SU(2) symmetric solution is given by (z > 0):

o1 (2) = 1 (tf)kxk Ok (v—k) & &y =0,
z | Ov—myxk  On—kyx(N—k) '

Nagasaki-Yamaguchi, 2012
where the matrices t; furnish a k-dimensional representation of su (2):
[ti, tj] = i€gite.
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k-dimensional Representation of su (2)

We use the following k x k dimensional representation of su (2):

k—1 k—1 K

i i+1 i

ty = E ck,iEit1, t_ = E c,iEi ", t3 = g di,i E;
i—1 i—1 i—1

ty + t- t_t+—t_
2 DY

1 =

Ckj = i(k—i), dk’,':%(k—2l'+1),

’

where EJ’ are the standard matrix unities that are zero everywhere except (i, ) where they're 1.
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1-point functions

Following Nagasaki & Yamaguchi (2012), the 1-point functions of local gauge-invariant scalar operators

C
<O(Z7X)>:27A7 Z>0,

can be calculated within the D3-D5 dCFT from the corresponding fuzzy-funnel solution, for example:

e 1 e
O(Z,X) = YTy [¢‘2,‘1,1 .. '¢2"L*1] & — YTy [t,‘l - th]

interface  zL

where WL is an 50 (6)-symmetric tensor and the constant C is given by (MPS=matrix product state)

c 1 (87r2>L/2 (MPS|W) (MPS|W) = Wt Tr[t; ... t,] ("overlap")
(wlw)? (VW) = wi-w

A

)

VL

which ensures that the 2-point function will be normalized to unity (O — (27)t - O/(AY2V/L)
1

|X1 _ XQ‘ZA

(O(x1) O (%)) =

within SU(N), N’ =4 SYM (i.e. without the defect).
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Example: chiral primary operators

The one-point functions of the chiral primary operators

1 8’ H2 e
OCPO (X) - ﬁ (T) - CV Ty [4),'1 .. .d>,'L],

where C""'t are symmetric & traceless tensors satisfying

6 9
Citiciit — & Y= Cligy LR, Z)A(iz = cos?1p, Z)A(Iz — sin?y)
i=4 =7
and Y (¢) is the SO(3) x SO(3) C SO(6) spherical harmonic, have been calculated at weak coupling:

1 2e2\"? /. N2 Y (n)2)
O =——— k (k — 1) —_—r k< N — oo.
(©cvo () = 7= (5 u N oo
Nagasaki-Yamaguchi, 2012
The large-k limit agrees with the supergravity calculation at tree-level:

Kt 7 2m\2 v, (n)2) ALy 3 (L—2)(L-13)
<OCPO(X)>: \/z (T) ZL .|:1+7T2k2 +:|, Il:§+w
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Dilatation operator

The mixing of single-trace operators O (x) is generally described by the integrable so (6) spin chain:

o L
A n 1
D=L~H+@'H+§ XD, H=) (Hj,j+1—Pj,j+1+§Kj,j+1), A = giuh,

n=2 Jj=1
Minahan-Zarembo, 2002

up to one loop in A/ = 4 SYM, where

Io]...®,®,...) =]...0.0p...)
Pof...®,0p...) =|...0p0,...)
6
K| ®abp..) =0a 3 |...GcDc...).
c=1
The above result is unaffected by the presence of a defect in the SCFT (DeWolfe-Mann, 2004).
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One-point functions in the D3-D5 system

Bethe eigenstates

@ In the following we will examine eigenstates of the so(6) spin chain which can be written as:

|\U>Ezw;(ul,U2,U3)~\o.,.oTo...oio...oﬂo...ol}o...},

X4

where uy 53 are the rapidities of the excitations at x;. The corresponding single-trace operator is

lo...0te...0le. ofe...0l..)~Tr [Zxﬁlwzxﬂl*lyzxﬁz*IWZ“*“*?. . ] ,
x3

X1 X2 Xa

where Z (ground state field), W, ) (excitations) are the following three complex scalars:
W= +id, ~ 1 YV=034+idP, ~ | Z=05+4+idPg ~ o
W= —id, ~ V=03 —id, ~ | Z=¢5—ids ~ o

@ The wavefunction 1 (u1, uz2,us3) can be constructed with the (nested) coordinate Bethe ansatz...
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Nesting

@ Let us first construct the kets |[e... 0 To...0 [o...0(t0...0 0. ..)
X1 X X3 Xq
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Nesting

@ Let us first construct the kets |[e... 0 To...0 [o...0(t0...0 0. ..)
X1 X2 X3 X4
@ Because the excitations can have 5 different polarizations, we apply a procedure called "nesting”.

13/ 46



Introdu

Nested one-point func
su (2), repre;entations
Determinant formulas

One-point functions in the D3-D5 system

Nesting

@ Let us first construct the kets |[e... @ To...0 [ o... oﬂo .o lle. ).
@ Because the excitations can have 5 different polarizatlons, we apply a procedure called "nesting”.

@ Start from a closed so (6) spin chain of length L:
OO0 0000000000000
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One-point functions in the D3-D5 system

Nesting

@ Let us first construct the kets |[e... @ To...0 [ o... oﬂo .o lle. ).
@ Because the excitations can have 5 different polarizatlons, we apply a procedure called "nesting”.

@ Start from a closed so (6) spin chain of length L. Excite exactly N sites of the chain:
0006000000600 00600
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One-point functions in the D3-D5 system

Nesting

@ Let us first construct the kets |[e... 0 To...0 [o...0(t0...0 0. ..)
X1 X X3 Xq

@ Because the excitations can have 5 different polarizations, we apply a procedure called "nesting”.

@ Start from a closed so (6) spin chain of length L. Excite exactly N sites of the chain:
0006000000600 00600

Now take the N; excitations to be the ground state.

@ @ @ 0@ @ @ @
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One-point functions in the D3-D5 system

Nesting

@ Let us first construct the kets |[e... 0 To...0 [o...0(t0...0 0. ..)
X1 X X3 Xq

@ Because the excitations can have 5 different polarizations, we apply a procedure called "nesting”.

@ Start from a closed so (6) spin chain of length L. Excite exactly N sites of the chain:
0006000000600 00600

Now take the N; excitations to be the ground state. Excite N sites of the new chain...

@ 0@ ® ® @

@
@
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Nesting

@ Let us first construct the kets |[e... 0 To...0 [o...0(t0...0 0. ..)
X1 X2 X3 X4
@ Because the excitations can have 5 different polarizations, we apply a procedure called "nesting”.
@ Start from a closed so (6) spin chain of length L. Excite exactly N sites of the chain:
0000000000000 0@
Now take the N; excitations to be the ground state. Excite N sites of the new chain... or N3 sites:

@ @ @ 0@ ® @ @

@ @ @ 0@ @ @ @

@ 0 ® 0@ ® ® @
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One-point functions in the D3-D5 system

Nesting

@ Let us first construct the kets |[e... 0 To...0 [o...0(t0...0 0. ..)
X1 Xq

X2 X3

@ Because the excitations can have 5 different polarizations, we apply a procedure called "nesting”.

@ Start from a closed so (6) spin chain of length L. Excite exactly N sites of the chain:
0000000060600 0000
Now take the N; excitations to be the ground state. Excite N sites of the new chain... or N3 sites:

@ @ @ 0@ ® @ @

@ @ @ 0@ @ @ @
@ 0 ® 0@ ® ® @

@ We end up with three sets/levels of rapidities, one rapidity for each excitation:

ur = {un ;1 up = {un}2, us = {us 112,

each set corresponds to a simple root a2 3 of s0(6).
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One-point functions in the D3-D5 system

Nesting

@ Let us first construct the kets |[e... 0 To...0 [o...0(t0...0 0. ..)
X1 Xq

X2 X3

@ Because the excitations can have 5 different polarizations, we apply a procedure called "nesting”.

@ Start from a closed so (6) spin chain of length L. Excite exactly N sites of the chain:
0000000060600 0000
Now take the N; excitations to be the ground state. Excite N sites of the new chain... or N3 sites:

@ @ @ 0@ ® @ @

@ @ @ 0@ @ @ @
@ 0 ® 0@ ® ® @

@ We end up with three sets/levels of rapidities, one rapidity for each excitation:

ur = {un ;1 up = {un}2, us = {us 112,

each set corresponds to a simple root a2 3 of s0(6).

@ To construct the kets, we must map the sets of rapidities to the available complex scalar fields.
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One-point functions in the D3-D5 system

Rapidities & fields

@ As we've just seen, each set of rapidities can be associated to a node of the s0 (6) Dynkin diagram:

N>
Ny (O<N <L OSSN, <N /2, 0< N3 < ).

N3
@ The total weight of the so (6) representation will then be given by:
w=Lqg— N1 — Moz — N3ax3

where q = (1,0, 0) and the so (6) roots are a; = (1, -1,0), a> = (0,1, -1), &z = (0,1, 1).
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One-point functions in the D3-D5 system

Rapidities & fields

@ As we've just seen, each set of rapidities can be associated to a node of the s0 (6) Dynkin diagram:

No
N; (0O< N <L 0O< N, <Ni/2, 0< N3 < o).
N3
@ The total weight of the so (6) representation will then be given by:
w=Lqg— N1 — Moz — N3ax3
where q = (1,0, 0) and the so (6) roots are a; = (1, -1,0), a> = (0,1, -1), &z = (0,1, 1).
@ The corresponding Cartan charges are given by:

w = (J,h,S3) = (L— Ni,Ny — Na — N3, No — Ns), h>h>4h>0
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One-point functions in the D3-D5 system

Rapidities & fields

@ As we've just seen, each set of rapidities can be associated to a node of the s0 (6) Dynkin diagram:

No
N; (0O< N <L 0O< N, <Ni/2, 0< N3 < o).
N3
@ The total weight of the so (6) representation will then be given by:
w=Lqg— N1 — Moz — N3ax3
where q = (1,0, 0) and the so (6) roots are a; = (1, -1,0), a> = (0,1, -1), &z = (0,1, 1).
@ Here are the corresponding Dynkin indices:

[w-az,w~a1,w-a3] = [J27J3,J1 *Jz,J2+J3] = [N172N2,L72N1+N2+N3,N1 72N3].
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One-point functions in the D3-D5 system

Rapidities & fields

@ As we've just seen, each set of rapidities can be associated to a node of the s0 (6) Dynkin diagram:

N>
Ny (O<N <L OSSN, <N /2, 0< N3 < ).

N3
@ The total weight of the so (6) representation will then be given by:
w=Lqg— N1 — Moz — N3ax3
where q = (1,0, 0) and the so (6) roots are a; = (1, -1,0), a> = (0,1, -1), &z = (0,1, 1).
@ Each complex scalar field is associated to the following set of weights:

ZNq Wquoq ~ (- 01 — 02

Yy
§~q72a17a27a3 Wquoqfaz*OQ jwqfalfog
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Nested Bethe Ansatz

Here's the nested so (6) wavefunction (in a somewhat simplified form):

u,p,  + I'/2 m,j—1
i (u1, uz, u3) ZA1 P1) H e )2 < Li ) 2,y (U1, u2) - Y, (ur, usz)
1,j

U17,D1,j — I/2

where

ny i—1
1 T u,p . —u +i/2
Vo 0 = 34, P)H S | (R )

7~
L UaPy; T ULPy, = /2 Uap, = ULpy /2

and

a,k — a'+'
A (... ) =Aa( g k) Sa (Uak, Uayg) s Sa (Uak, Uaj) Yok = tayj T 1

Uak — Uaj — 1
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Bethe equations

@ The periodicity of the Bethe wavefunction 1 (at each nesting level) leads to the Bethe equations:

. L Ny . N .
<u1i+l/2> HU1,'*U1J'+IHU1,'7U2;( I/ZHU1,'7U3/7I/2 .
St le) ) ! : ’ : L2 =1, M =M

m,i—i/2 i Ui UL U~ Lk + 1/2 ui—us+i/2
Ny N .
Upj — U+ T Ui — Utk —if2 . —
1= b U i b U +I/2’ l:1,...,N2:N+
i Ui L2 g Ui = ULk
N3 . N3 .
1_HU3,,'*U3,/+I U3 — Uk — /2 P N
= - " 5 =4y N3 = IN—,
uzi—uz;— I uzj— u i/2
i U3 3,1 g Usi Wk

which must be satisfied by the rapidities of the excitations/Bethe roots.

@ Because of the cyclicity of the trace, the momentum carrying roots obey the following relation:

Ny
i 2 .
H Zi . i— :;2 l & Z p1i=0 (momentum conservation) .
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Bethe state overlaps

@ The matrix product state projects the 3 complex scalars on the SU(2) fuzzy funnel solution:

(MPS|W) = 2" 3 4 (x) Tr[ zathyzeatlyzeme-lyyza—e-iy

1<x <L

where the complex scalar fields Z, W, Y are expressed in terms of the su (2) matrices as follows:

W:W:E7 y:§:2, 32225
V4 V4 z

@ The corresponding matrix product state (MPS) is given by:

L
IMPS) = Tr, H (Rt + W)@t + V), ®t+cc
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One-point functions in the D3-D5 system

The su (2) subsector

For example, let us first consider the subsector that contains only two complex scalars:
W=®;+id, +— ‘T) ~ t1
Z=P5+iPg <+— ‘O) ~ t3.

This is also known as the su (2) subsector of the dCFT. In the su (2) subsector, the trace operator
Kj j+1 does not contribute to the mixing matrix D:

L
Hsu(2) = Z (nyjJrl - Pij'*l) .

j=1
This is just the Hamiltonian of the Heisenberg XXX;,, spin chain. The MPS can be written as follows:

IMPS) = Tr,

)

IT(1t) o n+ oo )

Jj=1

and it corresponds to the above choice of fields.
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su (2) Bethe states

In the su(2) subsector, |W) is just the coordinate Bethe state |p):

=9 > > exp Zpo(knwr ZHU(J X),  |P) = |pL. P2y -, Pu) -

oeSy 1<sm<...<ny<L J<k

where

[X) = [x1,%,...,xu) =|@...0Te.. . 0Te... 0T e. . .0)=5 ..5 10

X2 Xp

and the vacuum state |0) and the raising and lowering operators S* have been defined as

\0>=®|'>, STy =1e) & ST |e)=11).

The matrix 6 and the normalization constant 91 are given by:

o _ U — Ukt i _ _1 p
e = =k uJ-:§cot o> N = exp E Ok
jj = Uk —

J<k
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One-point functions in the D3-D5 system

The su(3) and so0 (6) subsectors

@ In the su(3) subsector all the three real complex scalars contribute:
W:¢1+i¢2f\/t1, y:¢3+i¢4~t2, Z = &5+ O ~ t3.

The corresponding wavefunction is constructed by means of the nested coordinate Bethe ansatz:

Ny N ) i/2 nyjm,j o ) 6@/"2’,
?/): Z Al(Pl)A2(P2)HH(Ul,PLj"'l/ > JH (u21P2,, ulapl,k+’/ ) j

up,  —1i/2 up,, — U —1i/2
PP, =1 =1 1,Pyj / k=1 2,P,j 1,P1,k /

Uak — Uaj+ i

As(eeskyfyo o) =Aa(oooydyky o) Sa(Uaks taj),  Sa(Uak, Uaj) =
Ug k — Uaj — 1

@ In the 50 (6) subsector all the three real complex scalars contribute:
W:W:q)l-f—iq)zwtl, y:§:¢3+i¢4~t2, Z:§:¢5+i¢6f\4t3

and similarly the so (6) wavefunction can be constructed by the nested Bethe ansatz.
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Subsection 4

Determinant formulas

M. de Leeuw, C. Kristjansen, G. Linardopoulos, Scalar One-point functions and matrix product states of
AdS/dCFT. Phys.Lett. B781 (2018) 238, [arXiv:1802.01598]
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1-point functions in su (2)

In the su (2) sector our goal is to calculate the one-point function coefficient:

where the k x k matrices t1,3 form a k-dimensional representation of su (2):

<MPS|p =MN- Z Z exp Zpg(k)xk + = 5 ZHG(J)G(‘() -Tr I:t;:l 1t t;Z -1 } .

oc€Sy 1<x, <L j<k

Overlap properties:

@ The overlap (MPS|p) vanishes if M = N; or L is odd: Tr [t;lfltltf*xl*l . } =0

M or L odd
@ The overlap (MPS|p) vanishes if > p; # 0: due to trace cyclicity

@ The overlap (MPS|p) vanishes if momenta are not fully balanced (p;, —p;): due to Q3 -|MPS) =0

de Leeuw-Kristjansen-Zarembo, 2015
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One-point functions in the D3-D5 system

The su (2) determinant formula

Vacuum overlap:

wesio) = e[t =¢ (-1.255) — ¢ (L 1E). et > i o

where ¢ (s, a) is the Hurwitz zeta function. For M balanced excitations the overlap becomes:

(MPS|{u;}), R u? (uF + K2/4)
CG({y}) = ——=£ = G {y})- : . : .
(o) {u} [{u}) (b j:g;)/j [,H (2 + (j —1/2)] [ + (j + 1/2)°]
where M/ 1

(MPS| {ui}),, _ | T 4 +1/4 det G*
({ui} [{u}) Jl:Il v} detG— |

and the M/2 x M /2 matrices Gf and Kk are defined as:

2 2
GE = +KE & Ki= + :
* ( 2+1/4 Z ) s Rk E (- w) T 1 (g + w)’

G{y}) =

Buhl-Mortensen, de Leeuw, Kristjansen, Zarembo, 2015
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The su (3) determinant formula

Moving to the su(3) sector, let us define the following Baxter functions Q and R :

Ny 2| Ny /2]

Ql(X):H(X*Ui), Q2(X):H(X*Vi), Rx(x) = H (x —wvi).

i=1

All the one-point functions in the su (3) sector are then given by

o0 Q(0) @ (i/2) detG*
Ce ({uji vi}) = Tk-1(0) - \/R2 (0) R (i/2) det G-

de Leeuw-Kristjansen-GL, 2018

where u; = 11,7, v; = upj and
n/2 . .
_ L Qi(x+i(n+1)/2)Q:x(x + ia)
Ty = >, (xtia) Qx+i(a+1/2)Qu(x+i(a—1/2))

a=—n/2

The validity of the su (3) formula has been checked numerically for a plethora of su (3) states.
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The su (3) determinant formula

For Ny = 0 the su (3) formula reduces to the su(2) formula that we saw before:

o detGrV? 2 at Qu(ik/2)
G u}) = {Ql O @u(i/2)- o G*] ' Qu(i(a+1/2)Qu(i(a — 1/2))’

a=(1—k)/2
For k = 2 it reduces to a known su (3) formula:

Loy ol—L @ (i/2) Q%(i/2) det G
G ({ui ) =2 \/01(0) Ry (0)R2(i/2) detG—’

de Leeuw-Kristjansen-Mori, 2016

where,
. L N . No i N3 i
b1 = —ilog (U17,'—I/2> Hu1,;—U1,j+IHU1,i*U2,k*5 Ui — U3 — 5
1i = — - - ; ;
i +i/2 o Ui T UL T U = Ukt g gy UL~ Us g

N . N . i
. Upi— Uz +1 upi— ULk — 3

¢2,i = —ilog || || =1
wi—Uk+ 5

Upj— Upy— i
I 2,i 2,1 k=1
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The su (3) determinant formula

For Ny = 0 the su (3) formula reduces to the su(2) formula that we saw before:

det G+ ] vz Qe - Qu(ik/2)

Cluh = @@ @/ Joe GO

a=(1—k)/
For k = 2 it reduces to a known su (3) formula:

R Q:(i/2)  Q%(i/2) det G+
Gl =2 L'\/ @ (0) R (0)R:(i/2) detG—"

de Leeuw-Kristjansen-Mori, 2016

For AL = A1+ Ay, B = By + By, C+ = (1 + G, we define:
A1 A2 Bl B2 Dl
A A B, B D Ay By D
GE%: Bf B ¢ G D |, Gt= B ¢ D |, G_:<A7 Bi>.
t B Bt G G D 2D! 2D Ds
D! D! DY D! D,
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One-point functions in the D3-D5 system

The su (3) determinant formula

For Ny = 0 the su (3) formula reduces to the su(2) formula that we saw before:

o detgr]Vr P at Qu(ik/2)
G (tuh) = {Ql O @ (i/2)- 5 c—] &, @l T 12)@&6 - 1)
For k = 2 it reduces to a known su (3) formula:

. 1L Qu(i/2)  Q3(i/2) det G+
Cel{wiv}) =2 \/ @ (0) R:(0)R:(i/2) detG—"

de Leeuw-Kristjansen-Mori, 2016
Here are some more properties of one-point functions in su (3):

@ One-point functions vanish if M or L + N, is odd.

@ Because Qs - [MPS) = 0 all 1-point functions vanish unless all the Bethe roots are fully balanced:

{Ul, ey UM/27_u17. cey —UM/Q,O}, {Vl,. “ey VN+/2,—V1,. . .7—VN+/2,O} .
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The s0(6) determinant formula

The one-point function in the so (6) sector is given by

oy Q1 (0) Qu (i/2) Qi (ik/2) Qi (ik/2) det G*
Ck ({uj; vj; wj}) = Tk—1(0) - \/ Ry (0)R2(i/2) Rs (0) Rs (i/2)  det G-

where u;i = u1j, vj = wj, wik = u3k and

n/2 i .
_ L Q2 (x +ia) Qs (x + ia)
Ta(x) = ag;/zbw— ia) AT L12) Qi (a=12)

de Leeuw-Kristjansen-GL, 2018
More properties of one-point functions in so (6):

@ One-point functions vanish if M or L + Ny + N_ is odd.

@ Because Qs - [MPS) = 0, all 1-point functions vanish unless all the Bethe roots are fully balanced:

{ul, ey UM/2,—U1,. ey —UM/270}

{Vl,...,VN+/2,—V1,...,—VN+/2,O}, {Wl,...,WNi/Q,—Wl,...,—W/\L/g,O}.
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The s0(6) determinant formula

The norm matrix is defined as follows:

G=2o 99, B;i B]%E G G D Ky K H
=001 = du, | b Dy Dy Dy Dy Dy D Hy |’
F]; F%t K]; K%‘ Dy L1 Ly Hy
B FLOKE K Dy L L Hy
Hf HY HY HY Hi Hf Hf Hs
where
¢1 = {b1,i> b2,j> D3,k ) i=1,...,Ny, j=1,...,Np, k=1,...,N3
UJE{uly,-,uz)j,uik}, I,J=1,...,N;y+ Ny + N3,
and
. L N . N i N i
" ilog{(u1,i*l/2> 1—1[ up i — g 1—2[ Ui — Uk — 5 U1,f*"3,/*é]
1,i— — B B B i
ui /2 ) i — e = i — b 5 0 v Ut g

No . Np i N . Ny i

. up i — g+ i upj— Uk — 3 . ug i — ug |+ uz i — Uik — 3

o i= 7,|°g|:H N > i 2 3= —ilog H N 3, H i 2
) : i ) : i
I U2,i T2 TSy i — Ukt g I U3 T U3 TSy U3 T Ukt g
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One-point functions in the D3-D5 system

The s0(6) determinant formula

@ It can be shown that the determinant of the norm matrix factorizes:
det G = det G; - det G_,
with Ax = A1 £ A (and so on for By, Ci, Fi, Ki, L+), while

A, By, D F. H

Bt C. D, K, H A. B F.
G = | 2D! 2D} D; 2D} Hs & G =B C K
Ft' K. Dy Ly H Ft K. L

2H! 2H. 2H. 2H! Hs

@ An unproven claim (Escobedo, 2012) is that the norm of any so (6) Bethe eigenstate is given by
the determinant of its norm matrix:

I'l(l_7 N17 N27 N3) =detG.
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Section 2

One-point Functions in the D3-D7 System

M. de Leeuw, C. Kristjansen, G. Linardopoulos, One-point functions of non-protected operators in the SO(5)
symmetric D3-D7 dCFT. J.Phys. A:Math.Theor., 50 (2017) 254001, [arXiv:1612.06236]
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ND3’s

Boundary

D7 ~

AdS5xS° AdS5xS°®
N=4 SYM N=4SYM
SU(N) e SU(N)

kSi

7 txy

o

3 z>0
3+1 dim 3+1 dim

@ In the bulk, the D3-D7 system describes IIB
superstring theory on AdSs x S° bisected by a

D7-brane with worldvolume geometry AdSs x
St

@ The dual field theory is still SUN), N = 4

SYM in 3 + 1 dimensions, that interacts with
a CFT living on the 2 4+ 1 dimensional defect:

S = Sn=4+ Soy1.

@ Due to the presence of the defect, the total

bosonic symmetry of the system is reduced
from SO(4,2) x SO(6) to SO(3,2) x SO(5).

@ The relative co-dimension of the branes is

#ND = 6 — no unbroken supersymmetry.

@ Tachyonic instability...
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The (D3-D7)4, system

@ To stabilize the system, add an
AdS.xS? D7 AdS. xS5 instanton bundle on the S* com-
Bulk ’ ’ ponent of the AdS, x S* D7-
brane, with  instanton  number

(N-dg) D3's de =(n+1)(n+2)(n+3)/6.
(Myers-Wapler, 2008)

N D3'’s|

AdS,xS*

@ Then exactly dg of the N D3-branes
(N > dg) will end on the D7-brane.

. d oasvM N=Z SYM @ On the dual gauge theory side, the
boundary SUN-d,) SUN) gauge group SU (N) x SU (N) breaks
to SU(N) x SU (N — dg).

Lxy

| @ Equivalently, the fields of NV = 4 SYM
z>0

develop nonzero vevs...

(Karch-Randall, 2001b)

defect (2+1 dim)

3+1 dim 3+1 dim
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Nested one-point functions at tree-level
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The dCFT interface of D3-D7

“interface” @ As before, we need an interface to separate the SU (N) and
=4 SYM LA SYM SU (N — dg) regions of the (D3-D7)q4, dCFT...
SggNW‘ZEGr)E SU(N-dg) — 5;5515712 @ For no vectors/fermions, we want to solve the equations of motion
i Gomptoriaty for the scalar fields of V' = 4 SYM:
d*o; -
Ap:wazo, dz2 :[¢J,[¢J,¢,]], I,J:].,...,G.

VeV ~ o
everywhere

vev~1/z

o @ A manifestly SO(5) C SO(3,2) x SO(5) symmetric solution is given

—0 by (z > 0):

Gi & O(N—dg)x (N—dg)
d),- (Z) = \/gz
N-d, N Kristjansen-Semenoff-Young, 2012
D3-branes D3-branes
z<0]z>0

((Gi)dgxdg Odex(N=dc) ) , i=1,...,5, ®s =0.

Ow-dgyxds  Ow-doyx(n-ds)

The matrices G; are known as " fuzzy” S* matrices or " G-matrices” .
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The "fuzzy” S* G-matrices

Here's the definition of the five dg x dg "fuzzy” S* matrices (G-matrices) G;:

n factors
P ——
G=|[7%314®.. 1+ Rvy®...0 M1+ .. +14Q ... 14a®@; (i=1,...,5),

n terms sym

Castelino-Lee-Taylor, 1997

where ~; are the five 4 x 4 Euclidean Dirac matrices:
o 0 —io; . _ 0 1, (1, 0
’74—<i0i 0 >7 1_172737 74_<]l2 0>7 75_(0 7]12)
and o; are the three 2 x 2 Pauli matrices. The ten commutators of the five G-matrices,
1
G =516
furnish a dg-dimensional (anti-hermitian) irreducible representation of so (5) ~ sp (4):
[Gij, Gu] = 2 (8jx Git + i1 Gje — 0i Gjy — 0j Gix) -
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The "fuzzy” S* G-matrices

(n+1)(n+2)(n+3)/6:

The dimension of the G-matrices is equal to the instanton number dg
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1-point functions

The 1-point functions of local gauge-invariant scalar operators

C

©@x) = 230,

can again be calculated within the D3-D7 dCFT from the corresponding fuzzy-funnel solution, e.g.

il , 1 _506) 1
@ (Z, X) =V Tr [(Dll e d)lL] interface 8L/2ZL

WG L Gy

where WL is an so (6)-symmetric tensor and the constant C is given by (MPS=matrix product state)

co ! (ﬂ2)L/2 (MPS|w) (MPS|W) = Wi LTr[Gy ... G,]  ("overlap")
(Ww)? (W) = Wi, '

VL \ A

@ The mixing of single-trace operators up to one-loop in N' = 4 SYM is described by the integrable
50 (6) spin chain of Minahan-Zarembo.

@ We will assume that the above result is unaffected in the dCFT that is dual to the D3-D7 system.
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Example: chiral primary operators

The one-point function of the chiral primary operators

1 8’ H2 e
OCPO (X) - ﬁ (T) - CV Ty [4),'1 .. .d>,'L],

where C""'t are symmetric & traceless tensors satisfying
9
i — q & y, — Chitg, .. 21
= L= Riy - K k=1,
i=4

and Y, () is the SO(5) spherical harmonic (Yoqq (0) = 0), have been calculated at weak coupling:

do (72 \"? YL (0
<ocpo(x)>:7cz<”;'c) LZ(L) cc=n(n+4), de<N— oo

Kristjansen-Semenoff-Young, 2012

The large-n limit reproduces the supergravity calculation:

(Ocpo (x)) —= Y:/([O) (Wi\n2)L/2 5
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Bethe state overlaps

@ The matrix product state projects the 3 complex scalars on the SO(5) fuzzy funnel solution:

(MPS|W) =25+ Y~ 4 (x) - Tr [le*sz*?*“*WZ“*“*WZ“*“”?...

1<x, <L

where the complex scalar fields Z, W, ) are expressed in terms of the G-matrices as follows:
W ~ G+ iGy YV~ G+ iGy Z ~ Gy
W~ G — iG VYV~ G —iG Z~Gs

@ The corresponding matrix product state (MPS) is given by:

L

IMPS) = Tr, [H (|z>1 ® G5) W), ® (G + iGa) + V), ® (Gs + iGs) + c.c.

1=1
It can be proven that all possible assignments for the fields Z, W, ) are equivalent.
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SO(5) vacuum overlap

For the vacuum overlap we have found:

(MPS|0) = Tr [ 65| = i i(n=j+2)(n-2+2)"].

=t

Changing variables j <> (n+ 2 — j), an overall factor (—1)" comes out, leading the vacuum overlap to
zero for L odd. Equivalently, we may write

s = [02F (¢ (1) < (0 3+1)) e (-2 < (-2 +1)]

where the Hurwitz zeta function is defined as:

— 1
((s,a)= —.
(s:2) ;o(n—&-a)
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One-point functions in the D3-D7 system

SO(5) vacuum overlap

For the vacuum overlap we have found:

n+1

(MPS|0) = Tr [G5] = > [i(n—j+2)(n—2j+2)].

=t

Changing variables j <> (n+ 2 — j), an overall factor (—l)L comes out, leading the vacuum overlap to
zero for L odd. Equivalently, we may write

0, Lodd
(MPSJ0) = )
L n n+2 n
2" [% Buis (—3) — Sty B (—5)] ;L even,

by using the relationship between the Hurwitz zeta function and the Bernoulli polynomials B, (x).
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One-point functions in the D3-D7 system

SO(5) vacuum overlap

For the vacuum overlap we have found:

n+1

(MPS|0) = Tr [G5] = > [i(n—j+2)(n—2j+2)].

=t

Changing variables j <> (n+ 2 — j), an overall factor (—l)L comes out, leading the vacuum overlap to
zero for L odd. Equivalently, we may write
0, L odd
(MPSJ0) =

L 2 n ("+2)2 n
2[5 Buia (-3) = G2 B (—2)] . Leven,
by using the relationship between the Hurwitz zeta function and the Bernoulli polynomials B, (x).

In the large-n limit we find:

nL+3

(MPSIO) ~ Sy (T 3)

+0 (nL+2) , n— oo.
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Overlap properties

@ The overlaps (MPS|W) of all the highest-weight eigenstates vanish unless:
#W = #W, #Y =#Y.
Therefore the only so (6) eigenstates that have nonzero one-point functions are those with:
Ny =2N, =2N5 = M (even).

Evidently, all one-point functions vanish in the su(2) and su (3) subsectors.
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One-point functions in the D3-D7 system

Overlap properties

@ The overlaps (MPS|W) of all the highest-weight eigenstates vanish unless:
#W = #W, #Y =#Y.
Therefore the only so (6) eigenstates that have nonzero one-point functions are those with:
Ny =2N, =2N5 = M (even).
Evidently, all one-point functions vanish in the su(2) and su (3) subsectors.
@ Because the third conserved charge Q3 annihilates the matrix product state:
Qs - [MPS) =0,
all the one-point functions will vanish, unless all the Bethe roots are fully balanced:
{ul, ey UMy, UL e — UMY 2, 0}

{Vl,...,VN+/2,—V1,...,—VN+/2,O}, {Wl,...,WNf/Q,_Wl,...,_WN7/27O}.
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Example: the Konishi operator

@ A prime example of a non-protected operator is the Konishi operator:

K =Tr[®;d;] =Tr [Za + Tr [Wm + Tr D}ﬂ

which is an eigenstate of the s0(6) Hamiltonian with L = Ny =2, N, = N3 =1 and eigenvalue:

3\
E=2+—+...
+4772+

@ Using the Casimir relation:
1
Tr[GiG] = 6n(n—|— 1)(n+2)(n+3)(n+4)

we can compute the one-point function of the Konishi operator:

2
s

1
"= 6E

n(n+1)(n+2)(n+3)(n+4).

40 / 46



One-point functions in the D3-D7 system

The L211 states

@ More generally, we can consider eigenstates with N; = 2, N, = N3 = 1 and arbitrary L:

Ip) = Z (eiP(X1—X2) + efP(X2—X1+1)) .. }/}f X _ ZZ (1 + e'p) . Z..),

x1<x2

where the dots stand for Z, and X is any of the complex scalars W, W, Y, V.

@ The momentum p is found by solving the corresponding Bethe equations:

. 4
lp(L+1):1:>p: mm m:l,,L"’l

€ L+1’

@ Here's the one-loop energy of the L211 eigenstates:

A ) 2mm
E:L—i—ﬁsm {LJFJ—%..., m=1...,L+1
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The L211 determinant formula

@ The corresponding one-point function for all n is given in terms of the n = 1 one:

2 n 2 2 2 (n+2 j+1 (n+2)j—1
2)° — +
<OL211> - 2 : 1 2 Z 'jL' (n+ 8) J ' [u 2 J+1 ][UQ J*;1 2 ] <OL211>
ur—1/2 =, [ + (57 )][w® + (557)7]
where
[T -1 |2+l 1 _.p
O 2 4 = ~cot .
( L211> L+1u2+% R u 2co2

@ The results fully reproduce the numerical values (given in units of (72/X)Y2/v/L):

L | Nyja/3 | eigenvalue vy n=1 n=2 n=3 n=4
2 2

2| 211 6 20,/2 406 1406 1120,/2
4 | % _ 3584 (10 _

4| 211 545 20+ % 5(15+\/§) 84(21 \/5) 2 (10 \/5)

— _ 44 _ 96 3584

4| 211 5-V5 | 20- & 288 — 55 84 (21 +V5) ° (10 +V5)

6| 211 1.50604 3.57792 324.178 11338.3 08726

6] 211 4.89008 9.90466 1724.55 19513.8 120347

6] 211 7.60388 61.6252 1044.86 8830.95 49114.4
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The L422 determinant formula

@ For the eigenstates with Ny =4, N> = N3 =2 and L = even, we find (work in progress):

@ [i (n;2)j+1}

nmod 2

(Oraz) = Z it ("”f -7 o [0 o [E51] [(H(—I)L) Q [%] — (50— 2) (Qz[O]+(—1)LQ3[0])} g

@ The results fully reproduce the corresponding numerical values for n =1 and n = 2:

L N1/2/3 eigenvalue v n=1 n=2 n=3 n=4

4] a22 |} (13 + \/H) 2\/@ 16\/3090 + 1\0/74&10 14\/161490 + 1‘1%0 896\/690 — 3%
4| 422 |1 (13 - \/H) 2,/1410 = Z90 | 16, /3090 — 1700 | 14, /161490 — BBL0 | 596, 690 + 0
6| 422 8 4.76832 2899.14 37483.7 247800

6| 422 2.26228 8.68876 1090.46 11963 166654

6| 422 3.81374 13.8862 4479.21 43679.9 238186

6| 422 5.33676 22.5105 2995.7 34577.8 216443

6| 422 8.94875 78.0614 1813.66 16647.9 95264.6

6| 422 10.1954 138.297 151.877 10250 80604.6

6| 422 12.4431 369.992 4881.61 33331.2 150221

The L422 formula reduces to the previous one for Ny =2, Np = N3 = 1.
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Summary

Summary

We have studied the tree-level 1-point functions of Bethe eigenstates in the SU (2) symmetric
(D3-D5) dCFT and the SO (5) symmetric (D3-D7)q, dCFT...
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Summary

Summary

We have studied the tree-level 1-point functions of Bethe eigenstates in the SU (2) symmetric
(D3-D5) dCFT and the SO (5) symmetric (D3-D7)q, dCFT...

D3-D5 dCFT

@ Because Qs - |[MPS) =0, all 1-point functions vanish unless the Bethe roots are fully balanced:
{ui} ={-w;},  Awi}={-wi}, A{wi}={-u;}.

@ In su(2), all 1-point functions (vacuum included) vanish if M or L is odd.

@ In su(3), all 1-point functions vanish if (1) M is odd or (2) L+ N, is odd.

@ In s0(6), all 1-point functions vanish if (1) M is odd or (2) L+ Ny + N_ is odd.

@ We have found a determinant formula for the eigenstates, valid for all values of the flux k:

Ql O) Ql( /2) Ql (Ik/2) Q1 (1k/2) det Gt
G ({usi vii wy}) = Ti=1(0) \/ R, (0) R (i/2) R (0) Rs (i/2)  det G-

45 / 46



Summary

Summary

We have studied the tree-level 1-point functions of Bethe eigenstates in the SU (2) symmetric
(D3-D5) dCFT and the SO (5) symmetric (D3-D7)q, dCFT...

D3-D7 dCFT
@ Because Qs - [MPS) = 0, all 1-point functions vanish unless the Bethe roots are fully balanced:
{w,i} = {—ui}, {w,i} = {~w,i}, {us,i} = {—us,i}.
@ Besides the vacuum, all 1-pt functions vanish in the su(2) and su (3) subsectors.
@ In s0(6) all 1-point functions vanish unless Ny = 2N, = 2N3 = M (even).

@ The vacuum also vanishes when L = odd.

@ We have found a determinant formula for L211 eigenstates, valid for all values of the instanton
number n:
L (n+2) 2 T Ui o | Ui | P
(Oron1) = 1 E T a2 L =1 -(Of211)
w®—1/2 [v? + (5)2][w? + (557)7]

nmod 2
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Thank you!
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