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There are a variety of directions in which the the-
orems of the previous chapter can be extended. This
chapter is certainly not an exhaustive list, but it will
present the main ones. It would be possible to state
one grand theorem combining all these extensions to-
gether, but the result would be rather unwieldy.

Theorem 1 Suppose that @ C R x R™ is open,
F:Q — R" is continuous and OF /0y exists and is
continuous in Q. Suppose (&,1) is continuous. Then
the initial value problem

y/(l') = F(xay(x))a y(g) =0

has a unique mazximally extended solution. In other
words there is an open interval I containing & and a
continuously differentiable function y: I — R™ such
that y(&) =n, ¥'(z) = F(z,y(z)) for allz € I, and

(z, (y(x)) € Q

for all x € I, and there is no larger interval to which
y can be extended without violating one of these state-
ments. Furthermore, there is only one such interval I
and one such function y.

This is not really an extension of the earlier existence
and uniqueness theorems. It says both more and less
than those theorems. It is more global than the the-
orems of the preceding chapter. In fact it is as close
as one can get to a global existence and uniqueness
theorem, but it is also less quantitative. The theorem
gives no indication of the size of the interval I.
Before beginning, note that we are trying to solve
both forward and backward starting from the initial
point &, but those problems can be treated separately.
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It’s not necessary to treat them separately, but it will
make some things simpler. Furthermore, the forward
and backward problems are essentially the same. The
reflection  — —z transforms the backwards problem
in the forward problem with & replaced by —¢&, Q
replaced by the set

{(z,y) e R x R": (—z,y) € Q}

and F replaced by the function which takes (z,y) in
the set above to the point —F(—z,y) in R™. So I
will continue to state theorems in terms of solutions
defined for x on both sides of &, but will give the
proofs only for x > &.

Proof: Let T be the set of real numbers z > £ such
that there is a solution to the initial value problem in
the interval [¢, z] and let F' be the set of real numbers
z > & for which there is no such solution. If F is non-
empty then, since ¢ is a lower bound, it has a greatest
lower bound. Call this bound b. For each z in the
interval £ < z < b there is a solution to the initial
value problem in the interval [£,z]. Because of the
uniqueness theorem proved in the preceding chapter
any two such solutions for different values of z will
agree on the part of their domains that they share.
We can therefore define y(z) for all x in the range
¢ <y < b without ambiguity by saying that is the
value at x of the solution corresponding to some z
in the range © < z < b, since we have seen that it
doesn’t matter which z is chosen. This gives us a
solution on the interval £ < x < b. This extension
cannot be extended, because if it could then b would
not be the greatest lower bound for F. The case
where F' is empty is very similar. For each z > ¢
there is a solution to the initial value problem in the
interval [€,00). Because of the uniqueness theorem



any two such solutions for different values of z will
agree on the part of their domains that they share,
we can unambiguously define, for any z > &, y(x)
be the common value of those solutions on intervals
whose domain contains x. In this case it’s clear that
we can’t extend to a larger interval because there is
no larger interval. ]

There is an alternate characterisation of the max-
imally extended solution which is often useful.

Theorem 2 With notation as in the preceding the-
orem, let K be a closed bounded subset of ). Then
there is a t € I such that

(z,y(x)) ¢ K

forallxz >tinI and an s € I such that (x,y(x)) ¢ K
forallx < sinI.

Proof: Since the forward and backward problems are
equivalent it is enough to prove the existence of ¢t. If
there were no such ¢ then we could find an sequence
of z,, € I with no limit in I such that (z,y(z,)) €
K. By the Heine-Borel Theorem this sequence would
have a convergent subsequence. Call its limit (X,Y).
Then (X,Y) € K and hence in (X,Y) € Q. By
the existentence theorem we can find a local solution
with initial conditions y(X) — Y. The uniqueness
theorem shows that this solution agrees for z < X
with the one we already had. The extension to z > X
would give us an extension of the maximally extended
solution, which is impossible. So the assumption that
there is no t is impossible. [ |

Differential equation do not always naturally come
in the form of a set of equations for each derivative
of the unknown. Often we have a general set of n
equations for the n unknowns and their derivatives.

Theorem 3 Suppose that U C RxR™x R™ be open.
Suppose that ®:U — R"™ s continuous in U along
with 0P /0y and' 0®/0v. Suppose that (&,m,v) € U,
that ®((&,n,v) = 0, and that OF/0v is invertible
throughout U. Then there is an open interval I con-
taining & and a function y: I — R™ such that

O(z,y(x),y'(z)) =0

1We call the final argument of ® wv.

forallx € I and

y(&=mn, Y =v.

Any two solutions are equal in the intersection of
their intervals of definition and there is a unique mazx-
imally extended solution.

The hypothesis that ®((&,n,v) = 0 is a necessary
condition for the existence of solutions. If there is no
solution v to the equation then there is no y which
satisfies the first initial condition y(§) = n and sat-
isfies the differential equation ®(z,y(x),y'(x)) = 0
at the point x = £. The second initial condition is
required because there might be more than one v sat-
isfying ®((¢,n,v) = 0.

Proof: By the Implicit Function Theorem there is a
ball about (£,7) and unique function f continuous in
this ball and continuously differentiable with respect
to its second argument such that

fE&n)=v

and
(I)(xa Y, f(xvy)) =0

for all (z,y) in the ball. Then y’ satisfies the ini-
tial value problem above if and only if it satisfies the
initial value problem

Y'(x) = f(z,y(x)), y(&)=n

So the existence and uniqueness theorems from the
preceding chapter give us local existence and unique-
ness. We can pass from this to existence and unique-
ness of maximally extended solutions as in the first
theorem of this chapter. [ |

Often differential equations come with parameters.
Intuitively we expect that if the equation depends
continuously on some parameters then the solution
should also depend continuously on those parameters.

Theorem 4 Suppose that Q C R x R™ x R¥ is open
and (§,1n,¢) € Q. Suppose G and 0G/IG are con-
tinuous in Q. Suppose {£} x {n}B,(¢) C Q. then
there is an open interval I containing & and a unique
continuous function

y: I x B.(¢) = R",



continuously differentiable in its first argument, such
that

dy B
%(SC,Z) - G(ZL',y(LL',Z),Z)
for all (z,z) € I x B,(¢) and

y(§,2) =n.

It is also possible to allow the initial conditions to
depend on the parameters, but this is will not be
considered here.

Proof: We extend the system by introducing new
variables ¥n+1, -, Yntk, Which satisfy the differen-
tial equations y;,, ;(z) = 0 and the initial conditions
Yn+j(§) = z;. Of course these are satisfied if and
only if yn4;(x) = z; for all x € I. In other words, the
given initial value problem with parameters is equiv-
alent to the extended initial value problem

y'(z) = F(z,y(x), y()=n
without parameters, where

Fj(x7y17-.-,y’n7yn+1,...yn+k)
= G(xvyla"'aynvzl,...zk)

for 1 <j <nand

Fn+j(($)y15'"aynayn-i-la"'yn'i‘k) :Oa Nn+j :CJ

for 1 < 57 < k. We can therefore apply the theo-
rems we already have, including the theorem about
continuous dependence on the initial conditions from
the preceding chapter. This works since the parame-
ters of the given problem are initial conditions in the
auxiliary problem. [ |

A similar idea allows us to convert additional dif-
ferentiability information about F' to additional dif-
ferentiability of the solution. The simplest case is
that of one additional derivative.

Theorem 5 Suppose Q2 C Rxr" is open, (§,n) € Q,
and g:Q — R™ is continuously differentiable along
with 0g/0y. The there is an interval I containing &
and a unique twice continuously differentible function
y: I — R"™ satisfying

Y (x) = g(z,y(x), y(&) =n.

Proof: We introduce additional variables y,+1, ...,
yon, for the derivatives of y1, ..., y,. More precisely,
we solve the initial value problem

y'(x) = f(z,y(z)), y(&)=n
where
fi(@, 915 Y20) = Ynt,s
fn+j(a$7}/1a---,y2n)
= (@yr,ee )

n
dyg;
+ o LYty Yn)IkT, Y1y - - -5 Yn)s
> o ) )

Nty = 95(&,m)
for1 <j<n. [ |

One can repeat this procedure for further deriva-
tives. In general we have

Theorem 6 Suppose Q C Rxr" is open, ({,n) € Q,
and g: ) — R™ is m times continuously differentiable
along with 0g/dy. The there is an interval I contain-
ing & and a unique m + 1 times continuously differ-
entible function y: I — R™ satisfying

y'(x) = g(z,y(x), y(&)=n.



