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In these notes, B,.(§) denotes the open ball of ra-
dius 7 about ¢ and B,.(€) is the closed ball of radius
r about £&. This notation will be used in Euclidean
spaces of any dimension, including dimension 1.

Theorem 1 Suppose that§ € R, n € R™, r > 0 and
s > 0. Suppose

F:B.(¢) x Bs(n) —» R"
satisfies

OF
ar <M
H dy (x’y)H B

for each x € B.(€) and y € Bs(n), where the OF/dy
is a matriz of partial derivatives and the norm is the
usual matriz norm. Then

1F(2; ya)

for all x € ET(S) and Ya, yp € Fs(n)-

- F('T’yb)ll < Mllya - ybll

Before beginning the proof, note that the norm is
continuous and B,.(¢) x B,(n) is closed and bounded,
so if F/Jy is continuous then there must be such
an M.

Proof: Let

w(t, Yas Yo) = tya + (1 — t)yp.

and
f(tvxvyavyb) = F(x,u(t, Ya, yb))
Then
F(x,ya) — F(z,y) = f(1, 2,90, 9) — (0,2, Y0, ).
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By the Fundamental Theorem of the Calculus,

1
0
f(lazayaayb)*f(oazayaayb) = / a{ (tazayaayb) dt.
0

By the Chain Rule,

du

b Yas U).
at(,y )

of _OF
au(tv'rvyavyb) - ay (zau(tvyavyb))

From the definition of w we see that
ou

5 (tsYar Ub) = (Yb — Ya)-

Since the matrix norm is submultiplicative

< Mllya — ol

0
H a—{U(t, T, Ya, Yb)

Integrating this inequality gives
1P (2, ya) — Fe, )| < My — w

as required. [ |

From now on we assume that
F:B,(§) x Bs(n) — R"
satisfies
1F(2,ya)

for all x € B,.(£) and ya,ys € Bs(n) and that

- F('T’yb)ll < Mllya - ybll

[1F(z,n) <N

for all x € B,.(¢).
such an .

If F' is continuous then there is



Theorem 2 Suppose 0 < o < s. There is a p > 0
such that if yo € Bo(n) and y: B,(§) — R"™ satisfies

y'(x) = F(z,y(z))
for x € B,(§) and
y(&) = vo

then
y(x) € Bs(n)
for all x € B,(£).

Proof: It will be shown that this holds with

. ilo Ms+ N
p = min (1, - log Mot N .

By continuity there is a p’ > 0 such that

y(x) € Bs(n)

for all z € B, (§). Suppose that € B, (£). The
derivative of the the norm of a matrix valued function
is bounded by the norm of the derivative. We apply
this to

obtaining

d
@I < 1@l = I @ = 1F s
By the triangle inequality

1F (@, y(@) | < [|F(z,y(x) = Fz )| + [|F ()]l

By hypothesis

1F (2, y(x)) — F(z,n)| < Mly(z) —nl = M|z(z)]

and
[ F(z,n)| < N.
Thus

L1 < Ml +

By Gronwall’s inequality

=@l < (1)1 + 37 ) expltle — € - 37

Now
121 = lly(€) —nll = llyo —nl <o
and
|‘T - €| < pla
SO

The Bootstrap Lemma from the preceding chapter
then allows us to conclude that

[z(2)] < s

for all x € B,(§). [ |

Theorem 3 Ify, andyy satisfy the differential equa-
tion

y'(w) = Flz,y(z))
for all x € B,(§) with initial conditions

ya(&) = Za, yb(&) = 2b

then
[ya(z) — yu()|| < [l2a — 2p exp(M |z —£]).

Proof: If y, and y; are solutions then

7 (o) = (@)l < o) = 30
= |, 5a ) — F (@, (2)
< Mlya(@) = (@)]|

The last step is justified because, by the preceding
theorem,

ya(x)vyb(z) € Bs(n)
for all € B,(§). Applying Gronwall again,
1Ya(2) = vo (@) < l[ya(€) — (&)l exp(M |z — &)

There are two important corollaries.



Theorem 4 The initial value problem

y'(x) = F(z,y(x), y(&) =0
has at most one solution in the interval B,(§).

Assume there are two solutions, y, and y,. Then the
preceding theorem, with z, = 2, = yo gives Proof:

ya(z) — yp(2)]| =0

and hence y, = ys. ]

Theorem 5 Suppose that for each z € B,(x) there
is a solution to the initial value problem

y'(x) = F(z,y(), y(&) =10

in B,(€). This solution depends continuously on z,
uniformly in x.

Proof: Suppose € > 0. Let § = eexp(—Mp). Then
if

lza — 2zo]| <6
and y, and y; are the solutions with those initial con-
ditions then, by the theorem,

[ya(z) = yo(2)|| < dexp(Mlz —£]) <e

for all x € B,(§). This is the definition of continuity.
It is uniform because the § we found depends only on
€, not on x. |

To make the preceding theorem non-trivial we still
need to show that solutions exist.

Theorem 6 For any z € B,(n) there is a conti-
nously differentiable y: B,(§) such that

Proof: We define, inductively,

x

Yo(z) =1, Ynt+1(z) :z+/ F(t,yn(t)) dt.

Zo

(&)~ w0() =6~ w®) + [ " (W) — () dt

Zo

=z—n+ [ F(tyo(t))dt.

%
:z—77+/
)

F(t,n)dt.

Now
[z —=nll <o
and
[F(¢nl <N
SO

ly1(x) — yo(z)|| < o+ Nz — x0].

By generalised induction we show that for all n > 1
and all z € B,(§)

yn(z) = yn-1(@)|| < gn(z)
where

oM"Y — x|t
(n—1)!

M" IN|z — xo|®
n!

gn(z) =

)

lyn(@) =nll <D gm(@).

In case n = 1 both of these are just the statement
y1(z) — yo(x)|| < o+ Nz — xol.

proved above. For the induction step we assume the
two inequalities above and the corresponding inequal-
ities with n replaced by any smaller integer. Using
these, we prove the corresponding inequalities with n
replaced by n+ 1. First of all, g,,, () is non-negative,
SO

> gm(@) <Y gm(@)
(0 + %) exp(M |z — zo|) — %

<S.

Thus
yn (SC) S BS (77)

for all x € B,(€). Since we also have the correspond-
ing inequality with n replaced by n — 1. From this it
follows that

(2, yn () = F(2, yn-1(2)]| < M|[yn(z) = yn-1(2)



for all z € B,(£). By the other part of the induction
hypothesis the right hand side is bounded by Mg, ().
Since

e (@)-nla) = | * (F(@,yn(@)) — F(2,4nr(2)) d

Zo

we see that
19ns1 (2) — ya(@)]] < / Mga(t) dt = gusa (2).
E

That’s half of what we needed to prove for the in-
duction step. The other half follows because, by the
triangle inequality,

[Ynt1(2) = nll = [yn+1(2) = yn (@) + llyn(z) — 0l -

For the first norm on the right we use the inequality
just obtained and for the second we use the induction
hypothesis. The result is

n n+1
Yn+1(2) =Yn(2) < gny1(z)+ Z gm(z) = Z gm ().

This is the other half of what we needed to prove,
thus completing the induction. ]



