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In these notes, Br(ξ) denotes the open ball of ra-
dius r about ξ and Br(ξ) is the closed ball of radius
r about ξ. This notation will be used in Euclidean
spaces of any dimension, including dimension 1.

Theorem 1 Suppose that ξ ∈ R, η ∈ R
n, r > 0 and

s > 0. Suppose

F :Br(ξ)×Bs(η) → R
n

satisfies
∥

∥

∥

∥

∂F

∂y
(x, y)

∥

∥

∥

∥

≤ M

for each x ∈ Br(ξ) and y ∈ Bs(η), where the ∂F/∂y
is a matrix of partial derivatives and the norm is the

usual matrix norm. Then

‖F (x, ya)− F (x, yb)‖ ≤ M‖ya − yb‖

for all x ∈ Br(ξ) and ya, yb ∈ Bs(η).

Before beginning the proof, note that the norm is
continuous and Br(ξ)×Bs(η) is closed and bounded,
so if ∂F/∂y is continuous then there must be such
an M .

Proof: Let

u(t, ya, yb) = tya + (1 − t)yb.

and

f(t, x, ya, yb) = F (x, u(t, ya, yb)).

Then

F (x, ya)− F (x, yb) = f(1, x, ya, yb)− f(0, x, ya, yb).
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By the Fundamental Theorem of the Calculus,

f(1, x, ya, yb)−f(0, x, ya, yb) =

∫ 1

0

∂f

∂t
(t, x, ya, yb) dt.

By the Chain Rule,

∂f

∂t
u(t, x, ya, yb) =

∂F

∂y
(x, u(t, ya, yb))

∂u

∂t
(t, ya, yb).

From the definition of u we see that

∂u

∂t
(t, ya, yb) = (yb − ya).

Since the matrix norm is submultiplicative

∥

∥

∥

∥

∂f

∂t
u(t, x, ya, yb)

∥

∥

∥

∥

≤ M‖ya − yb‖.

Integrating this inequality gives

‖F (x, ya)− F (x, yb)‖ ≤ M‖ya − yb‖

as required.

From now on we assume that

F :Br(ξ)×Bs(η) → R
n

satisfies

‖F (x, ya)− F (x, yb)‖ ≤ M‖ya − yb‖

for all x ∈ Br(ξ) and ya, yb ∈ Bs(η) and that

‖F (x, η)‖ ≤ N

for all x ∈ Br(ξ). If F is continuous then there is
such an N .
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Theorem 2 Suppose 0 < σ < s. There is a ρ > 0
such that if y0 ∈ Bσ(η) and y:Bρ(ξ) → R

n satisfies

y′(x) = F (x, y(x))

for x ∈ Bρ(ξ) and

y(ξ) = y0

then

y(x) ∈ Bs(η)

for all x ∈ Bρ(ξ).

Proof: It will be shown that this holds with

ρ = min

(

r,
1

M
log

(

Ms+N

Mσ +N

))

.

By continuity there is a ρ′ > 0 such that

y(x) ∈ Bs(η)

for all x ∈ Bρ′(ξ). Suppose that x ∈ Bρ′(ξ). The
derivative of the the norm of a matrix valued function
is bounded by the norm of the derivative. We apply
this to

z(x) = y(x)− η,

obtaining
∣

∣

∣

∣

d

dx
‖z(x)‖

∣

∣

∣

∣

≤ ‖z′(x)‖ = ‖y′(x)‖ = ‖F (x, y(x))‖.

By the triangle inequality

‖F (x, y(x))‖ ≤ ‖F (x, y(x)) − F (x, η)‖ + ‖F (x, η)‖.

By hypothesis

‖F (x, y(x)) − F (x, η)‖ ≤ M‖y(x)− η‖ = M‖z(x)‖

and
‖F (x, η)‖ ≤ N.

Thus
∣

∣

∣

∣

d

dx
‖z(x)‖

∣

∣

∣

∣

≤ M‖z(x)‖+N.

By Gronwall’s inequality

‖z(x)‖ ≤

(

‖z(ξ)‖+
N

M

)

exp(M |x− ξ|)−
N

M
.

Now

‖z(ξ)‖ = ‖y(ξ)− η‖ = ‖y0 − η‖ < σ

and

|x− ξ| < ρ′,

so

‖z(x)‖ ≤

(

σ +
N

M

)

exp(Mρ′)−
N

M
< s.

The Bootstrap Lemma from the preceding chapter
then allows us to conclude that

‖z(x)‖ < s

for all x ∈ Bρ(ξ).

Theorem 3 If ya and yb satisfy the differential equa-

tion

y′(x) = F (x, y(x))

for all x ∈ Bρ(ξ) with initial conditions

ya(ξ) = za, yb(ξ) = zb

then

‖ya(x) − yb(x)‖ ≤ ‖za − zb‖ exp(M |x− ξ|).

Proof: If ya and yb are solutions then

∣

∣

∣

∣

d

dx
‖ya(x) − yb(x)‖

∣

∣

∣

∣

≤ ‖y′a(x)− y′b(x)‖

= ‖F (x, ya(x))− F (x, yb(x))‖
≤M‖ya(x)− yb(x)‖.

The last step is justified because, by the preceding
theorem,

ya(x), yb(x) ∈ Bs(η)

for all x ∈ Bρ(ξ). Applying Gronwall again,

‖ya(x) − yb(x)‖ ≤ ‖ya(ξ)− yb(ξ)‖ exp(M |x− ξ|).

There are two important corollaries.
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Theorem 4 The initial value problem

y′(x) = F (x, y(x)), y(ξ) = y0

has at most one solution in the interval Bρ(ξ).

Assume there are two solutions, ya and yb. Then the
preceding theorem, with za = zb = y0 gives Proof:

‖ya(x) − yb(x)‖ = 0

and hence ya = yb.

Theorem 5 Suppose that for each z ∈ Bσ(x) there

is a solution to the initial value problem

y′(x) = F (x, y(x)), y(ξ) = y0

in Bρ(ξ). This solution depends continuously on z,
uniformly in x.

Proof: Suppose ǫ > 0. Let δ = ǫ exp(−Mρ). Then
if

‖za − zb‖ < δ

and ya and yb are the solutions with those initial con-
ditions then, by the theorem,

‖ya(x)− yb(x)‖ ≤ δ exp(M |x− ξ|) < ǫ

for all x ∈ Bρ(ξ). This is the definition of continuity.
It is uniform because the δ we found depends only on
ǫ, not on x.

To make the preceding theorem non-trivial we still
need to show that solutions exist.

Theorem 6 For any z ∈ Bσ(η) there is a conti-

nously differentiable y:Bρ(ξ) such that

y′(x) = F (x, y(x)), y(ξ) = z.

Proof: We define, inductively,

y0(x) = η, yn+1(x) = z +

∫ x

x0

F (t, yn(t)) dt.

y1(x) − y0(x) = y1(ξ) − y0(ξ) +

∫ x

x0

(y′1(t)− y′0(t)) dt

= z − η +

∫ x

x0

F (t, y0(t)) dt.

= z − η +

∫ x

x0

F (t, η) dt.

Now
‖z − η‖ < σ

and
‖F (t, η)‖ ≤ N

so
‖y1(x)− y0(x)‖ ≤ σ +N |x− x0|.

By generalised induction we show that for all n ≥ 1
and all x ∈ Bρ(ξ)

•

‖yn(x) − yn−1(x)‖ ≤ gn(x)

where

gn(x) =
σMn−1|x− x0|

n−1

(n− 1)!
+
Mn−1N |x− x0|

n

n!
,

•

‖yn(x)− η‖ ≤
n
∑

m=1

gm(x).

In case n = 1 both of these are just the statement

‖y1(x)− y0(x)‖ ≤ σ +N |x− x0|.

proved above. For the induction step we assume the
two inequalities above and the corresponding inequal-
ities with n replaced by any smaller integer. Using
these, we prove the corresponding inequalities with n
replaced by n+1. First of all, gm(x) is non-negative,
so

n
∑

m=1

gm(x) ≤

∞
∑

m=1

gm(x)

=

(

σ +
N

M

)

exp(M |x− x0|)−
N

M
< s.

Thus
yn(x) ∈ Bs(η)

for all x ∈ Bρ(ξ). Since we also have the correspond-
ing inequality with n replaced by n− 1. From this it
follows that

‖F (x, yn(x))− F (x, yn−1(x)‖ ≤ M‖yn(x) − yn−1(x)
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for all x ∈ Bρ(ξ). By the other part of the induction
hypothesis the right hand side is bounded byMgn(x).
Since

yn+1(x)−yn(x) =

∫ x

x0

(F (x, yn(x))− F (x, yn−1(x)) dx

we see that

‖yn+1(x)− yn(x)‖ ≤

∫ x

x0

Mgn(t) dt = gn+1(x).

That’s half of what we needed to prove for the in-
duction step. The other half follows because, by the
triangle inequality,

‖yn+1(x)− η‖ = ‖yn+1(x) − yn(x)‖ + ‖yn(x)− η‖ .

For the first norm on the right we use the inequality
just obtained and for the second we use the induction
hypothesis. The result is

yn+1(x)−yn(x) ≤ gn+1(x)+

n
∑

m=1

gm(x) =

n+1
∑

m=1

gm(x).

This is the other half of what we needed to prove,
thus completing the induction.
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