Existence and Uniqueness Theorems

John Stalker*

March 3, 2015

In these notes, $B_r(\xi)$ denotes the open ball of radius r about ξ and $\overline{B}_r(\xi)$ is the closed ball of radius r about ξ . This notation will be used in Euclidean spaces of any dimension, including dimension 1.

Theorem 1 Suppose that $\xi \in \mathbb{R}$, $\eta \in \mathbb{R}^n$, r > 0 and s > 0. Suppose

$$F: \overline{B}_r(\xi) \times \overline{B}_s(\eta) \to \mathbf{R}^n$$

satisfies

$$\left\| \frac{\partial F}{\partial y}(x,y) \right\| \le M$$

for each $x \in \overline{B}_r(\xi)$ and $y \in \overline{B}_s(\eta)$, where the $\partial F/\partial y$ is a matrix of partial derivatives and the norm is the usual matrix norm. Then

$$||F(x, y_a) - F(x, y_b)|| < M||y_a - y_b||$$

for all $x \in \overline{B}_r(\xi)$ and $y_a, y_b \in \overline{B}_s(\eta)$.

Before beginning the proof, note that the norm is continuous and $\overline{B}_r(\xi) \times \overline{B}_s(\eta)$ is closed and bounded, so if $\partial F/\partial y$ is continuous then there must be such an M.

Proof: Let

$$u(t, y_a, y_b) = ty_a + (1 - t)y_b.$$

and

$$f(t, x, y_a, y_b) = F(x, u(t, y_a, y_b)).$$

Then

$$F(x, y_a) - F(x, y_b) = f(1, x, y_a, y_b) - f(0, x, y_a, y_b).$$

By the Fundamental Theorem of the Calculus,

$$f(1, x, y_a, y_b) - f(0, x, y_a, y_b) = \int_0^1 \frac{\partial f}{\partial t}(t, x, y_a, y_b) dt.$$

By the Chain Rule,

$$\frac{\partial f}{\partial t}u(t,x,y_a,y_b) = \frac{\partial F}{\partial y}(x,u(t,y_a,y_b))\frac{\partial u}{\partial t}(t,y_a,y_b).$$

From the definition of u we see that

$$\frac{\partial u}{\partial t}(t, y_a, y_b) = (y_b - y_a).$$

Since the matrix norm is submultiplicative

$$\left\| \frac{\partial f}{\partial t} u(t, x, y_a, y_b) \right\| \le M \|y_a - y_b\|.$$

Integrating this inequality gives

$$||F(x, y_a) - F(x, y_b)|| \le M||y_a - y_b||$$

as required.

From now on we assume that

$$F: \overline{B}_r(\xi) \times \overline{B}_s(\eta) \to \mathbf{R}^n$$

satisfies

$$||F(x, y_a) - F(x, y_b)|| \le M||y_a - y_b||$$

for all $x \in \overline{B}_r(\xi)$ and $y_a, y_b \in \overline{B}_s(\eta)$ and that

$$||F(x,\eta)|| < N$$

for all $x \in \overline{B}_r(\xi)$. If F is continuous then there is such an N.

^{*}School of Mathematics, TCD, Copyright 2015

Theorem 2 Suppose $0 < \sigma < s$. There is a $\rho > 0$ such that if $y_0 \in B_{\sigma}(\eta)$ and $y: B_{\rho}(\xi) \to \mathbf{R}^n$ satisfies

$$y'(x) = F(x, y(x))$$

for $x \in B_{\rho}(\xi)$ and

$$y(\xi) = y_0$$

then

$$y(x) \in B_s(\eta)$$

for all $x \in B_{\rho}(\xi)$.

Proof: It will be shown that this holds with

$$\rho = \min\left(r, \frac{1}{M}\log\left(\frac{Ms + N}{M\sigma + N}\right)\right).$$

By continuity there is a $\rho' > 0$ such that

$$y(x) \in B_s(\eta)$$

for all $x \in B_{\rho'}(\xi)$. Suppose that $x \in B_{\rho'}(\xi)$. The derivative of the the norm of a matrix valued function is bounded by the norm of the derivative. We apply this to

$$z(x) = y(x) - \eta,$$

obtaining

$$\left| \frac{d}{dx} \|z(x)\| \right| \le \|z'(x)\| = \|y'(x)\| = \|F(x, y(x))\|.$$

By the triangle inequality

$$||F(x,y(x))|| \le ||F(x,y(x)) - F(x,\eta)|| + ||F(x,\eta)||.$$

By hypothesis

$$||F(x,y(x)) - F(x,\eta)|| \le M||y(x) - \eta|| = M||z(x)||$$

and

$$||F(x,\eta)|| \le N.$$

Thus

$$\left|\frac{d}{dx}\|z(x)\|\right| \le M\|z(x)\| + N.$$

By Gronwall's inequality

$$||z(x)|| \le \left(||z(\xi)|| + \frac{N}{M}\right) \exp(M|x - \xi|) - \frac{N}{M}.$$

Now

$$||z(\xi)|| = ||y(\xi) - \eta|| = ||y_0 - \eta|| < \sigma$$

and

$$|x - \xi| < \rho'$$

so

$$||z(x)|| \le \left(\sigma + \frac{N}{M}\right) \exp(M\rho') - \frac{N}{M} < s.$$

The Bootstrap Lemma from the preceding chapter then allows us to conclude that

for all $x \in B_{\rho}(\xi)$.

Theorem 3 If y_a and y_b satisfy the differential equation

$$y'(x) = F(x, y(x))$$

for all $x \in B_{\rho}(\xi)$ with initial conditions

$$y_a(\xi) = z_a, \quad y_b(\xi) = z_b$$

then

$$||y_a(x) - y_b(x)|| \le ||z_a - z_b|| \exp(M|x - \xi|).$$

Proof: If y_a and y_b are solutions then

$$\left| \frac{d}{dx} \| y_a(x) - y_b(x) \| \right| \le \| y_a'(x) - y_b'(x) \|$$

$$= \| F(x, y_a(x)) - F(x, y_b(x)) \|$$

$$< M \| y_a(x) - y_b(x) \|.$$

The last step is justified because, by the preceding theorem,

$$y_a(x), y_b(x) \in B_s(\eta)$$

for all $x \in B_{\rho}(\xi)$. Applying Gronwall again,

$$||y_a(x) - y_b(x)|| \le ||y_a(\xi) - y_b(\xi)|| \exp(M|x - \xi|).$$

There are two important corollaries.

Theorem 4 The initial value problem

$$y'(x) = F(x, y(x)), \quad y(\xi) = y_0$$

has at most one solution in the interval $B_{\rho}(\xi)$.

Assume there are two solutions, y_a and y_b . Then the preceding theorem, with $z_a = z_b = y_0$ gives **Proof:**

$$||y_a(x) - y_b(x)|| = 0$$

and hence $y_a = y_b$.

Theorem 5 Suppose that for each $z \in B_{\sigma}(x)$ there is a solution to the initial value problem

$$y'(x) = F(x, y(x)), \quad y(\xi) = y_0$$

in $B_{\rho}(\xi)$. This solution depends continuously on z, uniformly in x.

Proof: Suppose $\epsilon > 0$. Let $\delta = \epsilon \exp(-M\rho)$. Then if

$$||z_a - z_b|| < \delta$$

and y_a and y_b are the solutions with those initial conditions then, by the theorem,

$$||y_a(x) - y_b(x)|| \le \delta \exp(M|x - \xi|) < \epsilon$$

for all $x \in B_{\rho}(\xi)$. This is the definition of continuity. It is uniform because the δ we found depends only on ϵ , not on x.

To make the preceding theorem non-trivial we still need to show that solutions exist.

Theorem 6 For any $z \in B_{\sigma}(\eta)$ there is a continously differentiable $y: B_{\rho}(\xi)$ such that

$$y'(x) = F(x, y(x)), \quad y(\xi) = z.$$

Proof: We define, inductively,

$$y_0(x) = \eta$$
, $y_{n+1}(x) = z + \int_{x_0}^x F(t, y_n(t)) dt$.

$$y_1(x) - y_0(x) = y_1(\xi) - y_0(\xi) + \int_{x_0}^x (y_1'(t) - y_0'(t)) dt$$
$$= z - \eta + \int_{x_0}^x F(t, y_0(t)) dt.$$
$$= z - \eta + \int_{x_0}^x F(t, \eta) dt.$$

Now

$$||z - \eta|| < \sigma$$

and

$$||F(t,\eta)|| < N$$

SO

$$||y_1(x) - y_0(x)|| \le \sigma + N|x - x_0|.$$

By generalised induction we show that for all $n \ge 1$ and all $x \in B_{\rho}(\xi)$

 $||y_n(x) - y_{n-1}(x)|| \le g_n(x)$

where

$$g_n(x) = \frac{\sigma M^{n-1}|x - x_0|^{n-1}}{(n-1)!} + \frac{M^{n-1}N|x - x_0|^n}{n!},$$

 $||y_n(x) - \eta|| \le \sum_{m=1}^n g_m(x).$

In case n = 1 both of these are just the statement

$$||y_1(x) - y_0(x)|| \le \sigma + N|x - x_0|.$$

proved above. For the induction step we assume the two inequalities above and the corresponding inequalities with n replaced by any smaller integer. Using these, we prove the corresponding inequalities with n replaced by n+1. First of all, $g_m(x)$ is non-negative,

$$\sum_{m=1}^{n} g_m(x) \le \sum_{m=1}^{\infty} g_m(x)$$

$$= \left(\sigma + \frac{N}{M}\right) \exp(M|x - x_0|) - \frac{N}{M}$$

$$< s.$$

Thus

$$y_n(x) \in B_s(\eta)$$

for all $x \in B_{\rho}(\xi)$. Since we also have the corresponding inequality with n replaced by n-1. From this it follows that

$$||F(x, y_n(x)) - F(x, y_{n-1}(x))|| \le M||y_n(x) - y_{n-1}(x)||$$

for all $x \in B_{\rho}(\xi)$. By the other part of the induction hypothesis the right hand side is bounded by $Mg_n(x)$. Since

$$y_{n+1}(x) - y_n(x) = \int_{x_0}^x \left(F(x, y_n(x)) - F(x, y_{n-1}(x)) \right) dx$$

we see that

$$||y_{n+1}(x) - y_n(x)|| \le \int_{x_0}^x Mg_n(t) dt = g_{n+1}(x).$$

That's half of what we needed to prove for the induction step. The other half follows because, by the triangle inequality,

$$||y_{n+1}(x) - \eta|| = ||y_{n+1}(x) - y_n(x)|| + ||y_n(x) - \eta||.$$

For the first norm on the right we use the inequality just obtained and for the second we use the induction hypothesis. The result is

$$y_{n+1}(x) - y_n(x) \le g_{n+1}(x) + \sum_{m=1}^n g_m(x) = \sum_{m=1}^{n+1} g_m(x).$$

This is the other half of what we needed to prove, thus completing the induction.