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Induction is often somewhat mysterious the first
time one sees it. It’s often presented in a way which
looks at first sight circular. There is in fact nothing
circular about it, and little that’s mysterious. Proofs
by induction are simple applications of one of the
basic properties of the integers:

Theorem 1 Every non-empty subset of the integers

which has a lower bound has a least element.

Different presentations of the integers differ on
whether this is a theorem or an axiom. In any case I
won’t prove it here. A simple corollary is the Princi-
ple of Induction.

Theorem 2 If i is an integer and ϕ is a predicate

such that ϕ(i) and, for each k ≥ i, ϕ(k) implies ϕ(k+
1) then ϕ(n) for all integers n ≥ i.

This is usually stated either for i = 0 or i = 1, in
which case it is a statement about the natural num-
bers. Unfortunately there are two contradictory con-
ventions about what the natural numbers are. Rather
than choosing a side I’ll just keep i arbitrary. “Pred-
icate” is a technical term from Mathematical Logic.
Roughly speaking it means a reasonable statement
about one or more variables. More precisely, it’s a
statement which can be used to define a set. Not ev-
ery statement defines a set. To see why, consider the
statement “x is not very large.” This is not a predi-
cate. If it were then we could prove by induction that
there are no very large non-negative integers because
0 is not very large and if l is very large the surely sub-
tracting 1 will not change this, so l − 1 is also very
large. In other words if k is not very large then k+1
is also not very large. But no one would be likely to
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try to define the set of very large integers or its com-
plement, except as a joke. A more subtle example is
the statement “x cannot be defined in 140 characters
or fewer.” This also is not a predicate. If it were
then there would be a smallest non-negative integer
which cannot be defined in 140 characters or fewer.
But “the smallest non-negative integer which cannot
be defined in 140 characters or fewer” is a definition
with fewer than 140 characters. It’s beyond the scope
of these notes to define the term “predicate” precisely,
but its definition is very broad. Any statement you
are likely to want to write down is allowed. An al-
ternate way of thinking about predicates, which you
may prefer, is in terms of Boolean-valued functions.
A predicate takes some arguments and returns a value
of “true” or “false” depending on their values. This
is a correct interpretation as long a we are clear that
the word “function” is used in it’s usual mathemat-
ical sense, which is more general than “computable
function”. The correct syntax is as you would ex-
pect from this interpretation: It is redundant to say
“ϕ(n) is true” or ”ϕ(n) holds.” It’s sufficient to say
“ϕ(n)”, as in the theorem above. Similarly the nega-
tion of this statement is “not ϕ(n)”. Statements like
like “ϕ(n) is false” or “ϕ(n) does not hold” are re-
dundant.
Now that the statement of the theorem has been

made precise, or rather now that it has been made as
precise as I intend to make it, we can proceed to its
proof. Until further notice

U = {n ∈ Z:n ≥ i}

and all other sets are subsets of U . Proof: Let

Tϕ = {n ∈ U :ϕ(n)}, Fϕ = {n ∈ U : not ϕ(n)}.
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In words, Tϕ and Fϕ are the sets where ϕ is true and
false, respectively. If Fϕ is non-empty then, by the
previous theorem, it has a least element. Call this
element l. l 6= i because ϕ(i) by hypothesis. Except
for l = j, Every l ∈ U is k + 1 for some k ∈ U . So
there is a non-negative integer k such that l = k+ 1.
k < l and l is the least element of Fϕ, so k /∈ Fϕ.
Equivalently k ∈ Tϕ. So we have a k ∈ U such that
ϕ(k), but not ϕ(k+1), contradicting our hypotheses.
So our assumption the Fϕ is non-empty is untenable.
There is no n ∈ U such that not ϕ(n). Equivalently,
ϕ(n) for all n ∈ U .

It is of course also true that sets of integers
bounded above have greatest elements and there is
a corresponding principle of downward induction. A
more interesting extensions is The Principle of Gen-
eralised Induction:

Theorem 3 Suppose ϕ is a predicate, ϕ(i) for some

integer i, and, for each k ≥ i, the statements ϕ(i),
ϕ(i + 1), . . . , ϕ(k) together imply ϕ(k + 1). Then

ϕ(n) for all n ≥ i.

This is easier to apply than the original Principle of
Induction because in proving ϕ(k+1) we are allowed
to assume ϕ(j) for all i ≤ j ≤ k, not just for j = k.

Proof: We introduce a new predicate ψ, where ψ(k)
is the statement that ϕ(j) for all integers j between
i and k. Then ψ(i) because ϕ(i). By hypothesis,
ψ(k) implies ϕ(k + 1). Trivially, ψ(k) implies ψ(k).
So ψ(k) implies ψ(k) and ϕ(k + 1). But ψ(k) and
ϕ(k+1) is just ψ(k+1). We therefore have ψ(i) and
the statement that ψ(k) implies ψ(k + 1), which are
exactly the two things we need in order to apply the
preceding theorem.

Induction is normally used for statements about
integers. At first sight there’s no hope of using it
for statements about real numbers, since there are
non-empty subsets of the real numbers which have
lower bounds but no least element. There is, however,
a property of the real numbers which plays a role
analogous to the role played for the integers by the
first theorem of this section.

Theorem 4 Every non-empty subset of the non-

negative real numbers has a greatest lower bound.

Depending on where you learned Real Analysis this
also might be either a theorem or an axiom. Also
the greatest lower bound may be called an infimum.
Again, this statement won’t be proved here. What
theorem plays the role of the Principle of Generalised
Induction?

Theorem 5 Suppose that s is real and ϕ is a predi-

cate with a single real argument. Suppose that

1. for all real x > s, if ϕ(t) for all t satisfying s <
t < x then there is a y > x such that ϕ(t) for all

t satisfying s < t < y, and

2. there is a real x > s such that ϕ(t) for all t
satisfying s < t < x.

Then ϕ(t) for all t > s.

Proof: Let

U = {t ∈ R: t > s},

Tϕ = {t ∈ U :ϕ(t)},

Fϕ = {t ∈ U : not ϕ(t)}.

x > s is a lower bound for Fϕ if and only if there is
no t ∈ Fϕ with t < x, i.e. if and only if ϕ(t) for all t
satifying s < t < x. Similarly, y > s is a lower bound
if and only if ϕ(t) for all t satifying s < t < y. So our
first hypothesis is the statement that for any lower
bound x > s for Fϕ there is another lower bound
y with y > x. In other words, no x > s can be a
greatest lower bound for Fϕ. But Fϕ ⊂ R has a
lower bound, namely s, and the second hypothesis
prevents s from being a greatest lower bound. So, by
the preceding theorem, Fϕ must be empty. In view
of the definition of Fϕ we can conclude that ϕ(t) for
all t > s.

Comparing this to the earlier theorems, is a closer
analogue to the Principle of Generalised Induction
than to the usual Principle of Induction. The first
hypothesis above corresponds roughly to the induc-
tive step and the second case corresponds to the base
case.

An corollary of the theorem is the following useful
fact.
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Theorem 6 Suppose that s is real and f is a contin-

uous real valued function defined for t ≥ s. Suppose

that

f(s) < L

and, for each x > s there is a K < L such that if

f(t) < L

for all t in the interval s < t < x then

f(t) < K

for all x in that interval. Then

f(t) < L

for all t > s.

Note that in the preceding theorem the “inductive
step” was to extend a statement valid in one interval
to the same statement for a larger interval. Here
the inductive step is somewhat different. We keep
the interval the same, but prove a sharper inequality
from a weaker one.

Proof: Let ϕ(x) be the statement “ϕ(t) whenever
s < t < x” and apply the preceding theorem. Be-
cause f is continuous at s there is a δ > 0 such that
f(t) < L for all t < s + δ. In other words ϕ(t) for
all t < s + δ. This is the second condition from the
preceding theorem, with x = s + δ. To get the first
condition, suppose ϕ(t) for all s < t < x, i.e. that
f(t) < L whenever s < t < x. Then, by the hy-
potheses of this theorem there is a K < L such that
f(t) < K in the same interval. The continuity of f
at x then implies, first, that f(x) ≤ K and hence
f(x) < L and, second, that there is a δ > 0 such that
f(t) < L whenever |t − x| < δ. But then f(t) < L
for all st < y where y = x + δ > x. In other words,
ϕ(t) for all t < y. This completes the proof of the
inductive step, and hence of the theorem.

As with proofs by induction, proofs using the pre-
ceding theorem may appear circular at first. The in-
ductive step does not, however, assume what it pur-
ports to prove. It assumes a similar, but weaker,
version of the same inequality. The theorem, or some
variant thereof, is sometimes referred to as the “Boot-
strap Lemma”, a reference to Baron Münchhausen, a

fictional character who, in one episode, pulls himself
up by his own bootstraps.
It’s sometimes useful to have a version of the pre-

ceding theorem which applies to finite intervals rather
than semi-infinite intervals.

Theorem 7 Suppose that s, z are real and g is a con-

tinuous real valued function defined for s ≤ t < z.
Suppose that

g(s) < L

and, for each x > s there is a K < L such that if

g(t) < L

for all t in the interval s < t < x then

g(t) < K

for all x in that interval. Then

g(t) < L

for all t in the interval s < t < z.

Proof: Let f(t) = g
(

z−s
z−t

s
)

and apply the preceding

theorem.
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