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1. Suppose that q and r are continuous functions on an interval I. Show
that there exist solutions twice continuously differentiable function y1
and y2 of the differential equation

y′′(x) + q(x)y′(x) + r(x)y(x) = 0

such that
w(x) = y1(x)y

′

2(x)− y′1(x)y2(x)

has no zeros in I.
Hint: This is a straightforward consequence of theorems proved in
lecture. You just need to put them together in the right order.
Solution: Let

A(x) =
(

0 1
−r(x) −q(x)

)

.

As proved in lecture, there is a fundamental matrix W for A. Fix
x0 ∈ I and define

y1(x) = ( 1 0 )W (x, x0)
(

1
0

)

, y2(x) = ( 1 0 )W (x, x0)
(

0
1

)

.

Then

y′1(x) = ( 0 1 )W (x, x0)
(

1
0

)

, y′2(x) = ( 0 1 )W (x, x0)
(

0
1

)

and

w(x) = y1(x)y
′

2(x)− y′1(x)y2(x) = det(W (x, x)) = exp
(

−
∫ x

x0

q(t) dt
)

.
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The expression on the right hand side is never zero. For j ∈ {1, 2} we
have

d

dx

(

yj(x)
y′j(x)

)

= A(x)
(

yj(x)
y′j(x)

)

and hence
y′′j (x) + q(x)y′j(x) + r(x)yj(x) = 0.

2. Conversely, suppose that y1 and y2 are twice continuously differentiable
functions on an interval I and

w(x) = y1(x)y
′

2(x)− y′1(x)y2(x)

has no zeros in I. Show that there are continuous functions p and q
such that y1 and y2 are solutions of the differential equation

y′′(x) + q(x)y′(x) + r(x)y(x) = 0

on I.
Hint: This is not a straightforward consequence of theorems proved in
lecture. You may find it useful to consider the matrix







y(x) y1(x) y2(x)
y′(x) y′1(x) y′2(x)
y′′(x) y′′1(x) y′′2(x)





 .

Solution: The general solution should be a linear combination of y1
and y2. In other words, there should be constants c1 and c2 such that

y(x) = c1y1(x) + c2y2(x).

Differentiating,
y′(x) = c1y

′

1(x) + c2y
′

2(x).

Differentiating again,

y′′(x) = c1y
′′

1(x) + c2y
′′

2(x).

In matrix form, these equations are






y(x) y1(x) y2(x)
y′(x) y′1(x) y′2(x)
y′′(x) y′′1(x) y′′2(x)













1
−c1
−c2





 =







0
0
0





 .

Since we have a non-zero vector in the null space the determinant must
be zero.

det







y(x) y1(x) y2(x)
y′(x) y′1(x) y′2(x)
y′′(x) y′′1(x) y′′2(x)





 = 0
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or, expanding out the determinant,

[y1(x)y
′

2(x)− y′1(x)y2(x)] y
′′(x)

− [y1(x)y
′′

2(x)− y′′1(x)y2(x)] y
′(x)

+ [y′1(x)y
′′

2(x)− y′′1(x)y
′

2(x)] y(x) = 0.

Dividing by y1(x)y
′

2(x)− y′1(x)y2(x),

y′′(x) + q(x)y′(x) + r(x)y(x) = 0,

where

q(x) = −
y1(x)y

′′

2(x)− y′′1(x)y2(x)

y1(x)y′2(x)− y′1(x)y2(x)

and

r(x) =
y′1(x)y

′′

2(x)− y′′1(x)y
′

2(x)

y1(x)y′2(x)− y′1(x)y2(x)
.

The quotients are continuous becauses the denominator, w(x), was
assumed to be non-zero. The argument just given shows that any y of
the form

y(x) = c1y1(x) + c2y2(x).

satisfies the differential equation just given. In particular y1 and y2 do,
since they correspond to c1 = 1, c2 = 0 and c1 = 0, c2 = 1, respectively.

3. The second Painlevé equation is

y′′(x) = 2y(x)2 + xy(x) + α.

α is a parameter.

(a) Show that for any α, x0, y0 and v0 the equation has a unique
maximally extended solution with initial conditions

y(x0) = y0, y′(x0) = v0.

Hint: This is a straightforward consequence of theorems proved
in the notes.
Solution: Setting

z(x) = ( y(x) y′(x) )

the Painlevé equation is equivalent to the first order system

z′(x) = F (x, z(x))



Id: 2326-s2015-6.m4,v 1.1 2015/03/11 22:35:58 john Exp john 4

where

F
(

x,
(

y
v

))

=
(

v
2y3 + xy + α

)

F is defined and continuous throughout R
3, as is the partial

derivative matrix

∂F

∂z
=

(

0 1
6y2 + x 0

)

,

so the usual existence and uniqueness theorem applies.

(b) Show if a maximally extended solution and its derivative are bounded
then its interval of definition is all of R.
Hint: The easiest way to do this is to assume a bound and an
interval of definition and then use the quantitative version of the
existence theorem, Theorem 6 of Chapter 1 of the notes, to derive
a contradiction. Use the explicit form of the differential equation
as little as possible.
Solution: If y and y′ are bounded then there is a σ such that

‖z(x)‖ < σ

for all x and choose an s > σ. Let x0 be some point in the
interval of definition of the solution and choose r large enough
that [x0 − r, x0 + r] is not contained in the interval of definition.
By continuity there are M and N such that

∥

∥

∥

∥

∥

∂F

∂z
(x, z)

∣

∣

∣

∣

∣

≤ M

and
‖F (x, 0)‖ ≤ N

for all x ∈ [x0−r, x0+r] and z ∈ Bs(0). Its not hard to find explicit
M and N , but it’s unnecessary. By the quantitative version of the
existence theorem we can solve the equation starting from any
initial point in the interval x ∈ [x0 − r, x0 + r] and any initial
values in Bs(0) for a distance of at least

ρ = min
(

r,
1

M
log

(

Ms +N

Mσ +N

))

.

The explicit form is irrelevant. All we care about is that ρ > 0
and ρ doesn’t depend on our initial conditions. Because r, ρ > 0
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there is a positive integer m > r/ρ. We can then use the ex-
istence theorem m times to get a solution extending throughout
[x0 − r, x0 + r] starting from the values at x0. But r was chosen
in such a way that this extends beyond the interval of definition
of the maximally extended solution. This contradicts the defini-
tion of maximal, so we have to reject the assumption that there
is a bounded maximally extended solution which is not defined
everywhere.


