MA 2326 Assignment 5 Due 5 March 2015

Id: 2326-s2015-5.m4, v 1.1 2015/02/25 11:47:26 john Exp john

1. Show that

$$W(x,x_0) = \frac{1}{3} \begin{pmatrix} x^2 x_0^{-2} + 2x^{-1} x_0 & x^2 x_0^{-1} - x^{-1} x_0^2 \\ 2x x_0^{-2} - 2x^{-2} x_0 & 2x x_0^{-1} + x^{-2} x_0^2 \end{pmatrix}$$

is a fundamental matrix for

$$A(x) = \begin{pmatrix} 0 & 1 \\ 2x^{-2} & 0 \end{pmatrix}.$$

Use this to find the solution to the inhomogenous initial value problem

$$x^2y''(x) - 2y(x) = 1,$$

$$y(x_0) = y_0, \quad y'(x_0) = v_0$$

for x > 0.

Solution: Direct computation shows that

$$W'(x,x_0) = \frac{1}{3} \begin{pmatrix} 2xx_0^{-2} - 2x^{-2}y & 2xx_0^{-1} + x^{-2}x_0^2 \\ 2x_0^{-2} + 4x^{-3}y & 2x_0^{-1} - 2x^{-3}x_0^2 \end{pmatrix}$$

and

$$A(x)W(x,x_0) = \frac{1}{3} \begin{pmatrix} 2xx_0^{-2} - 2x^{-2}x_0 & 2xx_0^{-1} + x^{-2}x_0^2 \\ 2x_0^{-2} + 4x^{-3}x_0 & 2x_0^{-1} - 2x^{-3}x_0^2 \end{pmatrix}$$

SO

$$W'(x, x_0) = A(x)W(x, x_0).$$

Also,

$$W(x,x) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Thus W is a fundamental matrix for A. We therefore have

$$y(x) = \begin{pmatrix} 1 & 0 \end{pmatrix} W(x, x_0) \begin{pmatrix} y_0 \\ v_0 \end{pmatrix} + \int_{x_0}^x \begin{pmatrix} 1 & 0 \end{pmatrix} W(x, t) \begin{pmatrix} 0 \\ 1/t^2 \end{pmatrix} dt,$$

or

$$y(x) = \frac{(x^2x_0^{-2} + 2x^{-1}x_0)y_0 + (x^2x_0^{-1} - x^{-1}x_0^2)v_0}{4}$$

$$+ \int_{x_0}^x \frac{x^2t^{-1} - x^{-1}t^2}{3}t^{-2} dt$$

$$= \frac{(x^2x_0^{-2} + 2x^{-1}x_0)y_0 + (x^2x_0^{-1} - x^{-1}x_0^2)v_0}{4}$$

$$+ \left[-\frac{x^2t^{-2} + 2x^{-1}t}{6} \right]_{t=x_0}^{t=x}$$

$$= \frac{(x^2x_0^{-2} + 2x^{-1}x_0)y_0 + (x^2x_0^{-1} - x^{-1}x_0^2)v_0}{3}$$

$$+ \frac{x^2x_0^{-2} + 2x^{-1}x_0 - 3}{6}.$$

2. Find a non-zero quadratic polynomial which satisfies

$$(1 - x^2)y''(x) - 2xy'x + 6y(x) = 0$$

and then find a second, linearly independent, solution. *Solution:* We want a solution of the form

$$y(x) = \alpha x^2 + \beta x + \gamma.$$

Substituting into the differential equation,

$$2\alpha(1-x^{2}) - 2x(2\alpha x + \beta) + 6(\alpha x^{2} + \beta x + \gamma) = 0$$

The coefficient of x^2 on the left hand side is zero for any values of α , β and γ . To make the coefficients of x and 1 equal to zero as well we need

$$4\beta = 0$$
, $6\gamma - 2\alpha = 0$.

The solutions we are looking for are therefore

$$y_1(x) = 3x^2 - 1$$

and its multiples. To find a second solution we solve the first order linear equations

$$(1 - x^2)w'(x) - 2xw(x) = 0$$

and

$$y_1(x)y_2'(x) - y_1'(x)y_2(x) = w(x)$$

for w and y_2 . The first has as its solution

$$w(x) = \frac{w(0)}{1 - x^2}.$$

The second equation then becomes

$$(3x^2 - 1)y_2'(x) - 6xy_2(x) = \frac{w(0)}{1 - x^2}.$$

This has the solution

$$y_2(x) = y_i(x) + y_h(x)$$

where

$$y_i(x) = y_2(0) \exp\left(\int_0^x \frac{6t}{3t^2 - 1} dt\right) = -y_2(0)(3x^2 - 1)$$

and

$$y_{i}(x) = \int_{0}^{x} \exp\left(\int_{s}^{x} \frac{6t}{3t^{2} - 1} dt\right) \frac{w(0)}{(1 - s^{2})(3s^{2} - 1)} ds$$

$$= w(0) \int_{0}^{x} \frac{3x^{2} - 1}{(3s^{2} - 1)^{2}(1 - s^{2})} ds$$

$$= \frac{w(0)(3x^{2} - 1)}{4} \int_{0}^{x} \left(3\frac{3s^{2} + 1}{(3s^{2} - 1)^{2}} + \frac{1}{1 - s^{2}}\right) ds$$

$$= \frac{w(0)(3x^{2} - 1)}{8} \int_{0}^{x} \left(\frac{1}{(s - 1/\sqrt{3})^{2}} + \frac{1}{(s + 1/\sqrt{3})^{2}} - \frac{1}{s - 1} + \frac{1}{s + 1}\right) ds$$

$$= \frac{w(0)(3x^{2} - 1)}{8} \left[\log\left(\frac{1 + x}{1 - x}\right) - \frac{6x}{3x^{2} - 1}\right]$$

$$= \frac{w(0)}{8} \left[\left(3x^{2} - 1\right)\log\left(\frac{1 + x}{1 - x}\right) - 6x\right]$$

The simplest choice is w(0) = 8, y(0) = 0:

$$y_2(x) = (3x^2 - 1)\log\left(\frac{1+x}{1-x}\right) - 6x.$$