## MA 2326 Assignment 7 Due never

Id: 2326-s2015-7.m4, v 1.1 2015/04/17 21:39:06 john Exp john

1. A class of popular models for the dynamics of the populations of two species is

$$x'(t) = ax(t)^{2} + bx(t)y(t) + cx(t), \quad y'(t) = dx(t)y(t) + ey(t)^{2} + fy(t).$$

- (a) What are the equilibria?
- (b) Find the linearisation about each equilibrium. The linearisation about  $(\xi, \eta)$  is

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x - \xi \\ y - \eta \end{pmatrix},$$

where

$$A = \begin{pmatrix} 2a\xi + b\eta + c & b\xi \\ d\eta & d\xi + 2e\eta + c \end{pmatrix}.$$

Substituting the four equilibria we found above gives

$$A = \begin{pmatrix} c & 0 \\ 0 & f \end{pmatrix}$$

or  $A = \begin{pmatrix} c - bf/e & 0 \\ -df/e & -f \end{pmatrix}$ 

or  $A = \begin{pmatrix} -c & -bc/a \\ 0 & f - cd/a \end{pmatrix}$ 

or  $A = \frac{1}{ae-bd} \begin{pmatrix} abf-ace & b^2f-bce \\ -adf+cd^2 & -aef+cde \end{pmatrix}.$ 

## Id: 2326-s2015-7.m4,v 1.1 2015/04/17 21:39:06 john Exp john 2

- (c) Determine, where possible, the stability properties of each equilibrium.
- 2. The time reversed Van der Pol equation is, after reduction of order,

$$x'(t) = y(t), \quad y'(t) = -x(t) + \mu(x(t)^2 - 1)y(t),$$

where  $\mu$  is a positive parameter. (0,0) is equilibrium. Show that this equilibrium is strictly stable by finding a strict Lyapunov function.