MA 2326 Assignment 4 Due 17 February 2015

Id: 2326-s2015-4.m4, v 1.2 2015/02/25 11:47:51 john Exp john

1. Compute $\exp(xA)$ for

$$A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

Note: The matrix A is real, so $\exp(xA)$ will be real as well. You should simplify your answer sufficiently that this is obvious.

2. (a) An $n \times n$ matrix M if of rank k if and only if there is an $n \times k$ matrix P and a $k \times n$ matrix Q such that

$$M = PQ$$

and QP is invertible. Prove that in this case¹

$$\exp(M) = I + P(QP)^{-1} (\exp(QP) - I) Q.$$

Note: The equation is always correct, but is only of practical use if k is much smaller than n. Do not attempt to use the equation $(QP)^{-1} = P^{-1}Q^{-1}$. This always fails if k < n, because neither P nor Q can be invertible in that case.

¹The two I's on the right hand side of this equation are not equal! The first occurence of I is the $n \times n$ identity matrix and the second occurence of I is the $k \times k$ identity matrix.

Id: 2326-s2015-4.m4,v 1.2 2015/02/25 11:47:51 john Exp john 2

(b) Use the preceding identity to compute $\exp(xA)$ where

Note: You may use the identity from the previous part even if you didn't succeed in proving it.