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We want to find the flow around a pair of
vortices using the complex hodograph method,
based on the fundamental equation

where z = x+ iy, ( = u—ivand W = U +
1V. It will be assumed that the two vortices
are of the same strength and opposite direction,
which is the only case in which the total energy
is finite. x and y are the spatial coordinates and
u and v are the corresponding components of
velocity. U and V are the velocity potential and
stream function.

We choose coordinates such that the y axis
goes through the centre of the vortices and we
choose the origin to be equidistant from the two.
Of the two such choices and we choose the one
where the fluid in the upper half-plane is cir-
culating in the anticlockwise direction and the
fluid in the lower half-plane is circulating clock-
wise. There are two symmetries. Switching the
signs of z and v or of y and v leaves the flow
unchanged. For this reason we only need to find
the flow in the first quadrant. U and V are de-
termined only up to an additive constant, which
we choose to be zero at the centre of symmetry.

For reference, the corresponding Dirichlet flow
is . .
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a and ¢ are real constants describing the
strength of the vortices and the distance between
them.

The streamlines, lines of constant V' are shown
in green on the following diagram. Lines of con-
stant U are shown in blue.

The branch cut in the logarithm, correspond-
ing to rays beginning at the vortices and ex-
tending away from the centre of symmetry, isn’t
physically significant. Because there are closed
streamlines there is no way to define a single-
valued velocity potential everywhere. We could



also avoid this issue by writing z and  in terms

of W:
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These are periodic functions with period 27w
In view of Bernoulli’s equation,
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the Dirichlet flow above will have negative pres-
sure near the vortices, regardless of the stagna-
tion pressure pg. In fact the pressure will tend
to negative infinity at the vortices.
this, we look for flows with cavities at the vor-
tices. The cavities are bounded by streamlines,
on which V' is constant, and the pressure is zero,
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Schematically, the picture is

To avoid

Only the first quadrant is shown. The part
containing fluid is marked in red. The free
streamline about the vortex is drawn as circular,
although we will see that it is not, but all that
matters here is that the z picture should give an
idea of the flow. It is the ¢ and W pictures which
need to be accurate.

Four important points in the first quadrant are
labelled. A is the origin, which is the centre of
symmetry of the whole picture. B is meant to
be located at infinity, but the diagram is merely
schematic. C and D are points where the free
streamline about the vortex intersects the y axis.
C'is the point farther from the centre of symme-
try and D is the point closer to the centre of sym-
metry. A and B are connected by streamlines, as
are C and D. V is constant on these streamlines.
B and C are connected by a line perpendicular
to the direction of flow, as are D and A, so U is
constant on these lines. These curves together
bound the part of the first quadrant which con-
tains fluid. The set of W values corresponding
to z in the interior of the first quadrant therefore
form a rectangle:

G={WeC:0<ReW < K,0<ImW < K'}.

The origin is a corner of this rectangle, because
we normalised U and V by setting them both
equal to zero at infinity. The real constants K
and K’ are unknown. K’ at least has a physical
meaning. 2pK’ is the rate at which fluid flows
between the vortices. The rectangle is shown
below, with labels A, B, C' and D corresponding
to those in the previous diagram.



On the streamline connecting A and B the ver-
tical component of velocity is always zero and
the horizontal component is always positive, de-
creasing from some o < s, which is unknown, to
zero. On the ray connecting B to C the vertical
component of velocity is again zero and the hor-
izontal component is negative, decreasing from 0
to —s. On the free streamline connecting C' to D
the vertical component of velocity is always pos-
itive and, since this streamline borders a cavity,
the speed is always s. The horizontal component
of velocity increases from —s to s. On the line
segment connecting D to A the vertical compo-
nent of velocity is always zero and the horizontal
component is positive, decreasing from s to o.
Tracing the corresponding values of ( we obtain
the following diagram, with labels corresponding
to those in the previous two diagrams.

Points z in the interior of the first quadrant
must correspond to values of ¢ in the interior of
the the lower half-disc of radius s,

H={zeC:|¢|] <s,Im( <0}

By the Riemann Mapping Theorem there is an
invertible analytic map from R to H. We need
this map to take the points labelled A, B, C
and D in the W diagram to those with the same
labels in the ¢ diagram. This is not, in general,
possible. We will need a certain relation to hold
between the dimensionless ratios /s and K'/K.

The Riemann Mapping Theorem, unfortu-
nately, does not give us an explicit mapping.
The most useful tool for constructing one is the
Schwarz Reflection Principle:

If Q € C is symmetric under reflection
about the real axis, f is analytic in 2
and

fz) = f(z)



then f is real on the real axis. Con-
versely, if f is analytic in the part of €2
in the upper half plane, including the
real line, and is real on the real line
then f can be extended to all of Q as
an analytic function via

@) =f(2).

There is nothing special about the real line, ei-
ther in the domain or image. We can replace
it with any other line, replacing the mapping
z — Z with reflection about that line. We need
not use the same line for the domain and im-
age, or, equivalently, the same reflection on both
sides of the equation. We can also replace either
or both lines by circles, replacing the reflection
z — Z by inversion with respect to that circle.
The generalised Schwarz Reflection Principle is
easier to apply than to state precisely. To handle
inversions correctly we need to use the “Riemann
sphere” ¥ = C U {oc} in place of C.

Suppose that C' is a circle or line and
R:3Y — ¥ is inversion or reflection with
respect to that circle or line. Suppose
that  C ¥ satisfies R(Q2) = Q. Sup-
pose that C” is a (possibly) different cir-
cle or line and R’ the corresponding re-
flection or inversion. Suppose f: ) — X
is meromorphic. If

f(R(z)) = R'(f(2))
then f(C) c C’. Conversely, if f is

defined and meromorphic on the part of
Q to one side of and including C', and
satisfies f(C') C C’, then extending f
to all of Q via

f(R(2)) = R'(f(2))

gives an analytic function.

In our case we can apply the generalised
Schwarz Reflection Principle to each of the four
sides of the rectangle Q). In the W plane we have
the four reflections

Rap(W) = W, Rpc(W)=2K -z
Rep(W) =2iK'+%z Rpa(W)=-W.
These correspond the reflections/inversions
R/BC(C) = Z,

Rpa(Q)=¢

In each case the reflec-

R%B (C) = Za

Rep(€) = s°/¢,
in the ( plane.
tion/inversion is found by looking at the corre-
sponding segment/arc in appropriate diagram.
By the generalised Schwarz Reflection Principle
the mapping from (:G — H has an extension
satisfying

C(Rpo(W)) = Rpq(¢(W))

for any PQ in the set AB, BC,CD, DA. We can
repeat this construction, with a different choice
of in place of PQ:

((Rsr(Rp(W))) = Rgr(C(Rpe(W)))
:Rfs*T( QDQ(C(W)))

There are several interesting choices of PQST.

Choosing PQST = DABC gives
(W +2K) = (W),

so ( is periodic. Choosing PQST = ABCD

gives

C(W + 2iK') = s /¢(W).
Applying this twice,

C(W + 4iK") = (W),



so (¢ is doubly periodic. In addition to the
real period 2K it has a purely imaginary pe-
riod 4¢K’. Doubly periodic meromorphic func-
tions are called elliptic, and there is an exten-
sive theory of such functions. Finally, choosing
PQST = ABBC,

so ( is an even function. It has a zero at the
point K, and must, because of the equation
C(WH2iK') = s2/((W), have a pole at K +2iK’.
Because of the periodicity, adding any integer
multiple of 2K or 4iK' to this zero or pole gives
another zero or pole. There are no others. It
follows from the periodicity and evenness of (
that these zeroes and poles are of even order. A
more careful analysis shows that the order is two.
There is, up to multiplication by a constant, only
one function with these properties. We can use

((0) =0
CUE") = s

to fix that multiplicative constant, but not both.
That is the origin of the relation between o/s
and K'/K discussed earlier.
Weierstrass g function,
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In terms of the

p(z,wi,wr) = 2z

the function ¢ can be written explicitly as

The result is not an elliptic function, but it is
The
streamlines are then found by fixing V' and let-
ting U vary. The relation between o/s and K'/K
is

expressible in terms of known functions.

(K +2iK' 2K, 4iK") — p(2iK', 2K, 4iK")
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(K +3iK' 2K, 4iK') — p(2iK', 2K, 4iK')’

It is fairly straightforward to show, from the def-
inition of g, that the right hand side depends on
K and K’ only through the ratio K'/K.

((z — mwy — nwg)*2 — (mwy + nw2)72)

o(W + K + 2K’ 2K, 4iK') — p(2iK', 2K, 4iK’)

(W) =0

One can then find z(WW) by integrating
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o(K + 2iK' 2K, 4iK") — p(2iK', 2K, 4iK')



