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1. The usual way to solve the heat equation

ut − κuxx = 0

numerically is to approximate the t derivative with a forward difference
and x derivatives with centred differences:1

U(t + k, x)− U(t, x)

k
− κ

U(t, x+ h)− 2U(t, x) + U(t, x − h)

h2
= 0.

As with the finite difference scheme for the wave equation discussed
in class, this scheme may or may not exhibit numerical instability, de-
pending on the values of κ, h and k. Determine, using the same method
used in class for the wave equation, where the stability threshold lies.
Solution: As usual, we write Um,n = U(mk, nh), so that

Um+1,n − Um,n

k
− κ

Um,n+1 − 2Um,n + Um,n−1

h2
= 0

or
Um+1,n = pUm,n+1 + (1− 2p)Um,n + pUm,n−1

where p = κk/h2. To determine stability we look at solutions of the
form

Um,n = cme
2πinξ.

1We write U in place of u to distinguish the approximate solution from the exact

solution.
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The coefficients cm satisfy

cm+1 =
(

1− 4p sin2 (πξ)
)

cm.

If p ≤ 1/2 then solutions stay bounded. Indeed they decay exponen-
tially if p < 1 and ξ /∈ Z. If p > 1/2 then there is a range of values
of ξ, including ξ = 1/2, for which solutions grow exponentially. The
stability threshold is therefore p = 1/2.

2. The differential equation

yxx = αy2 + βy

in an interval [a, b] is the Euler-Lagrange equation for the first order
Lagrangian

L(x, y, yx) =
1

2
y2x +

α

3
y3 +

β

2
y2.

The equation can be solved exactly in terms of elliptic functions, but
one can also solve it numerically, either by finite differences or finite
elements. Derive the equations for a finite element scheme with con-
tinuous piecewise linear elements.
Solution: We split [a, b] into n equal subintervals I0 = [x0, x1], . . . ,
In−1 = [xn−1, xn], where xj = a+ jh and h = (b− a)/n. A continuous
piecewise linear function is determined by its values at the endpoints
of these subintervals:

y(x) =
y(xj)(xj+1 − x) + y(xj+1)(x− xj

h

for x ∈ Ij . Then

yx(x) =
yj+1 − yj

h

in the interior of Ij. In each subinterval L(x, y(x), yx(x)) is a polynomial
of degree at most 3 in x, so, by Simpson’s rule,

∫

Ij
L(x, y(x), yx(x)) dx =

Lj + 4Lj+1/2 + Lj+1

6
h

where
Lj = L (xj , y(xj), yx(xj))

Lj+1/2 = L
(

xj+1/2, y(xj+1/2), yx(xj+1/2)
)

Lj+1 = L (xj+1, y(xj+1), yx(xj+1))

and

xj+1/2 =
xj + xj+1
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is the midpoint of Ij. Substituting

∫

Ij
L(x, y(x), yx(x)) dx=

1

2h

(

y2j − 2yjyj+1 + y2j+1

)

+
αh

6

(

y2j + yjyj+1 + y2j+1

)

+
βh

12

(

y3j + y2j yj+1 + y2jyj+1 + y3j+1

)

.

To simplify this and later equations we use the notation yj = y(yj).
Then

∫ b

a
L(x, y(x), yx(x)) dx =

n−1
∑

j=0

∫

Ij
L(x, y(x), yx(x)) dx.

For a stationary point we need

0 =
∂

∂xk

∫ b

a
L(x, y(x), yx(x)) dx =

∂

∂xk

n−1
∑

j=0

∫

Ij
L(x, y(x), yx(x)) dx.

Only the j = k− 1 and j = k summands contribute. After multiplying
by 12h and grouping terms,

(12− 2αh2)yk+1 − (24 + 8αh2)yk + (12− 2αh2)yk−1

= βh2
(

y2k+1 + 2ykyk+1 + 6y2k + 2ykyk−1 + y2k−1

)

.


