MA 2326 Assignment 4 Due 6 March 2014

Id: 2326-s2014-4.m4,v 1.2 2014/03/04 09:53:13 john Exp john

1. Given that

$$x_1(t) = t^2$$

and

$$x_2(t) = t^3$$

are linearly independent solutions of the differential equation

$$t^2x''(t) - 4tx'(t) + 6x(t) = 0$$

in the interval $(0, \infty)$, find the fundamental matrix for

$$A(t) = \begin{pmatrix} 0 & 1 \\ -6t^{-2} & 4t^{-1} \end{pmatrix}.$$

2. Given that

$$x(t) = t$$

is a solution to the differential equation

$$t^2x''(t) - tx'(t) + x(t) = 0$$

on the interval $(0, \infty)$, find a second solution by Wronskian reduction of order.

3. Given that

$$W(s,t) = \begin{pmatrix} \cos\log(s/t) & -s\sin\log(s/t) \\ t^{-1}\sin\log(s/t) & st^{-1}\cos\log(s/t) \end{pmatrix}$$

is the fundamental matrix for

$$A(t) = \begin{pmatrix} 0 & 1 \\ -t^{-2} & -t^{-1} \end{pmatrix}$$

in the interval $(0, \infty)$, solve the initial value problem

$$x(t_0) = x_0 \quad x'(t_0) = v_0$$

inhomogeneous linear differential equation

$$t^2x''(t) + tx'(t) + x(t) = f(t).$$