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1. Suppose Ω is a bounded open set in Rn, n > 2 and that ∂Ω is
continuously differentiable. A Green’s function for Ω is a function
G: Ω × Ω − ∆ → R, where ∆ = {(x,y) ∈ Ω × Ω:x = y}, satisfy-
ing the following conditions:

• If x ∈ ∂Ω then G(x,y) = 0.

• For each fixed y ∈ Ω there is a harmonic function v on Ω such
that

G(x,y) = v(x) + w(x)

for x 6= y where w(x) = cn‖x − y‖2−n, cn = (2 − d)−1ω−1
n−1 and

ωn−1 is the n− 1 dimensional measure of the unit sphere in Rn.

(a) Prove that such a set Ω has at most one Green’s function.
Note: This is not hard.
Solution: Suppose G1 and G2 are Green’s function, with corre-
sponding harmonic functions v1 and v2 as above. Then v = v1−v2
is harmonic in Ω. On ∂Ω,

v = v1 − v2 = v1 + w − v2 − w = G1 −G2 = 0.

By the uniqueness of solutions to the Dirichlet problem, v = 0
throughout Ω. Thus v1 = v2 and so G1 = G2.

(b) Find a Green’s function for the unit ball {x ∈ Rn: ‖x‖ < 1}.
Note: We essentially did this in lecture.
Solution:
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G(x,y) = cn‖x− y‖2−n − cn‖x‖
2−n

∥

∥

∥

∥

x

x · x
− y

∥

∥

∥

∥

2−n

satisfies the conditions above, with

v(x) = −cn‖x‖
2−n

∥

∥

∥

∥

x

x · x
− y

∥

∥

∥

∥

2−n

.

2. Supposing that Ω has a Green’s function, find an integral representation
for the value of a harmonic function u at an interior point y ∈ Ω in
terms of its values on the boundary ∂Ω.
Note: This was done, in the special case of the unit ball, in lecture.
The argument given there works in general.
Solution: We apply Green’s Second Identity twice, once with with the
Ω and v above,

∫

Ω
(u div grad v − v div gradu) =

∫

∂Ω

(

u
∂v

∂n
− v

∂u

∂n

)

,

and once with Ω and v replaced by Ω− By,ǫ and w,

∫

Ω−By,ǫ

(u div gradw − w div grad u) =
∫

∂(Ω−By,ǫ)

(

u
∂w

∂n
− w

∂u

∂n

)

.

Since u and v are harmonic in Ω and w is harmonic in Ω − By,ǫ, the
left hand sides of both equations are zero.

∫

∂Ω

(

u
∂v

∂n
− v

∂u

∂n

)

= 0

and
∫

∂(Ω−By,ǫ)

(

u
∂w

∂n
− w

∂u

∂n

)

= 0.

The boundary of Ω − By,ǫ, with the usual orientation, the one which
appears in Green’s Second Identity, is the boundary of Ω, also with
the usual orientation, together with the sphere Σy,ǫ, with the opposite
orientiation. The previous equation can therefore be written as

∫

∂Ω

(

u
∂w

∂n
− w

∂u

∂n

)

−
∫

Σy,ǫ

(

u
∂w

∂n
− w

∂u

∂n

)

= 0.
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Adding this to the equation for u and v gives

∫

∂Ω

(

u
∂G

∂n
−G

∂u

∂n

)

−
∫

Σy,ǫ

(

u
∂w

∂n
− w

∂u

∂n

)

= 0.

By hypothesis G = 0 on ∂Ω. Also w is constant on Σy,ǫ and also,
because Σy,ǫ = ∂By,ǫ,

∫

Σy,ǫ
∂u/∂n = 0. Therefore

∫

Σy,ǫ

u
∂w

∂n
=
∫

∂Ω
u
∂G

∂n
.

Now
∂w

∂n
= ωn−1ǫ

1−n = µ(Σy,ǫ)

on Σy,ǫ. The left hand side of the equation above is therefore the
average over Σy,ǫ of u, which, by the Mean Value Property, is u(y). In
other words,

u(y) =
∫

∂Ω
u
∂G

∂n
.

A little more explicitly,

u(y) =
∫

x∈∂Ω
u(x)

∂G

∂n
(x,y) dx.

The normal derivative is taken with respect to the x variables.

3. Prove the following relations for homogeneous polynomials p in Rn:

(a)

x · grad p(x) = deg(p)p(x).

Solution:

Any homogeneous polynomial is of the form

p(x1, . . . , xn) =
∑

j1+···+jn=deg(p)

cj1,...,jnx
j1
1 · · ·xjn

n .

Differentiating,

xkpxk
(x1, . . . , xn) =

∑

j1+···+jn=deg(p)

jkcj1,...,jnx
j1
1 · · ·xjn

n .

Summing over k gives the equation required.



Id: 3426-s2013-1.m4,v 1.3 2013/02/21 14:52:33 john Exp john 4

(b)

div grad(x · xp(x))− x · x div grad p(x) = (2n+ 4deg(p))p(x).

Solution:

div grad(x · xp(x)) = div[grad(x · x)p(x) + (x · x) grad p(x)]

and hence

div grad(x·xp(x)) = div grad(x·x)p(x))+2 grad(x·x)·grad p(x)+(x·x) div grad p(x).

Now
grad (x · x) = 2x

and
div grad (x · x) = 2n,

so

div grad(x ·xp(x)) = 2np(x))+4x ·grad p(x)+(x ·x) div grad p(x).

The equation from the previous part then gives what we want.

4. With some clever algebra and the equations from the previous problem,
it is possible to show that every homogenuous polynomial p of degree
d in Rn can be written in the form

p(x) = q(x) + (x · x)r(x)

for a unique harmonic polynomial q of degree d and a unique polyno-
mial r of degree d− 2. Assume this is so.

(a) What is the dimension of the vector space of all homogeneous
polynomials of degree d in n variables?
Solution:

The quickest way to compute this is to consider the power series

n
∏

j=1

(1− txk)
−1 =

n
∏

j=1

∞
∑

k=0

tkxk
j

in n+1 variables. Expanding the product of sums, each monomial
of degree d appears once and only once, multiplied by a factor td.
If we substitute x1 = x2 = · · · = xn = 1 we get a summand of
td for each such monomial, and these monomials form a basis for



Id: 3426-s2013-1.m4,v 1.3 2013/02/21 14:52:33 john Exp john 5

the space Pd,n of homogeneous polynomials of degree d in the n
variables x1, . . . , xn. Thus

(1− t)−n =
∞
∑

d=0

dim(Pd,n)t
d.

By the extended binomial theorem,

dim(Pd,n) =
(n+ d− 1)!

(n− 1)!d!

(b) What is the dimension of the vector space of all homogeneous
harmonic polynomials of degree d in n variables?
Solution:

Let Hd,n be the space of harmonic polynomials of degree d in
x1, . . . , xn. We know that T :Hd,n ⊕ Pd−2,n → Pd,n, defined by

(T (q, r))(x) = q(x) + (x · x)r(x),

is an isomorphism, so

dim(Hd,n) + dim(Pd−2,n) = dim(Pd,n)

and, using the result from the previous part,

dim(Hd,n) =
(n + d− 1)!

(n− 1)!d!
−
(n+ d− 3)!

(n− 3)!d!
=

(n+ d− 3)!

(n− 1)!(d− 1)!
(2n+d−3).


