MA 3426 Assignment 1 Due 5 February 2013

Id: 3426-s2013-1.m4,v 1.3 2013/02/21 14:52:33 john Exp john

- 1. Suppose Ω is a bounded open set in \mathbf{R}^n , n > 2 and that $\partial\Omega$ is continuously differentiable. A *Green's* function for Ω is a function $G: \overline{\Omega} \times \overline{\Omega} \Delta \to \mathbf{R}$, where $\Delta = \{(\mathbf{x}, \mathbf{y}) \in \overline{\Omega} \times \overline{\Omega} : \mathbf{x} = \mathbf{y}\}$, satisfying the following conditions:
 - If $\mathbf{x} \in \partial \Omega$ then $G(\mathbf{x}, \mathbf{y}) = 0$.
 - For each fixed $\mathbf{y} \in \Omega$ there is a harmonic function v on $\overline{\Omega}$ such that

$$G(\mathbf{x}, \mathbf{y}) = v(\mathbf{x}) + w(\mathbf{x})$$

for $\mathbf{x} \neq \mathbf{y}$ where $w(\mathbf{x}) = c_n \|\mathbf{x} - \mathbf{y}\|^{2-n}$, $c_n = (2-d)^{-1} \omega_{n-1}^{-1}$ and ω_{n-1} is the n-1 dimensional measure of the unit sphere in \mathbf{R}^n .

- (a) Prove that such a set Ω has at most one Green's function. Note: This is not hard.
- (b) Find a Green's function for the unit ball $\{\mathbf{x} \in \mathbf{R}^n : \|\mathbf{x}\| < 1\}$. Note: We essentially did this in lecture.
- 2. Supposing that Ω has a Green's function, find an integral representation for the value of a harmonic function u at an interior point $y \in \Omega$ in terms of its values on the boundary $\partial \Omega$. *Note:* This was done, in the special case of the unit ball, in lecture. The argument given there works in general.

3. Prove the following relations for homogeneous polynomials p in Rⁿ:
(a)

$$\mathbf{x} \cdot \operatorname{grad} p(\mathbf{x}) = \operatorname{deg}(p)p(\mathbf{x}).$$

(b)

div grad
$$(\mathbf{x} \cdot \mathbf{x} p(\mathbf{x})) - \mathbf{x} \cdot \mathbf{x}$$
 div grad $p(\mathbf{x}) = (2n + 4 \deg(p))p(\mathbf{x}).$

4. With some clever algebra and the equations from the previous problem, it is possible to show that every homogenuous polynomial p of degree d in \mathbb{R}^n can be written in the form

$$p(\mathbf{x}) = q(\mathbf{x}) + (\mathbf{x} \cdot \mathbf{x})r(\mathbf{x})$$

for a unique *harmonic* polynomial q of degree d and a unique polynomial r of degree d - 2. Assume this is so.

- (a) What is the dimension of the vector space of all homogeneous polynomials of degree d in n variables?
- (b) What is the dimension of the vector space of all homogeneous harmonic polynomials of degree d in n variables?